ON ZERO SUBRINGS AND PERIODIC SUBRINGS

HOWARD E. BELL

(Received 23 October 2000)

ABSTRACT. We give new proofs of two theorems on rings in which every zero subring is finite; and we apply these theorems to obtain a necessary and sufficient condition for an infinite ring with periodic additive group to have an infinite periodic subring.

2000 Mathematics Subject Classification. 16N40, 16N60, 16P99.

Let R be a ring and N its set of nilpotent elements; and call R reduced if $N = \{0\}$. Following [4], call R an FZS-ring if every zero subring—that is, every subring with trivial multiplication—is finite. It was proved in [1] that every nil FZS-ring is finite—a result which in more transparent form is as follows.

Theorem 1. Every infinite nil ring contains an infinite zero subring.

Later, in [4], it was shown that every ring with N infinite contains an infinite zero subring. The proof relies on Theorem 1 together with the following result.

Theorem 2 (see [4]). If R is any semiprime FZS-ring, then $R = B \oplus C$, where B is reduced and C is a direct sum of finitely many total matrix rings over finite fields.

Theorems 1 and 2 have had several applications in the study of commutativity and finiteness. Since the proofs in [1, 4] are rather complicated, it is desirable to have new and simpler proofs; and in our first major section, we present such proofs. In our final section, we apply Theorems 1 and 2 in proving a new theorem on existence of infinite periodic subrings.

1. Preliminaries. Let \mathbb{Z} and \mathbb{Z}^+ denote, respectively the ring of integers and the set of positive integers. For the ring R, denote by the symbols T and $P(R)$, respectively the ideal of torsion elements and the prime radical; and for each $n \in \mathbb{Z}^+$, define R_n to be $\{x \in R \mid x^n = 0\}$. For Y an element or subset of R, let $\langle Y \rangle$ be the subring generated by Y; let $A_l(Y)$, $A_r(Y)$, and $A(Y)$ be the left, right, and two-sided annihilators of Y; and let $C_R(Y)$ be the centralizer of Y. For $x, y \in R$, let $[x, y]$ be the commutator $xy - yx$.

The subring S of R is said to be of finite index in R if $(S, +)$ is of finite index in $(R, +)$. An element $x \in R$ is called periodic if there exist distinct positive integers m, n such that $x^m = x^n$; and the ring R is called periodic if each of its elements is periodic.

We will use without explicit mention two well-known facts:

(i) the intersection of finitely many subrings of finite index in R is a subring of finite index in R;
(ii) if \(R \) is semiprime and \(I \) is an ideal of \(R \), then \(R/A(I) \) is semiprime. We will also need several lemmas.

Lemma 1.1 is a theorem from [6]; Lemma 1.2 appears in [3], and with a different proof in [2]; Lemma 1.3, also given without proof, is all but obvious. Lemma 1.6, which appears to be new, is the key to our proofs of Theorems 1 and 2.

Lemma 1.1. If \(R \) is a ring and \(S \) is a subring of finite index in \(R \), then \(S \) contains an ideal of \(R \) which is of finite index in \(R \).

Lemma 1.2. Let \(R \) be a ring with the property that for each \(x \in R \), there exist \(m \in \mathbb{Z}^+ \) and \(p(t) \in \mathbb{Z}[t] \) such that \(x^m = x^{m+1} p(x) \). Then \(R \) is periodic.

Lemma 1.3. If \(R \) is any ring with \(N \subseteq T \) and \(H \) is any finite set of pairwise orthogonal elements of \(N \), then \(\langle H \rangle \) is finite.

Lemma 1.4. If \(R \) is any ring in which \(R_2 \) is finite, then \(R \) is of bounded index—that is, \(N = R_n \) for some \(n \in \mathbb{Z}^+ \).

Proof. Let \(M = \langle R_2 \rangle \) and let \(x \in N \) such that \(x^{2k} = 0 \) for \(k \geq M + 1 \); and note that \(x^k, x^{k+1}, \ldots, x^{2k-1} \) are all in \(R_2 \). Since \(k > M \), these elements cannot be distinct; hence there exist \(h, j \in \mathbb{Z}^+ \) such that \(h < j \leq 2k - 1 \) and \(x^h = x^{h+m(j-h)} \) for all \(m \in \mathbb{Z}^+ \). It follows that \(x^h = 0 \); hence \(y^{2^M} = 0 \) for all \(y \in N \).

Lemma 1.5. If \(R \) is any FZS-ring, then \(N \subseteq T \).

Proof. Let \(R \) be a ring with \(N \setminus T \neq \emptyset \), and let \(x \in N \setminus T \). Then there exists a smallest \(n \in \mathbb{Z}^+ \) such that \(x^n \in T \), and there exists \(k \in \mathbb{Z}^+ \) for which \(kx^n = 0 \). Since \(kx^{n-1} \notin T \), \(\langle kx^{n-1} \rangle \) is an infinite zero subring of \(R \).

Lemma 1.6. If \(R \) is any FZS-ring and \(x \) is any element of \(N \), then \(A(x) \) is of finite index in \(R \). Hence, if \(S \) is any finite subset of \(N \), \(A(S) \) is of finite index in \(R \).

Proof. We use induction on the degree of nilpotence. Suppose first that \(y^2 = 0 \). Define \(\Phi : R \gamma \rightarrow R \) by \(r \gamma \gamma \rightarrow [r \gamma, \gamma] = -\gamma r \gamma \); and note that \(\Phi(R \gamma) \) is a zero subring of \(R \), hence finite. Thus \(\ker \Phi = R \gamma \cap C_R(\gamma) \) is of finite index in \(R \gamma \). But it is easily seen that \(\ker \Phi \) is a zero ring, hence is finite; consequently, \(R \gamma \) is finite. Now consider \(\eta : R \rightarrow R \gamma \) defined by \(r \rightarrow r \gamma \), and note that \(\ker \eta = A_I(\gamma) \) is of finite index in \(R \). Similarly, \(A_r(\gamma) \) is of finite index and so is \(A(\gamma) = A_I(\gamma) \cap A_r(\gamma) \).

Now assume that \(A(x) \) is of finite index for all \(x \in N \) with degree of nilpotence less than \(k \), and let \(y \in N \) be such that \(y^k = 0 \). Then \(A(y^2) \) is of finite index in \(R \). Define \(\Phi : A(y^2) \gamma \rightarrow R \) by \(s \gamma \gamma \rightarrow [s \gamma, \gamma] \), \(s \in A(y^2) \); and note that both \(\Phi(A(y^2) \gamma) \) and \(\ker \Phi = A(y^2) \gamma \cap C_R(\gamma) \) are zero rings, so that \(A(y^2) \gamma \) is finite. Consider the map \(\Psi = A(y^2) \gamma \rightarrow A(y^2) \gamma \gamma \) given by \(s \gamma \rightarrow s \gamma \gamma \). Now \(\ker \Psi = A(y^2) \gamma \cap A_I(\gamma) \) must be of finite index in \(A(y^2) \gamma \); and since \(A(y^2) \gamma \) is of finite index in \(R \), \(\ker \Psi \) is of finite index in \(R \). It follows that \(A_I(\gamma) \) is of finite index in \(R \); and a similar argument shows that \(A_r(\gamma) \) is of finite index in \(R \). Therefore \(A(\gamma) \) is of finite index in \(R \).}

Lemma 1.7. Let \(p \) be a prime, and let \(R \) be a ring such that \(pR = \{0\} \).

(i) If \(a \in R \) and \(a^{pk} = a \), then \(a^{pk} = a \) for all \(m \in \mathbb{Z}^+ \). Hence if \(a, b \in R \) with \(a^{pk} = a \) and \(b^{p^l} = b \), there exists \(n \in \mathbb{Z}^+ \) such that \(a^{pn} = a \) and \(b^{pn} = b \).
(ii) If $a \in R$ and $a^{p^n} = a$, then for each $s \in \mathbb{Z}$, $(sa)^{p^n} = sa$.

(iii) If R is reduced and a is a periodic element of R, then there exists $n \in \mathbb{Z}^+$ such that $a^{p^n} = a$.

Proof. (i) is almost obvious, and (ii) follows from the fact that $s^p \equiv s \pmod{p}$ for all $s \in \mathbb{Z}$. To obtain (iii), note that if R is reduced and a is periodic, then $\langle a \rangle$ is finite, hence a direct sum of finite fields, necessarily of characteristic p. Since $\text{GF}(p^\alpha)$ satisfies the identity $x^{p\alpha} = x$, the conclusion of (iii) follows by (i).

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Suppose R is a counterexample. Note that R is an FZS-ring, so $R = T$ by Lemma 1.5. It is easy to see that R contains a maximal finite zero subring S. By Lemma 1.6, $A(S)$ is infinite; and maximality of S forces $A(S)_2 = S$. Thus, by replacing R by $A(S)$, we may assume that R_2 is finite.

By Lemma 1.6, we can construct infinite sequences of pairwise orthogonal elements; and by Lemma 1.4 there is a smallest $M \in \mathbb{Z}^+$ for which R_M contains such sequences. Let u_1, u_2, \ldots be an infinite sequence of pairwise orthogonal elements of R_M. Using Lemma 1.3, we can refine this sequence to obtain an infinite subsequence v_1, v_2, \ldots such that for each $j \geq 2$, $v_j \notin \langle v_1, v_2, \ldots, v_{j-1} \rangle$. Defining V_0 to be $\{v_j^2 \mid j \in \mathbb{Z}^+\}$, we see that $V_0 \subseteq R_{M-1}$ and hence V_0 is finite, so we may assume without loss of generality that there exists a single $s \in R$ such that $v_j^2 = s$ for all $j \in \mathbb{Z}^+$. Take $m \in \mathbb{Z}^+$ such that $ms = 0$; and for each $j \in \mathbb{Z}^+$, define $w_j = \sum_{i=1}^{m-1} v_i$. Then the w_j form an infinite subset of R_2, contrary to the fact that R_2 is finite. The proof is now complete.

Proof of Theorem 2. As before, since R is an FZS-ring, there is a maximal finite zero subring S; and by Lemma 1.6 $A(S)$ is of finite index in R. By Lemma 1.1, $A(S)$ contains an ideal I of R which is also of finite index in R. Let $C = A(I)$ and let $B = A(C)$. Then $B \supseteq I$, so B is of finite index in R.

Next we show that B is reduced. Let $x \in B$ such that $x^2 = 0$. Then $x \in A(C)$, and since $S \subseteq C$, the maximality of S forces $x \in B \cap C = \{0\}$. Therefore, B is reduced.

The rest of the proof is as in [4]. Since R/B is finite and semiprime, we can write it as $M_1 \oplus \cdots \oplus M_k$, where the M_i are total matrix rings over finite fields. Let $C' = (B + C)/B$ and note that C' is an ideal of R/B and $C' \cong C$. Now C' must be a direct sum of some of the M_i, so $R/B = C' \oplus D'$ where D' is the annihilator of C'. Taking D to be an ideal of R containing B for which $D/B = D'$, and noting that $C'D' = \{0\}$, we have $CD \subseteq B$. But $CD \subseteq C$ as well, so $CD \subseteq B \cap C = \{0\}$ and $D \subseteq A(C) = B$; therefore $D' = \{0\}$ and $C' = R/B$. It follows that $R = B + C$ and hence $R = B \oplus C$; and since $C \subseteq C'$, C is a direct sum of total matrix rings as required.

Remark 2.1. In [5], Lanski established the conclusion of Theorem 2 under the apparently stronger hypothesis that N is finite; and his proof uses induction on $|N|$. As we noted in the introduction, it follows from Theorems 1 and 2 that R is an FZS-ring if and only if N is finite.

3. A theorem on periodic subrings

We have noted that if N is infinite, R contains an infinite nil subring. Since periodic elements extend the notion of nilpotent element,
it is natural to ask whether there is a periodic analogue—that is, to ask whether a ring with infinitely many periodic elements must have an infinite periodic subring. The answer in general is no, even in the case of commutative rings. The complex field \mathbb{C} is a counterexample, for the set of nonzero periodic elements is the set U of roots of unity, and $u \in U$ implies $2u \notin U$. Moreover, if S is any finite ring, $\mathbb{C} \oplus S$ is also a counterexample; therefore, we restrict our attention to rings R for which $R = T$.

Theorem 3.1. Let R be a ring with $R = T$. Then a necessary and sufficient condition for R to have an infinite periodic subring is that R contains an infinite set of pairwise-commuting periodic elements.

Proof. It is known that in any infinite periodic ring R, either N is infinite or the center Z is infinite [4, Theorem 7]. Therefore our condition is necessary.

For sufficiency, suppose that R has infinitely many pairwise-commuting periodic elements. Now R is the direct sum of its p-primary components $R^{(p)}$; and if there exist infinitely many primes p_1, p_2, p_3, \ldots such that $R^{(p_i)}$ contains a nonzero periodic element a_{p_i}, then the direct sum of the rings $\langle a_{p_i} \rangle$ is an infinite periodic subring. Thus, we may assume that only finitely many $R^{(p)}$ contain nonzero periodic elements, so we need only consider the case that $R = R^{(p)}$ for some prime p. Of course we may assume that R is an FZS-ring.

Consider the factor ring $\bar{R} = R/P(R)$. Since R is an FZS-ring, it follows from Theorem 1 that $P(R)$ is finite, in which case \bar{R} inherits our hypothesis on pairwise-commuting periodic elements. If \bar{R} has an infinite periodic subring \bar{S} and S is its preimage in R, then for all $x \in S$, there exist distinct $m, n \in \mathbb{Z}^+$ such that $x^n - x^m \in P(R) \subseteq N$; hence S is periodic by Lemma 1.2. Thus, we may assume that $R = R^{(p)}$ and that R is a semiprime FZS-ring.

By Theorem 2, write $R = B \oplus C$, where B is reduced and C is finite; and note that B must have an infinite subset H of pairwise-commuting periodic elements. Note also that $pB = \{0\}$, since B is reduced. Let $a, b \in H$, and by Lemma 1.7(i) and (iii) obtain $n \in \mathbb{Z}^+$ such that $a^{p^n} = a$ and $b^{p^n} = b$. It follows at once that $(a - b)^{p^n} = a^{p^n} - b^{p^n} = a - b$ and $(ab)^{p^n} = a^{p^n}b^{p^n} = ab$; and these facts, together with Lemma 1.7(ii) imply that $\langle H \rangle$ is an infinite periodic subring of R.

Acknowledgement. This research was supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. 3961.

References

Howard E. Bell: Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
E-mail address: hbell@spartan.ac.brocku.ca