ON θ-PRECONTINUOUS FUNCTIONS

TAKASHI NOIRI

(Received 16 January 2001)

ABSTRACT. We introduce a new class of functions called θ-precontinuous functions which is contained in the class of weakly precontinuous (or almost weakly continuous) functions and contains the class of almost precontinuous functions. It is shown that the θ-precontinuous image of a p-closed space is quasi H-closed.

2000 Mathematics Subject Classification. 54C08.

1. Introduction. A subset A of a topological space X is said to be preopen [14] or nearly open [26] if $A \subset \text{Int}(\text{Cl}(A))$. A function $f : X \to Y$ is called precontinuous [14] if the preimage $f^{-1}(V)$ of each open set V of Y is preopen in X. Precontinuity was called near continuity by Pták [26] and also called almost continuity by Frolík [9] and Husain [10]. In 1985, Janković [12] introduced almost weak continuity as a weak form of precontinuity. Popa and Noiri [23] introduced weak precontinuity and showed that almost weak continuity is equivalent to weak precontinuity. Paul and Bhattacharyya [21] called weakly precontinuous functions quasi precontinuous and obtained the further properties of quasi precontinuity. Recently, Nasef and Noiri [16] have introduced and investigated the notion of almost precontinuity. Quite recently, Jafari and Noiri [11] investigated the further properties of almost precontinuous functions.

In this paper, we introduce a new class of functions called θ-precontinuous functions which is contained in the class of weakly precontinuous functions and contains the class of almost precontinuous functions. We obtain basic properties of θ-precontinuous functions. It is shown in the last section that the θ-precontinuous images of p-closed (resp., β-connected) spaces are quasi H-closed (resp., semi-connected).

2. Preliminaries. Throughout, by (X, τ) and (Y, σ) (or simply X and Y) we denote topological spaces. Let S be a subset of X. We denote the interior and the closure of S by $\text{Int}(S)$ and $\text{Cl}(S)$, respectively. A subset S is said to be preopen [14] (resp., semi-open [13], α-open [17]) if $S \subset \text{Int}(\text{Cl}(S))$ (resp., $S \subset \text{Cl}(\text{Int}(S))$). The complement of a preopen set is called preclosed. The intersection of all preclosed sets containing S is called the preclosure [8] of S and is denoted by $\text{pCl}(S)$. The preinterior of S is defined by the union of all preopen sets contained in S and is denoted by $\text{pInt}(S)$. The family of all preopen sets of X is denoted by $\text{PO}(X)$. We set $\text{PO}(X,x) = \{U : x \in U \text{ and } U \in \text{PO}(X)\}$. A point x of X is called a θ-cluster point of S if $\text{Cl}(U) \cap S \neq \emptyset$ for every open set U of X containing x. The set of all θ-cluster points of S is called the θ-closure of S and is denoted by $\text{Clop}(S)$. A subset S is said to be θ-closed [27] if $S = \text{Clop}(S)$. The complement of a θ-closed set is said to be θ-open. A point x of X
is called a pre θ-cluster point of S if \(p\text{Cl}(U) \cap S \neq \emptyset \) for every preopen set U of X containing x. The set of all pre-θ-cluster points of S is called the pre θ-closure of S and is denoted by $p\text{Cl}_\theta(S)$. A subset S is said to be pre θ-closed [20] if $S = p\text{Cl}_\theta(S)$.

The complement of a pre θ-open set is called a pre θ-closed set.

Definition 2.1. A function $f : X \rightarrow Y$ is said to be precontinuous [14] (resp., almost precontinuous [16], weakly precontinuous [23] or quasi precontinuous [21]) if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \text{PO}(X,x)$ such that $f(U) \subset V$ (resp., $f(U) \subset \text{Int}(\text{Cl}(V))$, $f(U) \subset \text{Cl}(V)$).

Definition 2.2. A function $f : X \rightarrow Y$ is said to be almost weakly continuous [12] if $f^{-1}(V) \subset \text{Int}(\text{Cl}(f^{-1}(\text{Cl}(V))))$ for every open set V of Y.

Definition 2.3. A function $f : X \rightarrow Y$ is said to be strongly θ-precontinuous [19] if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U)) \subset V$.

Definition 2.4. A function $f : X \rightarrow Y$ is said to be θ-precontinuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U)) \subset \text{Cl}(V)$.

Remark 2.5. By the above definitions and Theorem 3.3 below, we have the following implications and none of these implications is reversible by [19, Example 2.2], [11, Example 2.9], and Examples 2.6 and 5.11 below.

$$\text{strongly } \theta\text{-precontinuous} \Rightarrow \text{precontinuous} \Rightarrow \text{almost precontinuous}$$

$$\Rightarrow \theta\text{-precontinuous} \Rightarrow \text{weakly precontinuous}.$$

Example 2.6. This example is due to Arya and Deb [4]. Let X be the set of all real numbers. The topology τ on X is the cocountable topology. Let $Y = \{a, b, c\}$, $\sigma = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. We define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(x) = a$ if x is rational; $f(x) = b$ if x is irrational. Then f is a θ-precontinuous function which is not almost precontinuous.

3. Characterizations

Theorem 3.1. For a function $f : X \rightarrow Y$ the following properties are equivalent:

1. f is θ-precontinuous;
2. $p\text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$ for every subset B of Y;
3. $f(p\text{Cl}_\theta(A)) \subset \text{Cl}_\theta(f(A))$ for every subset A of X.

Proof. (1)\Rightarrow(2). Let B be any subset of Y. Suppose that $x \notin f^{-1}(\text{Cl}_\theta(B))$. Then $f(x) \notin \text{Cl}_\theta(B)$ and there exists an open set V containing $f(x)$ such that $\text{Cl}(V) \cap B = \emptyset$. Since f is θ-p.c., there exists $U \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U)) \subset \text{Cl}(V)$. Therefore, we have $f(p\text{Cl}(U)) \cap B = \emptyset$ and $p\text{Cl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin p\text{Cl}_\theta(f^{-1}(B))$. Thus, we obtain $p\text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$.

2.\Rightarrow(1). Let B be any subset of Y. Suppose that $x \notin f^{-1}(\text{Cl}_\theta(B))$. Then $f(x) \notin \text{Cl}_\theta(B)$ and there exists an open set V containing $f(x)$ such that $\text{Cl}(V) \cap B = \emptyset$. Since f is θ-p.c., there exists $U \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U)) \subset \text{Cl}(V)$. Therefore, we have $f(p\text{Cl}(U)) \cap B = \emptyset$ and $p\text{Cl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin p\text{Cl}_\theta(f^{-1}(B))$. Thus, we obtain $p\text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$.

(2)⇒(3). Let A be any subset of X. Then we have \(p\text{Cl}_\theta(A) \subset p\text{Cl}_\theta(f^{-1}(f(A))) \subset f^{-1}(\text{Cl}_\theta(f(A))) \) and hence \(f(p\text{Cl}_\theta(A)) \subset \text{Cl}_\theta(f(A)). \)

(3)⇒(2). Let B be a subset of Y. We have \(f(p\text{Cl}_\theta(f^{-1}(B))) \subset \text{Cl}_\theta(f(f^{-1}(B))) \subset \text{Cl}_\theta(B) \) and hence \(p\text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B)). \)

(2)⇒(1). Let \(x \in X \) and V be an open set of Y containing \(f(x). \) Then we have \(\text{Cl}(V) \cap (Y - \text{Cl}(V)) = \emptyset \) and \(f(x) \notin \text{Cl}_\theta(Y - \text{Cl}(V)). \) Hence, \(x \notin f^{-1}(\text{Cl}_\theta(Y - \text{Cl}(V))) \) and \(x \notin p\text{Cl}_\theta(f^{-1}(Y - \text{Cl}(V))). \) There exists \(U \in \text{PO}(X,x) \) such that \(p\text{Cl}(U) \cap f^{-1}(Y - \text{Cl}(V)) = \emptyset; \) hence \(f(p\text{Cl}(U)) \subset \text{Cl}(V). \) Therefore, \(f \) is \(\theta.p.c. \)

Theorem 3.2. For a function \(f : X \to Y \) the following properties are equivalent:

1. \(f \) is \(\theta \)-precontinuous;
2. \(f^{-1}(V) \subset \text{plnt}_\theta(f^{-1}(\text{Cl}(V))) \) for every open set \(V \) of \(Y; \)
3. \(p\text{Cl}_\theta(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V)) \) for every open set \(V \) of \(Y. \)

Proof. (1)⇒(2). Suppose that \(V \) is any open set of \(Y \) and \(x \in f^{-1}(V). \) Then \(f(x) \in V \) and there exists \(U \in \text{PO}(X,x) \) such that \(f(p\text{Cl}(U)) \subset \text{Cl}(V). \) Therefore, \(x \in U \subset p\text{Cl}(U) \subset f^{-1}(\text{Cl}(V)). \) This shows that \(x \in \text{plnt}_\theta(f^{-1}(\text{Cl}(V))). \) Therefore, we obtain \(f^{-1}(V) \subset \text{plnt}_\theta(f^{-1}(V)). \)

(2)⇒(3). Suppose that \(V \) is any open set of \(Y \) and \(x \notin f^{-1}(\text{Cl}(V)). \) Then \(f(x) \notin \text{Cl}(V) \) and there exists an open set \(W \) containing \(f(x) \) such that \(W \cap V = \emptyset; \) hence \(\text{Cl}(W) \cap V = \emptyset. \) Therefore, we have \(f^{-1}(\text{Cl}(W)) \cap f^{-1}(V) = \emptyset. \) Since \(x \in f^{-1}(W), \) by (2) \(x \in \text{plnt}_\theta(f^{-1}(\text{Cl}(W))). \) There exists \(U \in \text{PO}(X,x) \) such that \(p\text{Cl}(U) \subset f^{-1}(\text{Cl}(W)). \) Thus we have \(p\text{Cl}(U) \cap f^{-1}(V) = \emptyset \) and hence \(x \notin p\text{Cl}_\theta(f^{-1}(V)). \) This shows that \(p\text{Cl}_\theta(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V)). \)

(3)⇒(1). Suppose that \(x \in X \) and \(V \) is any open set of \(Y \) containing \(f(x). \) Then \(V \cap (Y - \text{Cl}(V)) = \emptyset \) and \(f(x) \notin \text{Cl}(Y - \text{Cl}(V)). \) Therefore, \(x \notin f^{-1}(\text{Cl}(Y - \text{Cl}(V))) \) and by (3) \(x \notin p\text{Cl}_\theta(f^{-1}(Y - \text{Cl}(V))). \) There exists \(U \in \text{PO}(X,x) \) such that \(p\text{Cl}(U) \cap f^{-1}(Y - \text{Cl}(V)) = \emptyset. \) Therefore, we obtain \(f(p\text{Cl}(U)) \subset \text{Cl}(V). \) This shows that \(f \) is \(\theta.p.c. \)

Theorem 3.3. For a function \(f : X \to Y \) the following properties hold:

1. If \(f \) is almost precontinuous, then it is \(\theta \)-precontinuous;
2. If \(f \) is \(\theta \)-precontinuous, then it is weakly precontinuous.

Proof. Statement (2) is obvious. We will show statement (1). Suppose that \(x \in X \) and V is any open set of Y containing \(f(x). \) Since \(f \) is almost precontinuous, \(f^{-1}(\text{Int}(\text{Cl}(V))) \) is preopen and \(f^{-1}(\text{Cl}(V)) \) is preclosed in \(X \) by [16, Theorem 3.1]. Now, set \(U = f^{-1}(\text{Int}(\text{Cl}(V))). \) Then we have \(U \in \text{PO}(X,x) \) and \(p\text{Cl}(U) \subset f^{-1}(\text{Cl}(V)). \) Therefore, we obtain \(f(p\text{Cl}(U)) \subset \text{Cl}(V). \) This shows that \(f \) is \(\theta.p.c. \)

Corollary 3.4. Let \(Y \) be a regular space. Then, for a function \(f : X \to Y \) the following properties are equivalent:

1. \(f \) is strongly \(\theta \)-precontinuous;
2. \(f \) is precontinuous;
3. \(f \) is almost precontinuous;
4. \(f \) is \(\theta \)-precontinuous;
5. \(f \) is weakly precontinuous.

Proof. This is an immediate consequence of [19, Theorem 3.2].
Definition 3.5. A topological space X is said to be *pre-regular* [20] if for each preclosed set F and each point $x \in X - F$, there exist disjoint preopen sets U and V such that $x \in U$ and $F \subset V$.

Lemma 3.6 (see [20]). A topological space X is pre-regular if and only if for each $U \in \text{PO}(X)$ and each point $x \in U$, there exists $V \in \text{PO}(X,x)$ such that $x \in V \subset \text{pCl}(V) \subset U$.

Theorem 3.7. Let X be a pre-regular space. Then $f : X \to Y$ is \(\theta\).p.c. if and only if it is weakly precontinuous.

Proof. Suppose that f is weakly precontinuous. Let $x \in X$ and V be any open set of Y containing $f(x)$. Then, there exists $U \in \text{PO}(X,x)$ such that $f(U) \subset \text{Cl}(V)$.

Since X is pre-regular, there exists $U_* \in \text{PO}(X,x)$ such that $x \in U_* \subset \text{pCl}(U_*) \subset U$. Therefore, we obtain $f(p\text{Cl}(U_*)) \subset \text{Cl}(V)$. This shows that f is \(\theta\).p.c. \hfill \Box

Theorem 3.8. Let $f : X \to Y$ be a function and $g : X \times Y \to Y$ the graph function of f defined by $g(x) = (x, f(x))$ for each $x \in X$. Then g is \(\theta\).p.c. if and only if f is \(\theta\).p.c.

Proof.

Necessity. Suppose that g is \(\theta\).p.c. Let $x \in X$ and V be an open set of Y containing $f(x)$. Then $X \times V$ is an open set of $X \times Y$ containing $g(x)$. Since g is \(\theta\).p.c., there exists $U \in \text{PO}(X,x)$ such that $g(p\text{Cl}(U)) \subset \text{Cl}(X \times V)$. It follows that $\text{Cl}(X \times V) = X \times \text{Cl}(V)$. Therefore, we obtain $f(p\text{Cl}(U)) \subset \text{Cl}(V)$. This shows that f is \(\theta\).p.c.

Sufficiency. Let $x \in X$ and W be any open set of $X \times Y$ containing $g(x)$. There exist open sets $U_1 \subset X$ and $V \subset Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subset W$. Since f is \(\theta\).p.c., there exists $U_2 \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U_2)) \subset \text{Cl}(V)$. Let $U = U_1 \cap U_2$, then $U \in \text{PO}(X,x)$. Therefore, we obtain $g(p\text{Cl}(U)) \subset \text{Cl}(U_1) \times f(p\text{Cl}(U_2)) \subset \text{Cl}(U_1) \times \text{Cl}(V) \subset \text{Cl}(W)$. This shows that g is \(\theta\).p.c. \hfill \Box

4. Some properties

Lemma 4.1 (see [15]). Let A and X_0 be subsets of a space X.

1. If $A \in \text{PO}(X)$ and X_0 is semi-open in X, then $A \cap X_0 \in \text{PO}(X_0)$.
2. If $A \in \text{PO}(X_0)$ and $X_0 \in \text{PO}(X)$, then $A \in \text{PO}(X)$.

Lemma 4.2 (see [7]). Let A and X_0 be subsets of a space X such that $A \subset X_0 \subset X$. Let $p\text{Cl}_{X_0}(A)$ denote the preclosure of A in the subspace X_0.

1. If X_0 is semi-open in X, then $p\text{Cl}_{X_0}(A) \subset p\text{Cl}(A)$.
2. If $A \in \text{PO}(X_0)$ and $X_0 \in \text{PO}(X)$, then $p\text{Cl}(A) \subset p\text{Cl}_{X_0}(A)$.

Theorem 4.3. If $f : X \to Y$ is \(\theta\).p.c. and X_0 is a semi-open subset of X, then the restriction $f/X_0 : X_0 \to Y$ is \(\theta\).p.c.

Proof. For any $x \in X_0$ and any open neighborhood V of $f(x)$, there exists $U \in \text{PO}(X,x)$ such that $f(p\text{Cl}(U)) \subset \text{Cl}(V)$ since f is \(\theta\).p.c. Put $U_0 = U \cap X_0$, then by Lemmas 4.1 and 4.2 $U_0 \in \text{PO}(X_0,x)$ and $p\text{Cl}_{X_0}(U_0) \subset p\text{Cl}(U_0)$. Therefore, we obtain

$$
(f/X_0)(p\text{Cl}_{X_0}(U_0)) = f(p\text{Cl}_{X_0}(U_0)) \subset f(p\text{Cl}(U_0)) \subset f(p\text{Cl}(U)) \subset \text{Cl}(V). \quad (4.1)
$$

This shows that f/X_0 is \(\theta\).p.c. \hfill \Box
THEOREM 4.4. A function \(f : X \to Y \) is \(\theta.p.c. \) if for each \(x \in X \) there exists \(X_0 \in \text{PO}(X,x) \) such that the restriction \(f/X_0 : X_0 \to Y \) is \(\theta.p.c. \).

Proof. Let \(x \in X \) and \(V \) be any open neighborhood of \(f(x) \). There exists \(X_0 \in \text{PO}(X,x) \) such that \(f/X_0 : X_0 \to Y \) is \(\theta.p.c. \). Thus, there exists \(U \in \text{PO}(X,x) \) such that \((f/X_0)(\text{pCl}_{X_0}(U)) \subset \text{Cl}(V) \). By Lemmas 4.1 and 4.2, \(U \in \text{PO}(X,x) \) and \(\text{pCl}(U) \subset \text{pCl}_{X_0}(U) \). Hence, we have \(f(\text{pCl}(U)) = (f/X_0)(\text{pCl}(U)) \subset (f/X_0)(\text{pCl}_{X_0}(U)) \subset \text{Cl}(V) \). This shows that \(f \) is \(\theta.p.c. \).

COROLLARY 4.5. Let \(\{U_\lambda : \lambda \in \Lambda \} \) be an \(\alpha \)-open cover of a topological space \(X \). A function \(f : X \to Y \) is \(\theta.p.c. \) if and only if the restriction \(f/U_\lambda : U_\lambda \to Y \) is \(\theta.p.c. \) for each \(\lambda \in \Lambda \).

Proof. This is an immediate consequence of Theorems 4.3 and 4.4.

Let \(\{X_\alpha : \alpha \in \mathcal{A} \} \) be a family of topological spaces, \(A_\alpha \) a nonempty subset of \(X_\alpha \) for each \(\alpha \in \mathcal{A} \) and \(X = \Pi \{X_\alpha : \alpha \in \mathcal{A} \} \) denote the product space, where \(\mathcal{A} \) is nonempty.

Lemma 4.6 (see [8]). Let \(n \) be a positive integer and \(A = \Pi_{j=1}^n A_\alpha_j \times \Pi_{\alpha \neq \alpha_j} X_\alpha \).

1. \(A \in \text{PO}(X) \) if and only if \(A_\alpha_j \in \text{PO}(X_\alpha_j) \) for each \(j = 1, 2, \ldots, n \).
2. \(\text{pCl}(\Pi_{\alpha \in \mathcal{A}} A_\alpha) \subset \Pi_{\alpha \in \mathcal{A}} \text{pCl}(A_\alpha) \).

Theorem 4.7. If a function \(f_\alpha : X_\alpha \to Y_\alpha \) is \(\theta.p.c. \) for each \(\alpha \in \mathcal{A} \). Then the product function \(f : \Pi X_\alpha \to \Pi Y_\alpha \) defined by \(f(\{x_\alpha\}) = \{f_\alpha(x_\alpha)\} \) for each \(x = \{x_\alpha\} \), is \(\theta.p.c. \).

Proof. Let \(x = \{x_\alpha\} \in \Pi X_\alpha \) and \(W \) be any open set of \(\Pi Y_\alpha \) containing \(f(x) \). Then, there exists an open set \(V_{\alpha_j} \) of \(Y_{\alpha_j} \) such that

\[
f(x) = \{f_\alpha(x_\alpha)\} \in \Pi_{j=1}^n V_{\alpha_j} \times \Pi_{\alpha \neq \alpha_j} Y_\alpha \subset W.
\]

(4.2)

Since \(f_{\alpha} \) is \(\theta.p.c. \) for each \(\alpha \), there exists \(U_{\alpha_j} \in \text{PO}(X_\alpha_j, x_\alpha_j) \) such that \(f_\alpha_j(\text{pCl}(U_{\alpha_j})) \subset \text{Cl}(V_{\alpha_j}) \) for \(j = 1, 2, \ldots, n \). Now, put \(U = \Pi_{j=1}^n U_{\alpha_j} \times \Pi_{\alpha \neq \alpha_j} X_\alpha \). Then, it follows from Lemma 4.6 that \(U \in \text{PO}(\Pi X_\alpha, x) \). Moreover, we have

\[
f(\text{pCl}(U)) \subset f(\Pi_{j=1}^n \text{pCl}(U_{\alpha_j}) \times \Pi_{\alpha \neq \alpha_j} X_\alpha)
\]

\[
\subset \Pi_{j=1}^n f_\alpha_j(\text{pCl}(U_{\alpha_j})) \times \Pi_{\alpha \neq \alpha_j} Y_\alpha
\]

(4.3)

This shows that \(f \) is \(\theta.p.c. \).

\section*{5. Preservation property}

Definition 5.1. A topological space \(X \) is said to be

1. \(p \)-closed [7] (resp., \(p \)-Lindelöf) if every cover of \(X \) by preopen sets has a finite (resp., countable) subfamily whose preclosures cover \(X \),
2. countably \(p \)-closed if every countable cover of \(X \) by preopen sets has a finite subfamily whose preclosures cover \(X \);,
3. quasi \(H \)-closed [25] (resp., almost Lindelöf [6]) if every cover of \(X \) by open sets has a finite (resp., countable) subfamily whose closures cover \(X \),
4. lightly compact [5] if every countable cover of \(X \) by open sets has a finite subfamily whose closures cover \(X \).
Definition 5.2. A subset K of a space X is said to be

1. p-closed relative to X [7] if for every cover $\{V_\alpha : \alpha \in A\}$ of K by preopen sets of X, there exists a finite subset A_* of A such that $K \subset \bigcup \{p\text{Cl}(V_\alpha) : \alpha \in A_*\}$,
2. quasi H-closed relative to X [25] if for every cover $\{V_\alpha : \alpha \in A\}$ of K by open sets of X, there exists a finite subset A_* of A such that $K \subset \bigcup \{\text{Cl}(V_\alpha) : \alpha \in A_*\}$.

Theorem 5.3. If $f : X \rightarrow Y$ is a $\theta.p.c.$ function and K is p-closed relative to X, then $f(K)$ is quasi H-closed relative to Y.

Proof. Suppose that $f : X \rightarrow Y$ is $\theta.p.c.$ and K is p-closed relative to X. Let $\{V_\alpha : \alpha \in A\}$ be a cover of $f(K)$ by open sets of Y. For each point $x \in K$, there exists $\alpha(x) \in A$ such that $f(x) \in V_{\alpha(x)}$. Since f is $\theta.p.c.$, there exists $U_x \in \text{PO}(X, x)$ such that $f(p\text{Cl}(U_x)) \subset \text{Cl}(V_{\alpha(x)})$. The family $\{U_x : x \in K\}$ is a cover of K by preopen sets of X and hence there exists a finite subset K_* of K such that $K \subset \bigcup_{x \in K_*} p\text{Cl}(U_x)$. Therefore, we obtain $f(K) \subset \bigcup_{x \in K_*} \text{Cl}(V_{\alpha(x)})$. This shows that $f(K)$ is quasi H-closed relative to Y.

Corollary 5.4. Let $f : X \rightarrow Y$ be a $\theta.p.c.$ surjection. Then, the following properties hold:

1. If X is p-closed, then Y is quasi H-closed.
2. If X is p-Lindelöf, then Y is almost Lindelöf.
3. If X is countably p-closed, then Y is lightly compact.

A subset S of a topological space X is said to be β-open [1] or semipreopen [3] if $S \subset \text{Cl}(\text{Int}(\text{Cl}(S)))$. It is well known that α-openness implies both preopenness and semi-openness which imply β-openness. The complement of a semipreopen set is said to be semipreclosed [3]. The intersection of all semipreclosed sets of X containing a subset S is the semipreclosure of S and is denoted by $sp\text{Cl}(S)$ [3].

Definition 5.5. A topological space X is said to be

1. β-connected [24] or semipreconnected [2] if X cannot be expressed as the union of two nonempty disjoint β-open sets,
2. semi-connected [22] if X cannot be expressed as the union of two nonempty disjoint semi-open sets.

Remark 5.6. We have the following implications:

$$\beta\text{-connected} \Rightarrow \text{semi-connected} \Rightarrow \text{connected.} \quad (5.1)$$

But, the converses need not be true as the following simple examples show.

Example 5.7. (1) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is connected but not semi-connected.

(2) Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b, c\}\}$. Then (X, τ) is semi-connected but not β-connected.

Lemma 5.8. For a topological space X, the following properties are equivalent:

1. X is β-connected or semipreconnected.
2. The intersection of two nonempty semipreopen subsets of X is always nonempty.
3. The intersection of two nonempty preopen subsets of X is always nonempty.
ON \(\partial \)-PRECONTINUOUS FUNCTIONS

(4) \(\text{pCl}(V) = X \) for every nonempty preopen subset \(V \) of \(X \).

(5) \(\text{spCl}(V) = X \) for every nonempty semipreopen subset \(V \) of \(X \).

Proof. The proofs of equivalences of (1), (2), and (3) are given in [2, Theorem 6.4].

The other properties (4) and (5), which are stated in [18], are easily equivalent to (3) and (2), respectively. \(\square \)

Theorem 5.9. If \(f : X \to Y \) is a \(\theta \)-p.c. surjection and \(X \) is \(\beta \)-connected, then \(Y \) is semi-connected.

Proof. Let \(V \) be any nonempty open set of \(Y \). Let \(y \in V \). Since \(f \) is surjective, there exists \(x \in X \) such that \(f(x) = y \). Since \(f \) is \(\theta \)-p.c., there exists \(U \in \text{PO}(X,x) \) such that \(f(\text{pCl}(U)) \subseteq \text{Cl}(V) \). Since \(X \) is \(\beta \)-connected, by Lemma 5.8 \(\text{pCl}(U) = X \) and hence \(\text{Cl}(V) = Y \) since \(f \) is surjective. Therefore, it follows from [22, Theorem 4.3] that \(Y \) is semi-connected. \(\square \)

Remark 5.10. The following example shows that the image of \(\beta \)-connectedness under weakly precontinuous surjections is not necessarily semi-connected.

Example 5.11. Let \(X \) be the set of real numbers, \(\tau = \{ \emptyset \} \cup \{ V \subseteq X : 0 \in V \} \), \(Y = \{ a, b, c \} \), and \(\sigma = \{ Y, \emptyset, \{ a \}, \{ b \}, \{ a, b \} \} \). Define a function \(f : (X,\tau) \to (Y,\sigma) \) as follows: \(f(x) = a \) if \(x < 0 \); \(f(x) = c \) if \(x = 0 \); \(f(x) = b \) if \(x > 0 \). Then \(f \) is a weakly precontinuous surjection which is not \(\theta \)-p.c. The topological space \((X,\tau) \) is \(\beta \)-connected by Lemma 5.8. By Example 5.7(1), \((Y,\sigma) \) is connected but not semi-connected. \(\square \)

References

TAKASHI NOIRI: DEPARTMENT OF MATHEMATICS, YATSUSHIRO COLLEGE OF TECHNOLOGY, YATSUSHIRO, KUMAMOTO, 866-8501, JAPAN
E-mail address: noiri@as.yatsushiuro-nct.ac.jp