ON IMAGINABLE T-FUZZY SUBALGEBRAS AND IMAGINABLE T-FUZZY CLOSED IDEALS IN BCH-ALGEBRAS

YOUNG BAE JUN and SUNG MIN HONG

(Received 9 December 2000)

ABSTRACT. We inquire further into the properties on fuzzy closed ideals. We give a characterization of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy closed ideals, and obtain some related results. We give relations between an imaginable T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss the direct product and T-product of T-fuzzy subalgebras. We show that the family of T-fuzzy closed ideals is a completely distributive lattice.

2000 Mathematics Subject Classification. 06F35, 03G25, 94D05.

1. Introduction. In 1983, Hu et al. introduced the notion of a BCH-algebra which is a generalization of a BCK/BCI-algebra (see [6, 7]). In [4], Chaudhry et al. stated ideals and filters in BCH-algebras, and studied their properties. For further properties on BCH-algebras, we refer to [2, 3, 5]. In [8], the first author considered the fuzzification of ideals and filters in BCH-algebras, and then described the relation among fuzzy subalgebras, fuzzy closed ideals and fuzzy filters in BCH-algebras. In this paper, we inquire further into the properties on fuzzy closed ideals. We give a characterization of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy closed ideals, and obtain some related results. We give relations between an imaginable T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss the direct product and T-product of T-fuzzy subalgebras. We show that the family of T-fuzzy closed ideals is a completely distributive lattice.

2. Preliminaries. By a BCH-algebra we mean an algebra $(X, *, 0)$ of type $(2, 0)$ satisfying the following axioms:

- (H1) $x * x = 0$,
- (H2) $x * y = 0$ and $y * x = 0$ imply $x = y$,
- (H3) $(x * y) * z = (x * z) * y$,

for all $x, y, z \in X$.

In a BCH-algebra X, the following statements hold:

- (P1) $x * 0 = x$.

(P2) \(x \ast 0 = 0 \) implies \(x = 0 \).

(P3) \(0 \ast (x \ast y) = (0 \ast x) \ast (0 \ast y) \).

A nonempty subset \(A \) of a BCH-algebra \(X \) is called a subalgebra of \(X \) if \(x \ast y \in A \) whenever \(x, y \in A \). A nonempty subset \(A \) of a BCH-algebra \(X \) is called a closed ideal of \(X \) if

(i) \(0 \ast x \in A \) for all \(x \in A \),

(ii) \(x \ast y \in A \) and \(y \in A \) imply that \(x \in A \).

In what follows, let \(X \) denote a BCH-algebra unless otherwise specified. A fuzzy set in \(X \) is a function \(\mu : X \to [0,1] \). Let \(\mu \) be a fuzzy set in \(X \). For \(\alpha \in [0,1] \), the set \(U(\mu;\alpha) = \{ x \in X \mid \mu(x) \geq \alpha \} \) is called a level set of \(\mu \).

A fuzzy set \(\mu \) in \(X \) is called a fuzzy subalgebra of \(X \) if

\[
\mu(x \ast y) \geq \min \{ \mu(x), \mu(y) \}, \quad \forall x, y \in X.
\] (2.1)

Definition 2.1 (see [1]). By a \(t \)-norm \(T \) on \([0,1]\), we mean a function \(T : [0,1] \times [0,1] \to [0,1] \) satisfying the following conditions:

(T1) \(T(x,1) = x \),

(T2) \(T(x,y) \leq T(x,z) \) if \(y \leq z \),

(T3) \(T(x,y) = T(y,x) \),

(T4) \(T(x,T(y,z)) = T(T(x,y),z) \), for all \(x, y, z \in [0,1] \).

In what follows, let \(T \) denote a \(t \)-norm on \([0,1]\) unless otherwise specified. Denote by \(\Delta_T \) the set of elements \(\alpha \in [0,1] \) such that \(T(\alpha,\alpha) = \alpha \), that is,

\[
\Delta_T := \{ \alpha \in [0,1] \mid T(\alpha,\alpha) = \alpha \}.
\] (2.2)

Note that every \(t \)-norm \(T \) has a useful property:

(P4) \(T(\alpha,\beta) \leq \min(\alpha,\beta) \) for all \(\alpha, \beta \in [0,1] \).

3. Fuzzy closed ideals

Definition 3.1 (see [8]). A fuzzy set \(\mu \) in \(X \) is called a fuzzy closed ideal of \(X \) if

(F1) \(\mu(0 \ast x) \geq \mu(x) \) for all \(x \in X \),

(F2) \(\mu(x) \geq \min\{\mu(x \ast y),\mu(y)\} \) for all \(x, y \in X \).

Theorem 3.2. Let \(D \) be a subset of \(X \) and let \(\mu_D \) be a fuzzy set in \(X \) defined by

\[
\mu_D(x) = \begin{cases}
\alpha_1 & \text{if } x \in D, \\
\alpha_2 & \text{if } x \notin D,
\end{cases}
\] (3.1)

for all \(x \in X \) and \(\alpha_1 > \alpha_2 \). Then \(\mu_D \) is a fuzzy closed ideal of \(X \) if and only if \(D \) is a closed ideal of \(X \).

Proof. Assume that \(\mu_D \) is a fuzzy closed ideal of \(X \). Let \(x \in D \). Then, by (F1), we have \(\mu(0 \ast x) \geq \mu(x) = \alpha_1 \) and so \(\mu(0 \ast x) = \alpha_1 \). It follows that \(0 \ast x \in D \). Let \(x, y \in X \) be such that \(x \ast y \in D \) and \(y \in D \). Then \(\mu_D(x \ast y) = \alpha_1 = \mu_D(y) \), and hence

\[
\mu_D(x) \geq \min\{\mu_D(x \ast y),\mu_D(y)\} = \alpha_1.
\] (3.2)

Thus \(\mu_D(x) = \alpha_1 \), that is, \(x \in D \). Therefore \(D \) is a closed ideal of \(X \).
Conversely, suppose that D is a closed ideal of X. Let $x \in X$. If $x \notin D$, then $0 \ast x \notin D$ and thus $\mu_D(0 \ast x) = \alpha_1 = \mu_D(x)$. If $x \in D$, then $\mu_D(x) = \alpha_2 \leq \mu_D(0 \ast x)$. Let $x, y \in X$. If $x \ast y \in D$ and $y \in D$, then $x \in D$. Hence

$$
\mu_D(x) = \alpha_1 = \min \{ \mu_D(x \ast y), \mu_D(y) \}. \tag{3.3}
$$

If $x \ast y \notin D$ and $y \notin D$, then clearly $\mu_D(x) \geq \min \{ \mu_D(x \ast y), \mu_D(y) \}$. If exactly one of $x \ast y$ and y belong to D, then exactly one of $\mu_D(x \ast y)$ and $\mu_D(y)$ is equal to α_2. Therefore, $\mu_D(x) \geq \alpha_2 = \min \{ \mu_D(x \ast y), \mu_D(y) \}$. Consequently, μ_D is a fuzzy closed ideal of X.

Using the notion of level sets, we give a characterization of a fuzzy closed ideal.

Theorem 3.3. A fuzzy set μ in X is a fuzzy closed ideal of X if and only if the nonempty level set $U(\mu; \alpha)$ of μ is a closed ideal of X for all $\alpha \in [0, 1]$.

We then call $U(\mu; \alpha)$ a level closed ideal of μ.

Proof. Assume that μ is a fuzzy closed ideal of X and $U(\mu; \alpha) \neq \emptyset$ for all $\alpha \in [0, 1]$. Let $x \in U(\mu; \alpha)$. Then $\mu(0 \ast x) = \mu(x) \geq \alpha$, and so $0 \ast x \in U(\mu; \alpha)$. Let $x, y \in X$ be such that $x \ast y \in U(\mu; \alpha)$ and $y \in U(\mu; \alpha)$. Then

$$
\mu(x) \geq \min \{ \mu(x \ast y), \mu(y) \} \geq \min \{ \alpha, \alpha \} = \alpha, \tag{3.4}
$$

and thus $x \in U(\mu; \alpha)$. Therefore $U(\mu; \alpha)$ is a closed ideal of X. Conversely, suppose that $U(\mu; \alpha) \neq \emptyset$ is a closed ideal of X. If $\mu(0 \ast a) < \mu(a)$ for some $a \in X$, then $\mu(0 \ast a) < \alpha_0 < \mu(a)$ by taking $\alpha_0 := 1/2(\mu(0 \ast a) + \mu(a))$. It follows that $a \in U(\mu; \alpha_0)$ and $0 \ast a \notin U(\mu; \alpha_0)$, which is a contradiction. Hence $\mu(0 \ast x) \geq \mu(x)$ for all $x \in X$. Assume that there exist $x_0, y_0 \in X$ such that

$$
\mu(x_0) < \min \{ \mu(x_0 \ast y_0), \mu(y_0) \}. \tag{3.5}
$$

Taking $\beta_0 := 1/2(\mu(x_0) + \min \{ \mu(x_0 \ast y_0), \mu(y_0) \})$, we get $\mu(x_0) < \beta_0 < \mu(x_0 \ast y_0)$ and $\mu(x_0) < \beta_0 < \mu(y_0)$. Thus $x_0 \ast y_0 \in U(\mu; \beta_0)$ and $y_0 \in U(\mu; \beta_0)$, but $x_0 \notin U(\mu; \beta_0)$. This is impossible. Hence μ is a fuzzy closed ideal of X. \qed

Theorem 3.4. Let μ be a fuzzy set in X and $\text{Im}(\mu) = \{ \alpha_0, \alpha_1, \ldots, \alpha_n \}$, where $\alpha_i < \alpha_j$ whenever $i > j$. Let $\{ D_k \mid k = 0, 1, 2, \ldots, n \}$ be a family of closed ideals of X such that

(i) $D_0 \subseteq D_1 \subseteq \cdots \subseteq D_n = X$,

(ii) $\mu(D^*_k) = \alpha_k$, where $D^*_k = D_k \setminus D_{k-1}$ and $D_{-1} = \emptyset$ for $k = 0, 1, \ldots, n$.

Then μ is a fuzzy closed ideal of X.

Proof. For any $x \in X$ there exists $k \in \{0, 1, \ldots, n\}$ such that $x \in D^*_k$. Since D_k is a closed ideal of X, it follows that $0 \ast x \in D_k$. Thus $\mu(0 \ast x) \geq \alpha_k = \mu(x)$. To prove that μ satisfies condition (F2), we discuss the following cases: if $x \ast y \in D^*_k$ and $y \in D^*_k$, then $x \in D_k$ because D_k is a closed ideal of X. Hence

$$
\mu(x) \geq \alpha_k = \min \{ \mu(x \ast y), \mu(y) \}. \tag{3.6}
$$
If \(x \ast y \notin D^*_k \) and \(y \notin D^*_k \), then the following four cases arise:

1. \(x \ast y \in X \backslash D_k \) and \(y \in X \backslash D_k \),
2. \(x \ast y \in D_{k-1} \) and \(y \in D_{k-1} \),
3. \(x \ast y \in X \backslash D_k \) and \(y \in D_{k-1} \),
4. \(x \ast y \in D_{k-1} \) and \(y \in X \backslash D_k \).

But, in either case, we know that \(\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\} \). If \(x \ast y \in D^*_k \) and \(y \notin D^*_k \), then either \(y \in D_{k-1} \) or \(y \in X \backslash D_k \). It follows that either \(x \in D_k \) or \(x \in X \backslash D_k \). Thus \(\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\} \). Similarly for the case \(x \ast y \notin D^*_k \) and \(y \in D^*_k \), we have the same result. This completes the proof.

Theorem 3.5. Let \(\Lambda \) be a subset of \([0, 1]\) and let \(\{D_\lambda \mid \lambda \in \Lambda\} \) be a collection of closed ideals of \(X \) such that

1. \(X = \bigcup_{\lambda \in \Lambda} D_\lambda \).
2. \(\alpha > \beta \) if and only if \(D_\alpha \subseteq D_\beta \) for all \(\alpha, \beta \in \Lambda \).

Define a fuzzy set \(\mu \) in \(X \) by \(\mu(x) = \sup\{\lambda \in \Lambda \mid x \in D_\lambda\} \) for all \(x \in X \). Then \(\mu \) is a fuzzy closed ideal of \(X \).

Proof. Let \(x \in X \). Then there exists \(\alpha_i \in \Lambda \) such that \(x \in D_{\alpha_i} \). It follows that \(0 \ast x = D_{\alpha_j} \) for some \(\alpha_j \geq \alpha_i \). Hence

\[
\mu(x) = \sup\{\alpha_k \in \Lambda \mid \alpha_k \leq \alpha_i\} \leq \sup\{\alpha_k \in \Lambda \mid \alpha_k \leq \alpha_j\} = \mu(0 \ast x). \tag{3.7}
\]

Let \(x, y \in X \) be such that \(\mu(x \ast y) = m \) and \(\mu(y) = n \), where \(m, n \in [0, 1] \). Without loss of generality we may assume that \(m \leq n \). To prove \(\mu \) satisfies condition (F2), we consider the following three cases:

\[
\begin{align*}
(1^*) \lambda & \leq m, \\
(2^*) m & < \lambda \leq n, \\
(3^*) \lambda & > n.
\end{align*} \tag{3.8}
\]

Case \((1^*)\) implies that \(x \ast y \in D_\lambda \) and \(y \in D_\lambda \). It follows that \(x \in D_\lambda \) so that

\[
\mu(x) = \sup\{\lambda \in \Lambda \mid x \in D_\lambda\} \geq m = \min\{\mu(x \ast y), \mu(y)\}. \tag{3.9}
\]

For the case \((2^*)\), we have \(x \ast y \notin D_\lambda \) and \(y \in D_\lambda \). Then either \(x \in D_\lambda \) or \(x \notin D_\lambda \). If \(x \in D_\lambda \), then \(\mu(x) = n \geq \min\{\mu(x \ast y), \mu(y)\} \). If \(x \notin D_\lambda \), then \(x \in D_{\delta - \lambda} \) for some \(\delta < \lambda \), and so \(\mu(x) \geq m = \min\{\mu(x \ast y), \mu(y)\} \). Finally, case \((3^*)\) implies \(x \ast y \notin D_\lambda \) and \(y \notin D_\lambda \). Thus we have that either \(x \in D_\lambda \) or \(x \notin D_\lambda \). If \(x \in D_\lambda \) then obviously \(\mu(x) \geq m = \min\{\mu(x \ast y), \mu(y)\} \). If \(x \notin D_\lambda \) then \(x \in D_{\epsilon - \lambda} \) for some \(\epsilon < \lambda \), and thus \(\mu(x) \geq m = \min\{\mu(x \ast y), \mu(y)\} \). This completes the proof. \(\square \)

Let \(D \) be a subset of \(X \). The least closed ideal of \(X \) containing \(D \) is called the closed ideal generated by \(D \), denoted by \(\langle D \rangle \). Note that if \(C \) and \(D \) are subsets of \(X \) and \(C \subseteq D \), then \(\langle C \rangle \subseteq \langle D \rangle \). Let \(\mu \) be a fuzzy set in \(X \). The least fuzzy closed ideal of \(X \) containing \(\mu \) is called a fuzzy closed ideal of \(X \) generated by \(\mu \), denoted by \(\langle \mu \rangle \).

Lemma 3.6. For a fuzzy set \(\mu \) in \(X \), then

\[
\mu(x) = \sup\{\alpha \in [0, 1] \mid x \in U(\mu; \alpha)\}, \quad \forall x \in X. \tag{3.10}
\]

Proof. Let \(\delta := \sup\{\alpha \in [0, 1] \mid x \in U(\mu; \alpha)\} \) and let \(\varepsilon > 0 \) be given. Then \(\delta - \varepsilon < \alpha \) for some \(\alpha \in [0, 1] \) such that \(x \in U(\mu; \alpha) \), and so \(\delta - \varepsilon < \mu(x) \). Since \(\varepsilon \) is arbitrary, it
follows that \(\mu(x) \geq \delta \). Now let \(\mu(x) = \beta \). Then \(x \in U(\mu; \beta) \) and hence \(\beta \in \{ \alpha \in [0,1] \mid x \in U(\mu; \alpha) \} \). Therefore
\[
\mu(x) = \beta \leq \sup \{ \alpha \in [0,1] \mid x \in U(\mu; \alpha) \} = \delta,
\]
and consequently \(\mu(x) = \delta \), as desired. \(\square \)

Theorem 3.7. Let \(\mu \) be a fuzzy set in \(X \). Then the fuzzy set \(\mu^* \) in \(X \) defined by
\[
\mu^*(x) = \sup \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \}
\]
for all \(x \in X \) is the fuzzy closed ideal \((\mu) \) generated by \(\mu \).

Proof. We first show that \(\mu^* \) is a fuzzy closed ideal of \(X \). For any \(y \in \text{Im}(\mu^*) \), let \(y_n = y - 1/n \) for any \(n \in \mathbb{N} \), where \(\mathbb{N} \) is the set of all positive integers, and let \(x \in U(\mu^*; y) \). Then \(\mu^*(x) \geq y \), and so
\[
\sup \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \} \geq y > y_n,
\]
for all \(n \in \mathbb{N} \). Hence there exists \(\beta \in [0,1] \) such that \(\beta > y_n \) and \(x \in \langle U(\mu; \beta) \rangle \). It follows that \(U(\mu; \beta) \subseteq U(\mu; y_n) \) so that \(x \in \langle U(\mu; \beta) \rangle \subseteq \langle U(\mu; y_n) \rangle \) for all \(n \in \mathbb{N} \). Consequently, \(x \in \cap_{n \in \mathbb{N}} \langle U(\mu; y_n) \rangle \). On the other hand, if \(x \in \cap_{n \in \mathbb{N}} \langle U(\mu; y_n) \rangle \), then \(y_n \in \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \} \) for any \(n \in \mathbb{N} \). Therefore
\[
y - \frac{1}{n} = y_n \leq \sup \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \} = \mu^*(x),
\]
for all \(n \in \mathbb{N} \). Since \(n \) is an arbitrary positive integer, it follows that \(y \leq \mu^*(x) \) so that \(x \in U(\mu^*; y) \). Hence \(U(\mu^*; y) = \cap_{n \in \mathbb{N}} \langle U(\mu; y_n) \rangle \), which is a closed ideal of \(X \). Using Theorem 3.3, we know that \(\mu^* \) is a fuzzy closed ideal of \(X \). We now prove that \(\mu^* \) contains \(\mu \). For any \(x \in X \), let \(\beta \in \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \} \). Then \(x \in U(\mu; \beta) \) and so \(x \in \langle U(\mu; \beta) \rangle \). Thus we get \(\beta \in \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \} \), and so
\[
\{ \alpha \in [0,1] \mid x \in U(\mu; \alpha) \} \subseteq \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \}.
\]
It follows from Lemma 3.6 that
\[
\mu(x) = \sup \{ \alpha \in [0,1] \mid x \in U(\mu; \alpha) \}
\leq \sup \{ \alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle \}
= \mu^*(x).
\]
Hence \(\mu \subseteq \mu^* \). Finally let \(v \) be a fuzzy closed ideal of \(X \) containing \(\mu \) and let \(x \in X \). If \(\mu^*(x) = 0 \), then clearly \(\mu^*(x) \leq v(x) \). Assume that \(\mu^*(x) = y \neq 0 \). Then \(x \in U(\mu^*; y) = \cap_{n \in \mathbb{N}} \langle U(\mu; y_n) \rangle \), that is, \(x \in U(\mu; y_n) \) for all \(n \in \mathbb{N} \). It follows that \(v(x) \geq \mu(x) \geq y_n = y - 1/n \) for all \(n \in \mathbb{N} \) so that \(v(x) \geq y = \mu^*(x) \) since \(n \) is arbitrary. This shows that \(\mu^* \leq \mu \), completing the proof. \(\square \)

Definition 3.8. A fuzzy closed ideal \(\mu \) of \(X \) is said to be \(n \)-valued if \(\text{Im}(\mu) \) is a finite set of \(n \) elements. When no specific \(n \) is intended, we call \(\mu \) a finite-valued fuzzy closed ideal.
Theorem 3.9. Let \(\mu \) be a fuzzy closed ideal of \(X \). Then \(\mu \) is finite valued if and only if there exists a finite-valued fuzzy set \(\nu \) in \(X \) which generates \(\mu \). In this case, the range sets of \(\mu \) and \(\nu \) are identical.

Proof. If \(\mu : X \to [0,1] \) is a finite-valued fuzzy closed ideal of \(X \), then we may choose \(\nu = \mu \). Conversely, assume that \(\nu : X \to [0,1] \) is a finite-valued fuzzy set. Let \(\alpha_1, \alpha_2, \ldots, \alpha_n \) be distinct elements of \(\nu(X) \) such that \(\alpha_1 > \alpha_2 > \cdots > \alpha_n \), and let
\[C_i = \nu^{-1}(\alpha_i) \text{ for } i = 1,2,\ldots,n. \]
Clearly, \(\cup_{i=1}^j C_i \subseteq \cup_{i=1}^k C_i \) whenever \(j < k \leq n \). Hence if we let \(D_j = \langle \cup_{i=1}^j C_i \rangle \), then we have the following chain:
\[
D_1 \subseteq D_2 \subseteq \cdots \subseteq D_n = X. \quad (3.17)
\]
Define a fuzzy set \(\mu : X \to [0,1] \) as follows:
\[
\mu(x) = \begin{cases}
\alpha_1 & \text{if } x \in D_1, \\
\alpha_j & \text{if } x \in D_j \setminus D_{j-1}.
\end{cases} \quad (3.18)
\]
We claim that \(\mu \) is a fuzzy closed ideal of \(X \) generated by \(\nu \). Clearly \(\mu(0 \ast x) \geq \mu(x) \) for all \(x \in X \). Let \(x,y \in X \). Then there exist \(i \) and \(j \) in \(\{1,2,\ldots,n\} \) such that \(x \ast y \in D_i \) and \(y \in D_j \). Without loss of generality, we may assume that \(i \) and \(j \) are the smallest integers such that \(i \geq j \), \(x \ast y \in D_i \), and \(y \in D_j \). Since \(D_i \) is a closed ideal of \(X \), it follows from \(D_j \subseteq D_i \) that \(x \in D_i \). Hence \(\mu(x) \geq \alpha_i = \min\{\mu(x \ast y),\mu(y)\} \), and so \(\mu \) is a fuzzy closed ideal of \(X \). If \(\nu(x) = \alpha_j \) for every \(x \in X \), then \(x \in C_j \) and thus \(x \in D_j \). But we have \(\mu(x) \geq \alpha_j = \nu(x) \). Therefore \(\mu \) contains \(\nu \). Let \(\delta : X \to [0,1] \) be a fuzzy closed ideal of \(X \) containing \(\nu \). Then \(U(\nu;\alpha_j) \subseteq U(\delta;\alpha_j) \) for every \(j \). Hence \(U(\delta;\alpha_j) \), being a closed ideal, contains the closed ideal generated by \(U(\nu;\alpha_j) = \cup_{i=1}^j C_i \). Consequently, \(D_j \subseteq U(\delta;\alpha_j) \). It follows that \(\mu \) is contained in \(\delta \) and that \(\mu \) is generated by \(\nu \). Finally, note that \(|\text{Im}(\mu)| = n = |\text{Im}(\nu)| \). This completes the proof.

\(\square \)

Theorem 3.10. Let \(D_1 \supseteq D_2 \supseteq \cdots \) be a descending chain of closed ideals of \(X \) which terminates at finite step. For a fuzzy closed ideal \(\mu \) of \(X \), if a sequence of elements of \(\text{Im}(\mu) \) is strictly increasing, then \(\mu \) is finite valued.

Proof. Suppose that \(\mu \) is infinite valued. Let \(\{\alpha_n\} \) be a strictly increasing sequence of elements of \(\text{Im}(\mu) \). Then \(0 \leq \alpha_1 < \alpha_2 < \cdots \leq 1 \). Note that \(U(\mu;\alpha_t) \) is a closed ideal of \(X \) for \(t = 1,2,3,\ldots \). Let \(x \in U(\mu;\alpha_t) \) for \(t = 2,3,\ldots \). Then \(\mu(x) \geq \alpha_t > \alpha_{t-1} \), which implies that \(x \in U(\mu;\alpha_{t-1}) \). Hence \(U(\mu;\alpha_t) \subseteq U(\mu;\alpha_{t-1}) \) for \(t = 2,3,\ldots \). Since \(\alpha_{t-1} \in \text{Im}(\mu) \), there exists \(x_{t-1} \in X \) such that \(\mu(x_{t-1}) = \alpha_{t-1} \). It follows that \(x_{t-1} \in U(\mu;\alpha_{t-1}) \), but \(x_{t-1} \notin U(\mu;\alpha_t) \). Thus \(U(\mu;\alpha_t) \nsubseteq U(\mu;\alpha_{t-1}) \), and so we obtain a strictly descending chain \(U(\mu;\alpha_t) \supseteq U(\mu;\alpha_2) \supseteq \cdots \) of closed ideals of \(X \) which is not terminating. This is impossible and the proof is complete.

Now we consider the converse of Theorem 3.10.

Theorem 3.11. Let \(\mu \) be a finite-valued fuzzy closed ideal of \(X \). Then every descending chain of closed ideals of \(X \) terminates at finite step.
Proof. Suppose there exists a strictly descending chain $D_0 \supsetneq D_1 \supsetneq D_2 \supsetneq \cdots$ of closed ideals of X which does not terminate at finite step. Define a fuzzy set μ in X by

$$\mu(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in D_n \setminus D_{n+1}, \ n = 0, 1, 2, \ldots, \\ 1 & \text{if } x \in \cap_{n=0}^{\infty} D_n, \end{cases}$$

where D_0 stands for X. Clearly, $\mu(0 \ast x) \geq \mu(x)$ for all $x \in X$. Let $x, y \in X$. Assume that $x \ast y \in D_n \setminus D_{n+1}$ and $y \in D_k \setminus D_{k+1}$ for $n = 0, 1, 2, \ldots; k = 0, 1, 2, \ldots$. Without loss of generality, we may assume that $n \leq k$. Then clearly $y \in D_n$, and so $x \in D_n$ because D_n is a closed ideal of X. Hence

$$\mu(x) \geq \frac{n}{n+1} = \min \{ \mu(x \ast y), \mu(y) \}.$$ \hfill (3.19)

If $x \ast y \in \cap_{n=0}^{\infty} D_n$ and $y \in \cap_{n=0}^{\infty} D_n$, then $x \in \cap_{n=0}^{\infty} D_n$. Thus $\mu(x) = 1 = \min \{ \mu(x \ast y), \mu(y) \}$. If $x \ast y \notin \cap_{n=0}^{\infty} D_n$ and $y \in \cap_{n=0}^{\infty} D_n$, then there exists a positive integer k such that $x \ast y \in D_k \setminus D_{k+1}$. It follows that $x \in D_k$ so that

$$\mu(x) \geq \frac{k}{k+1} = \min \{ \mu(x \ast y), \mu(y) \}. \hfill (3.20)$$

Finally suppose that $x \ast y \in \cap_{n=0}^{\infty} D_n$ and $y \notin \cap_{n=0}^{\infty} D_n$. Then $y \in D_r \setminus D_{r+1}$ for some positive integer r. It follows that $x \in D_r$, and hence

$$\mu(x) \geq \frac{r}{r+1} = \min \{ \mu(x \ast y), \mu(y) \}. \hfill (3.21)$$

Consequently, we conclude that μ is a fuzzy closed ideal of X and μ has an infinite number of different values. This is a contradiction, and the proof is complete. \hfill \Box

Theorem 3.12. The following are equivalent:

(i) Every ascending chain of closed ideals of X terminates at finite step.

(ii) The set of values of any fuzzy closed ideal of X is a well-ordered subset of $[0, 1]$.

Proof. (i)\Rightarrow(ii). Let μ be a fuzzy closed ideal of X. Suppose that the set of values of μ is not a well-ordered subset of $[0, 1]$. Then there exists a strictly decreasing sequence \{\alpha_n\} such that $\mu(x_n) = \alpha_n$. It follows that

$$U(\mu; \alpha_1) \subseteq U(\mu; \alpha_2) \subseteq U(\mu; \alpha_3) \subseteq \cdots$$ \hfill (3.22)

is a strictly ascending chain of closed ideals of X. This is impossible.

(ii)\Rightarrow(i). Assume that there exists a strictly ascending chain

$$D_1 \subseteq D_2 \subseteq D_3 \subseteq \cdots$$ \hfill (3.23)

of closed ideals of X. Note that $D := \cup_{n \in \mathbb{N}} D_n$ is a closed ideal of X. Define a fuzzy set μ in X by

$$\mu(x) = \begin{cases} 0 & \text{if } x \notin D_n, \\ 1 & \text{if } x \in D_n, \end{cases}$$

where $k = \min \{ n \in \mathbb{N} \mid x \in D_n \}$.
We claim that μ is a fuzzy closed ideal of X. Let $x \in X$. If $x \not\in D_n$, then obviously $\mu(0 \ast x) \geq 0 = \mu(x)$. If $x \in D_n \setminus D_{n-1}$ for $n = 2, 3, \ldots$, then $0 \ast x \in D_n$. Hence $\mu(0 \ast x) \geq 1/n = \mu(x)$. Let $x, y \in X$. If $x \ast y \in D_n \setminus D_{n-1}$ and $y \in D_n \setminus D_{n-1}$ for $n = 2, 3, \ldots$, then $x \in D_n$. It follows that

$$\mu(x) \geq \frac{1}{n} = \min\{\mu(x \ast y), \mu(y)\}. \quad (3.26)$$

Suppose that $x \ast y \in D_n$ and $y \in D_n \setminus D_m$ for all $m < n$. Then $x \in D_n$, and so $\mu(x) \geq 1/n \geq 1/m + 1 \geq \mu(y)$. Hence $\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\}$. Similarly for the case $x \ast y \in D_n \setminus D_m$ and $y \in D_n$, we get $\mu(x) \geq \min\{\mu(x \ast y), \mu(y)\}$. Therefore μ is a fuzzy closed ideal of X. Since the chain (3.24) is not terminating, μ has a strictly descending sequence of values. This contradicts that the value set of any fuzzy closed ideal is well ordered. This completes the proof. \hfill \Box

4. T-fuzzy subalgebras and T-fuzzy closed ideals

Definition 4.1. A fuzzy set μ in X is said to satisfy *imaginable property* if $\text{Im}(\mu) \subseteq \Delta_T$.

Definition 4.2. A fuzzy set μ in X is called a *fuzzy subalgebra* of X with respect to a t-norm T (briefly, T-fuzzy subalgebra of X) if $\mu(x \ast y) \geq T(\mu(x), \mu(y))$ for all $x, y \in X$. A T-fuzzy subalgebra of X is said to be *imaginable* if it satisfies the imaginable property.

Example 4.3. Let T_m be a t-norm defined by $T_m(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$ for all $\alpha, \beta \in [0, 1]$ and let $X = \{0, a, b, c, d\}$ be a BCH-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Define a fuzzy set $\mu : X \to [0, 1]$ by

$$\mu(x) = \begin{cases}
0.9 & \text{if } x \in \{0, d\}, \\
0.09 & \text{otherwise}.
\end{cases} \quad (4.1)$$

Then μ is a T_m-fuzzy subalgebra of X, which is not imaginable.

(2) Let ν be a fuzzy set in X defined by

$$\nu(x) = \begin{cases}
1 & \text{if } x \in \{0, d\}, \\
0 & \text{otherwise}.
\end{cases} \quad (4.2)$$

Then ν is an imaginable T_m-fuzzy subalgebra of X.

Proposition 4.4. Let A be a subalgebra of X and let μ be a fuzzy set in X defined by

$$
\mu(x) := \begin{cases}
\alpha_1 & \text{if } x \in A, \\
\alpha_2 & \text{otherwise},
\end{cases}
$$

for all $x \in X$, where $\alpha_1, \alpha_2 \in [0,1]$ with $\alpha_1 > \alpha_2$. Then μ is a T_m-fuzzy subalgebra of X. In particular, if $\alpha_1 = 1$ and $\alpha_2 = 0$ then μ is an imaginable T_m-fuzzy subalgebra of X, where T_m is the t-norm in Example 4.3.

Proof. Let $x, y \in X$. If $x \in A$ and $y \in A$ then

$$
T_m(\mu(x), \mu(y)) = T_m(\alpha_1, \alpha_1) = \max (2\alpha_1 - 1, 0) = \begin{cases}
2\alpha_1 - 1 & \text{if } \alpha_1 \geq \frac{1}{2} \\
0 & \text{if } \alpha_1 < \frac{1}{2}
\end{cases}
$$

(4.4)

If $x \in A$ and $y \notin A$ (or, $x \notin A$ and $y \in A$) then

$$
T_m(\mu(x), \mu(y)) = T_m(\alpha_1, \alpha_2) = \max (\alpha_1 + \alpha_2 - 1, 0) = \begin{cases}
\alpha_1 + \alpha_2 - 1 & \text{if } \alpha_1 + \alpha_2 \geq 1 \\
0 & \text{otherwise}
\end{cases}
$$

(4.5)

$$
\leq \alpha_2 \leq \mu(x \ast y).
$$

If $x, y \notin A$ then

$$
T_m(\mu(x), \mu(y)) = T_m(2\alpha_2 - 1, 0) = \begin{cases}
2\alpha_2 - 1 & \text{if } \alpha_2 \geq \frac{1}{2} \\
0 & \text{if } \alpha_2 < \frac{1}{2}
\end{cases}
$$

(4.6)

$$
\leq \alpha_2 \leq \mu(x \ast y).
$$

Hence μ is a T_m-fuzzy subalgebra of X. Assume that $\alpha_1 = 1$ and $\alpha_2 = 0$. Then

$$
T_m(\alpha_1, \alpha_1) = \max (\alpha_1 + \alpha_1 - 1, 0) = 1 = \alpha_1,
$$

$$
T_m(\alpha_2, \alpha_2) = \max (\alpha_2 + \alpha_2 - 1, 0) = 0 = \alpha_2.
$$

(4.7)

Thus $\alpha_1, \alpha_2 \in \Delta_{T_m}$, that is, $\text{Im}(\mu) \subseteq \Delta_{T_m}$ and so μ is imaginable. This completes the proof.

Proposition 4.5. If μ is an imaginable T-fuzzy subalgebra of X, then $\mu(0 \ast x) \geq \mu(x)$ for all $x \in X$.

Proof. For any \(x \in X \) we have
\[
\mu(0 \ast x) \geq T(\mu(0), \mu(x))
\]
\[
= T(\mu(x \ast x), \mu(x)) \quad \text{[by (H1)]}
\]
\[
\geq T(T(\mu(x), \mu(x)), \mu(x)) \quad \text{[by (T2) and (T3)]}
\]
\[
= \mu(x), \quad \text{[since } \mu \text{ satisfies the imaginable property].}
\]
(4.8)
This completes the proof. \(\square \)

Theorem 4.6. Let \(\mu \) be a \(T \)-fuzzy subalgebra of \(X \) and let \(\alpha \in [0, 1] \) be such that \(T(\alpha, \alpha) = \alpha \). Then \(U(\mu; \alpha) \) is either empty or a subalgebra of \(X \), and moreover \(\mu(0) \geq \mu(x) \) for all \(x \in X \).

Proof. Let \(x, y \in U(\mu; \alpha) \). Then
\[
\mu(x \ast y) \geq \mu(x) \ast \mu(y) \geq T(\mu(x), \mu(y)) \geq T(\alpha, \alpha) = \alpha,
\]
which implies that \(x \ast y \in U(\mu; \alpha) \). Hence \(U(\mu; \alpha) \) is a subalgebra of \(X \). Since \(x \ast x = 0 \) for all \(x \in X \), we have \(\mu(0) = \mu(x \ast x) \geq T(\mu(x), \mu(x)) = \mu(x) \) for all \(x \in X \). \(\square \)

Since \(T(1, 1) = 1 \), we have the following corollary.

Corollary 4.7. If \(\mu \) is a \(T \)-fuzzy subalgebra of \(X \), then \(U(\mu; 1) \) is either empty or a subalgebra of \(X \).

Theorem 4.8. Let \(\mu \) be a \(T \)-fuzzy subalgebra of \(X \). If there is a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} T(\mu(x_n), \mu(x_n)) = 1 \), then \(\mu(0) = 1 \).

Proof. Let \(x \in X \). Then \(\mu(0) = \mu(x \ast x) \geq T(\mu(x), \mu(x)) \). Therefore \(\mu(0) \geq T(\mu(x_n), \mu(x_n)) \) for each \(n \in \mathbb{N} \). Since \(1 \geq \mu(0) \geq \lim_{n \to \infty} T(\mu(x_n), \mu(x_n)) = 1 \), it follows that \(\mu(0) = 1 \), this completes the proof. \(\square \)

Let \(f : X \to Y \) be a mapping of BCH-algebras. For a fuzzy set \(\mu \) in \(Y \), the inverse image of \(\mu \) under \(f \), denoted by \(f^{-1}(\mu) \), is defined by \(f^{-1}(\mu)(x) = \mu(f(x)) \) for all \(x \in X \).

Theorem 4.9. Let \(f : X \to Y \) be a homomorphism of BCH-algebras. If \(\mu \) is a \(T \)-fuzzy subalgebra of \(Y \), then \(f^{-1}(\mu) \) is a \(T \)-fuzzy subalgebra of \(X \).

Proof. For any \(x, y \in X \), we have
\[
f^{-1}(\mu)(x \ast y) = \mu(f(x \ast y)) = \mu(f(x) \ast f(y))
\]
\[
\geq T(\mu(f(x)), \mu(f(y)))
\]
\[
= T(f^{-1}(\mu)(x), f^{-1}(\mu)(y)).
\]
(4.10)
This completes the proof. \(\square \)

If \(\mu \) is a fuzzy set in \(X \) and \(f \) is a mapping defined on \(X \). The fuzzy set \(f(\mu) \) in \(f(X) \) defined by \(f(\mu)(y) = \sup \{ \mu(x) \mid x \in f^{-1}(y) \} \) for all \(y \in f(X) \) is called the image of \(\mu \) under \(f \). A fuzzy set \(\mu \) in \(X \) is said to have \(sup \) property if, for every subset \(T \subseteq X \), there exists \(t_0 \in T \) such that \(\mu(t_0) = \sup \{ \mu(t) \mid t \in T \} \).
Theorem 4.10. An onto homomorphic image of a fuzzy subalgebra with sup property is a fuzzy subalgebra.

Proof. Let \(f : X \to Y \) be an onto homomorphism of BCH-algebras and let \(\mu \) be a fuzzy subalgebra of \(X \) with sup property. Given \(u, v \in Y \), let \(x_0 \in f^{-1}(u) \) and \(y_0 \in f^{-1}(v) \) be such that

\[
\mu(x_0) = \sup \{ \mu(t) \mid t \in f^{-1}(u) \}, \quad \mu(y_0) = \sup \{ \mu(t) \mid t \in f^{-1}(v) \},
\]

respectively. Then

\[
f(\mu)(u \ast v) = \sup \{ \mu(z) \mid z \in f^{-1}(u \ast v) \}
\geq \min \{ \mu(x_0), \mu(y_0) \}
= \min \{ \sup \{ \mu(t) \mid t \in f^{-1}(u) \}, \sup \{ \mu(t) \mid t \in f^{-1}(v) \} \}
= \min \{ f(\mu)(u), f(\mu)(v) \}.
\]

Hence \(f(\mu) \) is a fuzzy subalgebra of \(Y \).

Theorem 4.10 can be strengthened in the following way. To do this we need the following definition.

Definition 4.11. A \(t \)-norm \(T \) on \([0, 1]\) is called a continuous \(t \)-norm if \(T \) is a continuous function from \([0, 1] \times [0, 1]\) to \([0, 1]\) with respect to the usual topology.

Note that the function “\(\min \)” is a continuous \(t \)-norm.

Theorem 4.12. Let \(T \) be a continuous \(t \)-norm and let \(f : X \to Y \) be an onto homomorphism of BCH-algebras. If \(\mu \) is a \(T \)-fuzzy subalgebra of \(X \), then \(f(\mu) \) is a \(T \)-fuzzy subalgebra of \(Y \).

Proof. Let \(A_1 = f^{-1}(y_1), A_2 = f^{-1}(y_2), \) and \(A_{12} = f^{-1}(y_1 \ast y_2), \) where \(y_1, y_2 \in Y \). Consider the set

\[
A_1 \ast A_2 := \{ x \in X \mid x = a_1 \ast a_2 \text{ for some } a_1 \in A_1, a_2 \in A_2 \}.
\]

If \(x \in A_1 \ast A_2 \), then \(x = x_1 \ast x_2 \) for some \(x_1 \in A_1 \) and \(x_2 \in A_2 \) and so

\[
f(x) = f(x_1 \ast x_2) = f(x_1) \ast f(x_2) = y_1 \ast y_2,
\]

that is, \(x \in f^{-1}(y_1 \ast y_2) = A_{12} \). Thus \(A_1 \ast A_2 \subseteq A_{12} \). It follows that

\[
f(\mu)(y_1 \ast y_2) = \sup \{ \mu(x) \mid x \in f^{-1}(y_1 \ast y_2) \}
\geq \sup \{ \mu(x) \mid x \in A_1 \ast A_2 \}
\geq \sup \{ \mu(x_1 \ast x_2) \mid x_1 \in A_1, x_2 \in A_2 \}
\geq \sup \{ T(\mu(x_1), \mu(x_2)) \mid x_1 \in A_1, x_2 \in A_2 \}.
\]

Since \(T \) is continuous, for every \(\varepsilon > 0 \) there exists a number \(\delta > 0 \) such that if \(\sup \{ \mu(x_1) \mid x_1 \in A_1 \} - x_1^\# \leq \delta \) and \(\sup \{ \mu(x_2) \mid x_2 \in A_2 \} - x_2^\# \leq \delta \) then

\[
T(\sup \{ \mu(x_1) \mid x_1 \in A_1 \}, \sup \{ \mu(x_2) \mid x_2 \in A_2 \}) - T(x_1^\#, x_2^\#) \leq \varepsilon.
\]
Choose \(a_1 \in A_1 \) and \(a_2 \in A_2 \) such that \(\sup \{ \mu(x_1) \mid x_1 \in A_1 \} - \mu(a_1) \leq \delta \) and \(\sup \{ \mu(x_2) \mid x_2 \in A_2 \} - \mu(a_2) \leq \delta \). Then
\[
T(\sup \{ \mu(x_1) \mid x_1 \in A_1 \}, \sup \{ \mu(x_2) \mid x_2 \in A_2 \}) - T(\mu(a_1), \mu(a_2)) \leq \varepsilon. \tag{4.17}
\]
Consequently
\[
f(\mu)(\gamma_1 * \gamma_2) \geq \sup \{ T(\mu(x_1), \mu(x_2)) \mid x_1 \in A_1, x_2 \in A_2 \}
\geq T(\sup \{ \mu(x_1) \mid x_1 \in A_1 \}, \sup \{ \mu(x_2) \mid x_2 \in A_2 \})
= T(f(\mu)(y_1), f(\mu)(y_2)),
\tag{4.18}
\]
which shows that \(f(\mu) \) is a \(T \)-fuzzy subalgebra of \(Y \).

Lemma 4.13 (see [1]). For all \(\alpha, \beta, y, \delta \in [0,1] \),
\[
T(T(\alpha, \beta), T(y, \delta)) = T(T(\alpha, y), T(\beta, \delta)). \tag{4.19}
\]

Theorem 4.14. Let \(X = X_1 \times X_2 \) be the direct product BCH-algebra of BCH-algebras \(X_1 \) and \(X_2 \). If \(\mu_1 \) (resp., \(\mu_2 \)) is a \(T \)-fuzzy subalgebra of \(X_1 \) (resp., \(X_2 \)), then \(\mu = \mu_1 \times \mu_2 \) is a \(T \)-fuzzy subalgebra of \(X \) defined by
\[
\mu(x_1, x_2) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2)), \tag{4.20}
\]
for all \((x_1, x_2) \in X_1 \times X_2 \).

Proof. Let \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) be any elements of \(X = X_1 \times X_2 \). Then
\[
\begin{align*}
\mu(x * y) &= \mu((x_1, x_2) * (y_1, y_2)) = \mu(x_1, y_1, x_2, y_2) \\
&= T(\mu_1(x_1, y_1), \mu_2(x_2, y_2)) \\
&\geq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2))) \\
&= T(T(\mu_1(x_1), \mu_2(x_2)), T(\mu_1(y_1), \mu_2(y_2))) \\
&= T(T(\mu_1(x_1), \mu_2(x_2)), T(\mu_1(y_1), \mu_2(y_2))) \\
&= T(\mu(x_1, x_2), \mu(x_2, y_2)) \\
&= T(\mu(x_1, x_2), \mu(x_2, y_2)) \\
&= T(\mu(x), \mu(y)).
\end{align*}
\]
Hence \(\mu \) is a \(T \)-fuzzy subalgebra of \(X \).

We will generalize the idea to the product of \(n \) \(T \)-fuzzy subalgebras. We first need to generalize the domain of \(T \) to \(\prod_{i=1}^{n} [0,1] \) as follows:

Definition 4.15 (see [1]). The function \(T_n : \prod_{i=1}^{n} [0,1] \to [0,1] \) is defined by
\[
T_n(\alpha_1, \alpha_2, \ldots, \alpha_n) = T(\alpha_1, T_{n-1}(\alpha_2, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n)), \tag{4.22}
\]
for all \(1 \leq i \leq n \), where \(n \geq 2 \), \(T_2 = T \), and \(T_1 = \text{id} \) (identity).

Lemma 4.16 (see [1]). For every \(\alpha_i, \beta_i \in [0,1] \) where \(1 \leq i \leq n \) and \(n \geq 2 \),
\[
T_n(T(\alpha_1, \beta_1), T(\alpha_2, \beta_2), \ldots, T(\alpha_n, \beta_n)) = T(T_n(\alpha_1, \alpha_2, \ldots, \alpha_n), T_n(\beta_1, \beta_2, \ldots, \beta_n)). \tag{4.23}
\]
Theorem 4.17. Let \(\{X_i\}_{i=1}^n \) be the finite collection of BCH-algebras and \(X = \prod_{i=1}^n X_i \) the direct product BCH-algebra of \(\{X_i\} \). Let \(\mu_i \) be a \(T \)-fuzzy subalgebra of \(X_i \), where \(1 \leq i \leq n \). Then \(\mu = \prod_{i=1}^n \mu_i \) defined by

\[
\mu(x_1, x_2, \ldots, x_n) = \left(\prod_{i=1}^n \mu_i \right)(x_1, x_2, \ldots, x_n)
\]

is a \(T \)-fuzzy subalgebra of the BCH-algebra \(X \).

Proof. Let \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \) be any elements of \(X = \prod_{i=1}^n X_i \). Then

\[
\mu(x \ast y) = \mu(x_1 \ast y_1, x_2 \ast y_2, \ldots, x_n \ast y_n)
= T_n(\mu_1(x_1 \ast y_1), \mu_2(x_2 \ast y_2), \ldots, \mu_n(x_n \ast y_n))
\geq T_n(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2)), \ldots, T(\mu_n(x_n), \mu_n(y_n)))
= T(T_\mu(x_1), T_\mu(x_2), \ldots, T_\mu(x_n), T(\mu_1(y_1), \mu_2(y_2), \ldots, \mu_n(y_n)))
= T(T_\mu(x), T_\mu(y)).
\]

Hence \(\mu \) is a \(T \)-fuzzy subalgebra of \(X \). \(\square \)

Definition 4.18. Let \(\mu \) and \(\nu \) be fuzzy sets in \(X \). Then the \(T \)-product of \(\mu \) and \(\nu \), written \([\mu \ast \nu]_T\), is defined by \([\mu \ast \nu]_T(x) = T(\mu(x), \nu(x))\) for all \(x \in X \).

Theorem 4.19. Let \(\mu \) and \(\nu \) be \(T \)-fuzzy subalgebras of \(X \). If \(T^* \) is a \(t \)-norm which dominates \(T \), that is,

\[
T^*(T(\alpha, \beta), T(\gamma, \delta)) \geq T^*(T(\alpha, \gamma), T^*(\beta, \delta)),
\]

for all \(\alpha, \beta, \gamma, \delta \in [0, 1] \), then the \(T^* \)-product of \(\mu \) and \(\nu \), \([\mu \ast \nu]_{T^*}\), is a \(T \)-fuzzy subalgebra of \(X \).

Proof. For any \(x, y \in X \) we have

\[
[\mu \ast \nu]_{T^*}(x \ast y) = T^*(\mu(x \ast y), \nu(x \ast y))
\geq T^*(T(\mu(x), \mu(y)), T(\nu(x), \nu(y)))
\geq T(T(\mu(x), \nu(x)), T(\mu(y), \nu(y)))
= T([\mu \ast \nu]_{T^*}(x), [\mu \ast \nu]_{T^*}(y)).
\]

Hence \([\mu \ast \nu]_{T^*}\) is a \(T \)-fuzzy subalgebra of \(X \). \(\square \)

Let \(f : X \rightarrow Y \) be an onto homomorphism of BCH-algebras. Let \(T \) and \(T^* \) be \(t \)-norms such that \(T^* \) dominates \(T \). If \(\mu \) and \(\nu \) are \(T \)-fuzzy subalgebras of \(Y \), then the \(T^* \)-product of \(\mu \) and \(\nu \), \([\mu \ast \nu]_{T^*}\), is a \(T \)-fuzzy subalgebra of \(Y \). Since every onto homomorphic inverse image of a \(T \)-fuzzy subalgebra is a \(T \)-fuzzy subalgebra, the
inverse images \(f^{-1}(\mu), f^{-1}(\nu), \) and \(f^{-1}((\mu \cdot \nu)^* \cdot T) \) are \(T \)-fuzzy subalgebras of \(X \). The next theorem provides that the relation between \(f^{-1}((\mu \cdot \nu)^* \cdot T) \) and the \(T^* \)-product
\[f^{-1}(\mu) \cdot f^{-1}(\nu) \] of \(f^{-1}(\mu) \) and \(f^{-1}(\nu) \).

Theorem 4.20. Let \(f : X \to Y \) be an onto homomorphism of BCH-algebras. Let \(T^* \) be a \(t \)-norm such that \(T^* \) dominates \(T \). Let \(\mu \) and \(\nu \) be \(T^* \)-fuzzy subalgebras of \(Y \). If
\[[\mu \cdot \nu]^{T*} \] is the \(T^* \)-product of \(\mu \) and \(\nu \) and
\[[f^{-1}(\mu) \cdot f^{-1}(\nu)]^{T*} \] is the \(T^* \)-product of \(f^{-1}(\mu) \) and \(f^{-1}(\nu) \), then
\[f^{-1}([\mu \cdot \nu]^{T*}) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]^{T*}. \tag{4.28} \]

Proof. For any \(x \in X \) we get
\[f^{-1}([\mu \cdot \nu]^{T*})(x) = [\mu \cdot \nu]^{T*}(f(x)) = T^*(\mu(f(x)), \nu(f(x))) = T^*(f^{-1}(\mu)(x), f^{-1}(\nu)(x)) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]^{T*}(x), \tag{4.29} \]
This completes the proof. \(\square \)

Definition 4.21. A fuzzy set \(\mu \) in \(X \) is called a fuzzy closed ideal of \(X \) under a \(t \)-norm \(T \) (briefly, \(T \)-fuzzy closed ideal of \(X \)) if
(F1) \(\mu(0 \cdot x) \geq \mu(x) \) for all \(x \in X \),
(F2) \(\mu(x) \geq T(\mu(x \cdot y), \mu(y)) \) for all \(x, y \in X \).

A \(T \)-fuzzy closed ideal of \(X \) is said to be imaginable if it satisfies the imaginable property.

Example 4.22. Let \(T_m \) be a \(t \)-norm in Example 4.3. Consider a BCH-algebra \(X = \{0, a, b, c\} \) with Cayley table as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) Define a fuzzy set \(\mu : X \to [0, 1] \) by \(\mu(0) = \mu(c) = 0.8 \) and \(\mu(a) = \mu(b) = 0.3 \).
Then \(\mu \) is a \(T_m \)-fuzzy closed ideal of \(X \) which is not imaginable.
(2) Let \(\nu \) be a fuzzy set in \(X \) defined by
\[\nu(x) = \begin{cases}
1 & \text{if } x \in \{0, c\}, \\
0 & \text{otherwise.}
\end{cases} \tag{4.30} \]
Then \(\nu \) is an imaginable \(T_m \)-fuzzy closed ideal of \(X \).

Theorem 4.23. Every imaginable \(T \)-fuzzy subalgebra satisfying (F3) is an imaginable \(T \)-fuzzy closed ideal.

Proof. Using Proposition 4.5, it is straightforward. \(\square \)
Proposition 4.24. If \(\mu \) is an imaginable \(T \)-fuzzy closed ideal of \(X \), then \(\mu(0) \geq \mu(x) \) for all \(x \in X \).

Proof. Using (F1), (F3), and (T2), we have

\[
\mu(0) \geq T(\mu(0 \ast x), \mu(x)) \geq T(\mu(x), \mu(x)) = \mu(x)
\]

for all \(x \in X \), completing the proof.

Theorem 4.25. Every \(T \)-fuzzy closed ideal is a \(T \)-fuzzy subalgebra.

Proof. Let \(\mu \) be a \(T \)-fuzzy closed ideal of \(X \) and let \(x, y \in X \). Then

\[
\mu(x \ast y) \geq T(\mu((x \ast y) \ast x), \mu(x)) \quad \text{[by (F3)]}
\]

\[
= T(\mu((x \ast x) \ast y), \mu(x)) \quad \text{[by (H3)]}
\]

\[
= T(\mu(0 \ast y), \mu(x)) \quad \text{[by (H1)]}
\]

\[
\geq T(\mu(x), \mu(y)) \quad \text{[by (F1), (T2), and (T3)].}
\]

Hence \(\mu \) is a \(T \)-fuzzy subalgebra of \(X \).

The converse of Theorem 4.25 may not be true. For example, the \(T_m \)-fuzzy subalgebra \(\mu \) in Example 4.3(1) is not a \(T_m \)-fuzzy closed ideal of \(X \) since

\[
\mu(a) = 0.09 < 0.9 = T_m(\mu(a \ast d), \mu(d)).
\]

We give a condition for a \(T \)-fuzzy subalgebra to be a \(T \)-fuzzy closed ideal.

Theorem 4.26. Let \(\mu \) be a \(T \)-fuzzy subalgebra of \(X \). If \(\mu \) satisfies the imaginable property and the inequality

\[
\mu(x \ast y) \leq \mu(y \ast x) \quad \forall x, y \in X,
\]

then \(\mu \) is a \(T \)-fuzzy closed ideal of \(X \).

Proof. Let \(\mu \) be an imaginable \(T \)-fuzzy subalgebra of \(X \) which satisfies the inequality

\[
\mu(x \ast y) \leq \mu(y \ast x) \quad \forall x, y \in X.
\]

It follows from *Proposition 4.5* that \(\mu(0 \ast x) \geq \mu(x) \) for all \(x \in X \). Let \(x, y \in X \). Then

\[
\mu(x) = \mu(x \ast 0) \geq \mu(0 \ast x) = \mu((y \ast y) \ast x)
\]

\[
= \mu((y \ast x) \ast y) \geq T(\mu(y \ast x), \mu(y)) \geq T(\mu(x \ast y), \mu(y)).
\]

Hence \(\mu \) is a \(T \)-fuzzy closed ideal of \(X \).

Proposition 4.27. Let \(T_m \) be a \(t \)-norm in Example 4.3. Let \(D \) be a closed ideal of \(X \) and let \(\mu \) be a fuzzy set in \(X \) defined by

\[
\mu(x) = \begin{cases}
\alpha_1 & \text{if } x \in D, \\
\alpha_2 & \text{otherwise},
\end{cases}
\]

for all \(x \in X \).
(i) If $\alpha_1 = 1$ and $\alpha_2 = 0$, then μ is an imaginable T_m-fuzzy closed ideal of X.

(ii) If $\alpha_1, \alpha_2 \in (0,1)$ and $\alpha_1 > \alpha_2$, then μ is a T_m-fuzzy closed ideal of X which is not imaginable.

Proof. (i) If $x \in D$, then $0 \ast x \in D$ and so $\mu(0 \ast x) = 1 = \mu(x)$. If $x \notin D$, then clearly $\mu(x) = 0 \leq \mu(0 \ast x)$. Now obviously if $x \in D$, then

$$
\mu(x) = 1 \geq T_m(\mu(x \ast y), \mu(y)),
$$

(4.38)

for all $y \in X$. Assume that $x \notin D$. Then $x \ast y \notin D$ or $y \notin D$, that is, $\mu(x \ast y) = 0$ or $\mu(y) = 0$. It follows that

$$
T_m(\mu(x \ast y), \mu(y)) = 0 = \mu(x).
$$

(4.39)

Hence $\mu(x) \geq T_m(\mu(x \ast y), \mu(y))$ for all $x, y \in X$. Clearly $\text{Im}(\mu) \subseteq T_m$.

(ii) Similar to (i), we know that μ is a T_m-fuzzy closed ideal of X. Taking $\alpha_1 = 0.7$, then

$$
T_m(\alpha_1, \alpha_1) = T_m(0.7, 0.7) = \max(0.7 + 0.7 - 1, 0) = 0.4 \neq \alpha_1.
$$

(4.40)

Hence $\alpha_1 \notin T_m$, that is, $\text{Im}(\mu) \not\subseteq T_m$, and so μ is not imaginable. \hfill \Box

Proposition 4.28. Let μ be an imaginable T-fuzzy closed ideal of X. If μ satisfies the inequality $\mu(x) \geq \mu(0 \ast x)$ for all $x \in X$, then it satisfies the equality $\mu(x \ast y) = \mu(y \ast x)$ for all $x, y \in X$.

Proof. Let μ be an imaginable T-fuzzy closed ideal of X satisfying the inequality $\mu(x) \geq \mu(0 \ast x)$ for all $x \in X$. For every $x, y \in X$, we have

$$
\mu(y \ast x) \geq \mu(0 \ast (y \ast x)) \quad \text{[by assumption]}
$$

\[\begin{align*}
&\geq T(\mu(((0 \ast (y \ast x)) \ast (x \ast y)), \mu(x \ast y)) \quad \text{[by (F3)]} \\
&= T(\mu(((0 \ast y) \ast (0 \ast x)) \ast (x \ast y)), \mu(x \ast y)) \quad \text{[by (P3)]} \\
&= T(\mu(((0 \ast y) \ast (x \ast y)) \ast (0 \ast x)), \mu(x \ast y)) \quad \text{[by (H3)]} \\
&= T(\mu(((0 \ast (x \ast y)) \ast y) \ast (0 \ast x)), \mu(x \ast y)) \quad \text{[by (H3)]} \\
&= T(\mu(((0 \ast x) \ast (0 \ast y)) \ast y), \mu(x \ast y)) \quad \text{[by (P3)]} \\
&= T(\mu(((0 \ast x) \ast (0 \ast y)) \ast (0 \ast x)) \ast y), \mu(x \ast y)) \quad \text{[by (H3)]} \\
&= T(\mu((0 \ast (0 \ast y)) \ast y), \mu(x \ast y)) \quad \text{[by (H1)]} \\
&= T(\mu(0), \mu(x \ast y)) \quad \text{[by (H3) and (H1)]} \\
&\geq T(\mu(x \ast y), \mu(x \ast y)), \mu(y \ast y)) \quad \text{[by (H1)]} \\
&\geq T(T(\mu(x \ast y), \mu(x \ast y)), \mu(x \ast y)) \quad \text{[by Proposition 4.24 and (T2)]} \\
&= \mu(x \ast y) \quad \text{[since μ is imaginable].}
\end{align*}\]

(4.41)

Similarly we have $\mu(x \ast y) \geq \mu(y \ast x)$ for all $x, y \in X$, completing the proof. \hfill \Box
Theorem 4.29. Every imaginable T-fuzzy closed ideal is a fuzzy closed ideal.

Proof. Let μ be an imaginable T-fuzzy closed ideal of X. Then

$$\mu(x) \geq T(\mu(x \ast y), \mu(y)) \quad \forall x, y \in X.$$ \hspace{1cm} (4.42)

Since μ is imaginable, we have

$$\min(\mu(x \ast y), \mu(y)) = T(\min(\mu(x \ast y), \mu(y)), \min(\mu(x \ast y), \mu(y)))$$

$$\leq T(\mu(x \ast y), \mu(y))$$

$$\leq \min(\mu(x \ast y), \mu(y)).$$ \hspace{1cm} (4.43)

It follows that $\mu(x) \geq T(\mu(x \ast y), \mu(y)) = \min(\mu(x \ast y), \mu(y))$ so that μ is a fuzzy closed ideal of X.

Combining Theorems 3.3, 4.29, we have the following corollary.

Corollary 4.30. If μ is an imaginable T-fuzzy closed ideal of X, then the nonempty level set of μ is a closed ideal of X.

Noticing that the fuzzy set μ in Example 4.22(1) is a fuzzy closed ideal of X, we know from Example 4.22(1) that there exists a t-norm such that the converse of Theorem 4.29 may not be true.

Proposition 4.31. Every imaginable T-fuzzy closed ideal is order reversing.

Proof. Let μ be an imaginable T-fuzzy closed ideal of X and let $x, y \in X$ be such that $x \leq y$. Using (P4), (T2), Theorem 4.29, Proposition 4.24, and the definition of a fuzzy closed ideal, we get

$$\mu(x) \geq \min \{\mu(x \ast y), \mu(y)\} \geq T(\mu(x \ast y), \mu(y))$$

$$= T(\mu(x), \mu(y)) \geq T(\mu(y), \mu(y)) = \mu(y).$$ \hspace{1cm} (4.44)

This completes the proof.

Proposition 4.32. Let μ be a T-fuzzy closed ideal of X, where T is a diagonal t-norm on $[0,1]$, that is, $T(\alpha, \alpha) = \alpha$ for all $\alpha \in [0,1]$. If $(x \ast a) \ast b = 0$ for all $a, b, x \in X$, then $\mu(x) \geq T(\mu(a), \mu(b))$.

Proof. Let $a, b, x \in X$ be such that $(x \ast a) \ast b = 0$. Then

$$\mu(x) \geq T(\mu(x \ast a), \mu(a))$$

$$\geq T(T(\mu((x \ast a) \ast b), \mu(b)), \mu(a))$$

$$= T(\mu(0), \mu(b)), \mu(a))$$

$$\geq T(\mu(b), \mu(b)), \mu(a))$$

$$= T(\mu(a), \mu(b)),$$ \hspace{1cm} (4.45)

completing the proof.
Corollary 4.33. Let \(\mu \) be a \(T \)-fuzzy closed ideal of \(X \), where \(T \) is a diagonal \(t \)-norm on \([0,1]\). If \((\cdots ((x \ast a_1) \ast a_2) \ast \cdots) \ast a_n = 0 \) for all \(x, a_1, a_2, \ldots, a_n \in X \), then

\[
\mu(x) \geq T_n(\mu(a_1), \mu(a_2), \ldots, \mu(a_n)).
\]

Proof. Using induction on \(n \), the proof is straightforward. \(\square \)

Theorem 4.34. There exists a \(t \)-norm \(T \) such that every closed ideal of \(X \) can be realized as a level closed ideal of a \(T \)-fuzzy closed ideal of \(X \).

Proof. Let \(D \) be a closed ideal of \(X \) and let \(\mu \) be a fuzzy set in \(X \) defined by

\[
\mu(x) = \begin{cases}
\alpha & \text{if } x \in D, \\
0 & \text{otherwise,}
\end{cases}
\]

where \(\alpha \in (0,1) \) is fixed. It is clear that \(U(\mu; \alpha) = D \). We will prove that \(\mu \) is a \(T_m \)-fuzzy closed ideal of \(X \), where \(T_m \) is a \(t \)-norm in Example 4.3. If \(x \in D \), then \(0 \ast x \in D \) and so \(\mu(0 \ast x) = \alpha = \mu(x) \). If \(x \notin D \), then clearly \(\mu(x) = 0 \leq \mu(0 \ast x) \). Let \(x, y \in X \). If \(x \in D \), then \(\mu(x) = \alpha \geq T_m(\mu(x \ast y), \mu(y)) \). If \(x \notin D \), then \(x \ast y \notin D \) or \(y \notin D \). It follows that \(\mu(x) = 0 = T_m(\mu(x \ast y), \mu(y)) \). This completes the proof. \(\square \)

For a family \(\{ \mu_\alpha \mid \alpha \in \Lambda \} \) of fuzzy sets in \(X \), define the join \(\bigvee_{\alpha \in \Lambda} \mu_\alpha \) and the meet \(\bigwedge_{\alpha \in \Lambda} \mu_\alpha \) as follows:

\[
(\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x) = \sup \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}, \quad (\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x) = \inf \{ \mu_\alpha(x) \mid \alpha \in \Lambda \},
\]

for all \(x \in X \), where \(\Lambda \) is any index set.

Theorem 4.35. The family of \(T \)-fuzzy closed ideals in \(X \) is a completely distributive lattice with respect to meet "\(\wedge \)" and the join "\(\vee \)."

Proof. Since \([0,1]\) is a completely distributive lattice with respect to the usual ordering in \([0,1]\), it is sufficient to show that \(\bigvee_{\alpha \in \Lambda} \mu_\alpha \) and \(\bigwedge_{\alpha \in \Lambda} \mu_\alpha \) are \(T \)-fuzzy closed ideals of \(X \) for a family of \(T \)-fuzzy closed ideals \(\{ \mu_\alpha \mid \alpha \in \Lambda \} \). For any \(x \in X \), we have

\[
(\bigvee_{\alpha \in \Lambda} \mu_\alpha)(0 \ast x) = \sup \{ \mu_\alpha(0 \ast x) \mid \alpha \in \Lambda \}
\geq \sup \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}
= (\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x),
\]

\[
(\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(0 \ast x) = \inf \{ \mu_\alpha(0 \ast x) \mid \alpha \in \Lambda \}
\geq \inf \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}
= (\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x).
\]

Let \(x, y \in X \). Then

\[
(\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x) = \sup \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}
\geq \sup \{ T(\mu_\alpha(x \ast y), \mu_\alpha(y)) \mid \alpha \in \Lambda \}
\geq T(\sup \{ \mu_\alpha(x \ast y) \mid \alpha \in \Lambda \}, \sup \{ \mu_\alpha(y) \mid \alpha \in \Lambda \})
= T((\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x \ast y), (\bigvee_{\alpha \in \Lambda} \mu_\alpha)(y)),
\]

\[
(\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x) = \inf \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}
\leq \inf \{ T(\mu_\alpha(x \ast y), \mu_\alpha(y)) \mid \alpha \in \Lambda \}
\leq T(\inf \{ \mu_\alpha(x \ast y) \mid \alpha \in \Lambda \}, \inf \{ \mu_\alpha(y) \mid \alpha \in \Lambda \})
= T((\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x \ast y), (\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(y)),
\]

\[
(\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x \ast y) = \sup \{ \mu_\alpha(x \ast y) \mid \alpha \in \Lambda \}
\geq \sup \{ T(\mu_\alpha(x), \mu_\alpha(y)) \mid \alpha \in \Lambda \}
\geq T(\sup \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}, \sup \{ \mu_\alpha(y) \mid \alpha \in \Lambda \})
= T((\bigvee_{\alpha \in \Lambda} \mu_\alpha)(x), (\bigvee_{\alpha \in \Lambda} \mu_\alpha)(y)),
\]

\[
(\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x \ast y) = \inf \{ \mu_\alpha(x \ast y) \mid \alpha \in \Lambda \}
\leq \inf \{ T(\mu_\alpha(x), \mu_\alpha(y)) \mid \alpha \in \Lambda \}
\leq T(\inf \{ \mu_\alpha(x) \mid \alpha \in \Lambda \}, \inf \{ \mu_\alpha(y) \mid \alpha \in \Lambda \})
= T((\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(x), (\bigwedge_{\alpha \in \Lambda} \mu_\alpha)(y)).
\]
\[
(\land_{\alpha \in \Lambda} \mu_{\alpha})(x) = \inf \{ \mu_{\alpha}(x) \mid \alpha \in \Lambda \}
\geq \inf \{ T(\mu_{\alpha}(x \ast y), \mu_{\alpha}(y)) \mid \alpha \in \Lambda \}
\geq T(\inf \{ \mu_{\alpha}(x \ast y) \mid \alpha \in \Lambda \}, \inf \{ \mu_{\alpha}(y) \mid \alpha \in \Lambda \})
= T((\land_{\alpha \in \Lambda} \mu_{\alpha})(x \ast y), (\land_{\alpha \in \Lambda} \mu_{\alpha})(y)).
\]

(4.50)

Hence \(\lor_{\alpha \in \Lambda} \mu_{\alpha} \) and \(\land_{\alpha \in \Lambda} \mu_{\alpha} \) are \(T \)-fuzzy closed ideals of \(X \), completing the proof. \(\square \)

5. Conclusions and future works. We inquired into further properties on fuzzy closed ideals in BCH-algebras, and using a \(t \)-norm \(T \), we introduced the notion of (imaginable) \(T \)-fuzzy subalgebras and (imaginable) \(T \)-fuzzy closed ideals, and obtained some related results. Moreover, we discussed the direct product and \(T \)-product of \(T \)-fuzzy subalgebras. We finally showed that the family of \(T \)-fuzzy closed ideals is a completely distributive lattice. These ideas enable us to define the notion of (imaginable) \(T \)-fuzzy filters in BCH-algebras, and to discuss the direct products and \(T \)-products of \(T \)-fuzzy filters. It also gives us possible problems to discuss relations among \(T \)-fuzzy subalgebras, \(T \)-fuzzy closed ideals and \(T \)-fuzzy filters, and to construct the normalizations. We may also use these ideas to introduce the notion of interval-valued fuzzy subalgebras/closed ideals.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-99-015-DP0003).

References

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea
E-mail address: ybjun@nongae.gsnu.ac.kr

Sung Min Hong: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea
E-mail address: smhong@nongae.gsnu.ac.kr