ON Q-ALGEBRAS

JOSEPH NEGGERS, SUN SHIN AHN, and HEE SIK KIM

(Received 29 January 2001)

ABSTRACT. We introduce a new notion, called a Q-algebra, which is a generalization of the idea of $BCH/BCI/BCK$-algebras and we generalize some theorems discussed in BCI-algebras. Moreover, we introduce the notion of “quadratic” Q-algebra, and show that every quadratic Q-algebra $(X; *, e)$, $e \in X$, has a product of the form $x \ast y = x - y + e$, where $x, y \in X$ when X is a field with $|X| \geq 3$.

2000 Mathematics Subject Classification. 06F35, 03G25.

1. Introduction. Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras (see [4, 5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3] Hu and Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Neggers and Kim (see [8]) introduced the notion of d-algebras, that is, (I) $x \ast x = e$; (IX) $e \ast x = e$; (VI) $x \ast y = e$ and $y \ast x = e$ imply $x = y$, which is another useful generalization of $BCH/BCI/BCK$-algebras, after which they investigated several relations between d-algebras and BCK-algebras, as well as other relations between d-algebras and oriented digraphs. At the same time, Jun, Roh, and Kim [6] introduced a new notion, called a BH-algebra, that is, (I) $x \ast x = e$; (II) $x \ast e = x$; (VI) $x \ast y = e$ and $y \ast x = e$ imply $x = y$, which is a generalization of $BCH/BCI/BCK$-algebras, and they showed that there is a maximal ideal in bounded BH-algebras. We introduce a new notion, called a Q-algebra, which is a generalization of $BCH/BCI/BCK$-algebras and generalize some theorems from the theory of BCI-algebras. Moreover, we introduce the notion of “quadratic” Q-algebra, and obtain the result that every quadratic Q-algebra $(X; *, e)$, $e \in X$, is of the form $x \ast y = x - y + e$, where $x, y \in X$ and X is a field with $|X| \geq 3$, that is, the product is linear in a special way.

2. Q-algebras. A Q-algebra is a nonempty set X with a constant 0 and a binary operation “\ast” satisfying axioms:

(I) $x \ast x = 0$,

(II) $x \ast 0 = x$,

(III) $(x \ast y) \ast z = (x \ast z) \ast y$ for all $x, y, z \in X$.

For brevity we also call X a Q-algebra. In X we can define a binary relation \leq by $x \leq y$ if and only if $x \ast y = 0$. Recently, Ahn and Kim [1] introduced the notion of QS-algebras. A Q-algebra X is said to be a QS-algebra if it satisfies the additional relation:

(IV) $(x \ast y) \ast (x \ast z) = z \ast y$, for any $x, y, z \in X$.
Example 2.1. Let \(\mathbb{Z} \) be the set of all integers and let \(n\mathbb{Z} := \{ nz \mid z \in \mathbb{Z} \} \) where \(n \in \mathbb{Z} \). Then \((\mathbb{Z}; -, 0)\) and \((n\mathbb{Z}; -, 0)\) are \(Q\)-algebras, where “-” is the usual subtraction of integers.

Example 2.2. Let \(X := \{0, 1, 2, 3\} \) be a set with the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; *, 0)\) is a \(Q\)-algebra, which is not a \(BCH/BCK\)-algebra.

Neggers and Kim [7] introduced the related notion of \(B\)-algebra, that is, algebras \((X; *, 0)\) which satisfy (I) \(x*x = 0\); (II) \(x*0 = x\); (V) \((x*y) * z = x * (z *(0*y))\), for any \(x, y, z \in X\). It is easy to see that \(B\)-algebras and \(Q\)-algebras are different notions. For example, **Example 2.2** is a \(Q\)-algebra, but not a \(B\)-algebra, since \((3*2)*1 = 0 \neq 3 = 3*(1*(0*2))\). Consider the following example. Let \(X := \{0, 1, 2, 3, 4, 5\} \) be a set with the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; *, 0)\) is a \(B\)-algebra (see [7]), but not a \(Q\)-algebra, since \((5*3)*4 = 3 \neq 4 = (5*4)*3\).

Proposition 2.3. If \((X; *, 0)\) is a \(Q\)-algebra, then
(VII) \((x*(x*y)) * y = 0\), for any \(x, y \in X\).

Proof. By (I) and (III), \((x*(x*y)) * y = (x*y) * (x*y') = 0\). \(\square \)

We now investigate some relations between \(Q\)-algebras and \(BCH\)-algebras (also \(BCK/BCI\)-algebras). The following theorems are easily proven, and we omit their proofs.

Theorem 2.4. Every \(BCH\)-algebra \(X\) is a \(Q\)-algebra. Every \(Q\)-algebra \(X\) satisfying condition (VI) is a \(BCH\)-algebra.

Theorem 2.5. Every \(Q\)-algebra satisfying condition (IV) and (VI) is a \(BCI\)-algebra.
Theorem 2.6. Every Q-algebra X satisfying conditions (V), (VI), and (VIII) $(x \ast y) \ast x = 0$ for any $x, y \in X$, is a BCK-algebra.

Theorem 2.7. Every Q-algebra X satisfying $x \ast (x \ast y) = x \ast y$ for all $x, y, z \in X$, is a trivial algebra.

Proof. Putting $x = y$ in the equation $x \ast (x \ast y) = x \ast y$, we obtain $x \ast 0 = 0$. By (II) $x = 0$. Hence X is a trivial algebra. □

The following example shows that a Q-algebra may not satisfy the associative law.

Example 2.8. (a) Let $X := \{0, 1, 2\}$ with the table as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then X is a Q-algebra, but associativity does not hold, since $(0 \ast 1) \ast 2 = 0 \neq 1 = 0 \ast (1 \ast 2)$.

(b) Let \mathbb{Z} and \mathbb{R} be the set of all integers and real numbers, respectively. Then $(\mathbb{Z}; -, 0)$ and $(\mathbb{R}; ÷, 1)$ are nonassociative Q-algebras where “$-$” is the usual subtraction and “$÷$” is the usual division.

Theorem 2.9. Every Q-algebra $(X; \ast, 0)$ satisfying the associative law is a group under the operation “\ast”.

Proof. Putting $x = y = z$ in the associative law $(x \ast y) \ast z = x \ast (y \ast z)$ and using (I) and (II), we obtain $0 \ast x = x \ast 0 = x$. This means that 0 is the zero element of X. By (I), every element x of X has as its inverse the element x itself. Therefore $(X; \ast)$ is a group. □

3. The G-part of Q-algebras. In this section, we investigate the properties of the G-part in Q-algebras.

Lemma 3.1. If $(X; \ast, 0)$ is a Q-algebra and $a \ast b = a \ast c$, $a, b, c \in X$, then $0 \ast b = 0 \ast c$.

Proof. By (I) and (II) $(a \ast b) \ast a = (a \ast a) \ast b = 0 \ast b$ and $(a \ast c) \ast a = (a \ast a) \ast c = 0 \ast c$. Since $a \ast b = a \ast c$, $0 \ast b = 0 \ast c$. □

Definition 3.2. Let $(X; \ast, 0)$ be a Q-algebra. For any nonempty subset S of X, we define

$$G(S) := \{x \in S \mid 0 \ast x = x\}.$$

(3.1)

In particular, if $S = X$ then we say that $G(X)$ is the G-part of X.

Corollary 3.3. A left cancellation law holds in $G(X)$.

Proof. Let $a, b, c \in G(X)$ with $a \ast b = a \ast c$. By Lemma 3.1, $0 \ast b = 0 \ast c$. Since $b, c \in G(X)$, we obtain $b = c$. □
Proposition 3.4. Let \((X; *, 0) \) be a \(Q \)-algebra. Then \(x \in G(X) \) if and only if \(0 * x \in G(X) \).

Proof. If \(x \in G(X) \), then \(0 * x = x \) and \(0 * (0 * x) = 0 * x \). Hence \(0 * x \in G(X) \). Conversely, if \(0 * x \in G(x) \), then \(0 * (0 * x) = 0 * x \). By applying Corollary 3.3, we obtain \(0 * x = x \). Therefore \(x \in G(X) \).

For any \(Q \)-algebra \((X; *, 0) \), the set \(B(X) := \{ x \in X \mid 0 * x = 0 \} \) is called the \(p \)-radical of \(X \). If \(B(X) = \{ 0 \} \), then we say that \(X \) is a \(p \)-semisimple \(Q \)-algebra. The following property is obvious.

\((IX)\) \(G(X) \cap B(X) = \{ 0 \} \).

Proposition 3.5. If \((X; *, 0) \) is a \(Q \)-algebra and \(x, y \in X \), then
\[y \in B(X) \iff (x * y) * x = 0. \tag{3.3} \]

Proof. By (I) and (III) \((x * y) * x = (x * x) * y = 0 * y = 0 \) if and only if \(y \in B(X) \).

Definition 3.6. Let \((X; *, 0) \) be a \(Q \)-algebra and \(I(\neq \emptyset) \subseteq X \). The set \(I \) is called an ideal of \(X \) if for any \(x, y, z \in X \),

\[(1) \ 0 \in I, \]
\[(2) \ x * y \in I \text{ and } y \in I \text{ imply } x \in I. \]

Obviously, \(\{ 0 \} \) and \(X \) are ideals of \(X \). We call \(\{ 0 \} \) and \(X \) the zero ideal and the trivial ideal of \(X \), respectively. An ideal \(I \) is said to be proper if \(I \neq X \).

In Example 2.2 the set \(I := \{ 0, 1, 2 \} \) is an ideal of \(X \).

Proposition 3.7. Let \((X; *, 0) \) be a \(Q \)-algebra. Then \(B(X) \) is an ideal of \(X \).

Proof. Since \((0 * 0) * 0 = 0 \), by Proposition 3.5, \(0 \in B(X) \). Let \(x * y \in B(X) \) and \(y \in B(X) \). Then by Proposition 3.5, \(((x * y) * x) * (x * y) = 0 \). By (III), \(((x * y) * (x * y)) * x = 0 * x = 0 \). Hence \(x \in B(X) \). Therefore \(B(X) \) is an ideal of \(X \).

Proposition 3.8. If \(S \) is a subalgebra of a \(Q \)-algebra \((X; *, 0) \), then \(G(X) \cap S = G(S) \).

Proof. It is obvious that \(G(X) \cap S \subseteq G(S) \). If \(x \in G(S) \), then \(0 * x = x \) and \(x \in S \subseteq X \). Then \(x \in G(X) \) and so \(x \in G(X) \cap S \), which proves the proposition.

Theorem 3.9. Let \((X; *, 0) \) be a \(Q \)-algebra. If \(G(X) = X \), then \(X \) is \(p \)-semisimple.

Proof. Assume that \(G(X) = X \). By (X), \(\{ 0 \} = G(X) \cap B(X) = X \cap B(X) = B(X) \). Hence \(X \) is \(p \)-semisimple.

Theorem 3.10. If \((X; *, 0) \) is a \(Q \)-algebra of order 3, then \(|G(X)| \neq 3 \), that is, \(G(X) \neq X \).

Proof. For the sake of convenience, let \(X = \{ 0, a, b \} \) be a \(Q \)-algebra. Assume that \(|G(X)| = 3 \), that is, \(G(X) = X \). Then \(0 * 0 = 0, 0 * a = a, \) and \(0 * b = b \). From \(x * x = 0 \) and \(x * 0 = x \), it follows that \(a * a = 0, b * b = 0, a * 0 = a, \) and \(b * 0 = b \). Now let \(a * b = 0 \). Then \(0, a, \) and \(b \) are candidates of the computation. If \(b * a = 0 \), then
implicative, it follows that contradiction. This completes the proof.

Next, if \(b \neq a \), then \(a = b * a = (0 * b) * a = 0 * (a * b) = 0 * b = b = 0 \), a contradiction. For the case \(b = a \), we have \(b = a * b = (0 * b) * a = (0 * a) * b = a * b = 0 \), which is also a contradiction.

Finally, let \(a = b \). If \(a = b \), then \(a = 0 = (b * b) * a = (b * a) * b = b \neq 0 \). This leads to the conclusion that Proposition 2.3 does not hold, a contradiction. Similarly, if \(a = b \), we have \(a = 0 = (b * b) * a = (b * a) * b = b \neq 0 \), which is again a contradiction. This completes the proof.

Proposition 3.11. If \((X; *, 0)\) is a \(Q\)-algebra of order 2, then in every case the \(G\)-part \(G(X)\) of \(X\) is an ideal of \(X\).

Proof. Let \(|X| = 2\). Then either \(G(X) = \{0\}\) or \(G(X) = X\). In either case, \(G(X)\) is an ideal of \(X\).

Theorem 3.12. Let \((X; *, 0)\) be a \(Q\)-algebra of order 3. Then \(G(X)\) is an ideal of \(X\) if and only if \(|G(X)| = 1\).

Proof. Let \(X := \{0, a, b\}\) be a \(Q\)-algebra. If \(|G(X)| = 1\), then \(G(X) = \{0\}\) is the trivial ideal of \(X\).

Conversely, assume that \(G(X)\) is an ideal of \(X\). By Theorem 3.10, we know that either \(|G(X)| = 1\) or \(|G(X)| = 2\). Suppose that \(|G(X)| = 2\). Then either \(G(X) = \{0, a\}\) or \(G(X) = \{0, b\}\). If \(G(X) = \{0, a\}\), then \(b * a \in G(X)\) because \(G(X)\) is an ideal of \(X\). Hence \(b * a = b\). Then \(a = 0 = (b * b) * a = (b * a) * b = b * b = 0\), which is a contradiction. Similarly, \(G(X) = \{0, b\}\) leads to a contradiction. Therefore \(|G(X)| \neq 2\) and so \(|G(X)| = 1\).

Definition 3.13. An ideal \(I\) of a \(Q\)-algebra \((X; *, 0)\) is said to be implicative if \((x * y) * z \in I\) and \(y * z \in I\), then \(x * z \in I\), for any \(x, y, z \in X\).

Theorem 3.14. Let \((X; *, 0)\) be a \(Q\)-algebra and let \(I\) be an implicative ideal of \(X\). Then \(I\) contains the \(G\)-part \(G(X)\) of \(X\).

Proof. If \(x \in G(X)\), then \((0 * x) * x = x * x = 0 \in I\) and \(x * x = 0 \in I\). Since \(I\) is implicative, it follows that \(x = 0 * x \in I\). Hence \(G(X) \subseteq I\).

Definition 3.15. Let \(X\) and \(Y\) be \(Q\)-algebras. A mapping \(f : X \to Y\) is called a homomorphism if

\[f(x * y) = f(x) * f(y), \quad \forall x, y \in X. \tag{3.4} \]

A homomorphism \(f\) is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two \(Q\)-algebras \(X\) and \(Y\) are said to be isomorphic, written by \(X \cong Y\), if there exists an isomorphism \(f : X \to Y\). For any homomorphism \(f : X \to Y\), the set \(\{x \in X \mid f(x) = 0\}\) is called the kernel of \(f\), denoted by \(\text{Ker}(f)\) and the set \(\{f(x) \mid x \in X\}\) is called the image of \(f\), denoted by \(\text{Im}(f)\). We denote by \(\text{Hom}(X, Y)\) the set of all homomorphisms of \(Q\)-algebras from \(X\) to \(Y\).
Proposition 3.16. Suppose that \(f : X \rightarrow X' \) is a homomorphism of \(Q \)-algebras. Then

1. \(f(0) = 0' \),
2. \(f \) is isotone, that is, if \(x \ast y = 0 \), \(x, y \in X \), then \(f(x) \ast f(y) = 0' \).

Proof. Since \(f(0) = f(0 \ast 0) = f(0) \ast f(0) = 0' \), (1) holds. If \(x, y \in X \) and \(x \leq y \), that is, \(x \ast y = 0 \), then by (1), \(f(x) \ast f(y) = f(x \ast y) = f(0) = 0' \). Hence \(f(x) \leq f(y) \), proving (2).

Theorem 3.17. Let \((X; \ast, 0)\) and \((X; \ast', 0')\) be \(Q \)-algebras and let \(B \) be an ideal of \(Y \). Then for any \(f \in \text{Hom}(X,Y) \), \(f^{-1}(B) \) is an ideal of \(X \).

Proof. By Proposition 3.16(1), \(0 \in f^{-1}(B) \). Assume that \(x \ast y \in f^{-1}(B) \) and \(y \in f^{-1}(B) \). Then \(f(x) \ast f(y) = f(x \ast y) \in B \). It follows from the fact that \(B \) is an ideal of \(Y \) that \(f(x) \in B \), that is, \(x \in f^{-1}(B) \). This means that \(f^{-1}(B) \) is an ideal of \(X \). The proof is complete.

Since \(\{0'\} \) is an ideal of \(X' \), \(\text{Ker}(f) = f^{-1}(\{0'\}) \) for any \(f \in \text{Hom}(X,Y) \). Hence we obtain the following corollary.

Corollary 3.18. The kernel \(\text{Ker}(f) \) is an ideal of \(X \).

4. The quadratic \(Q \)-algebras. Let \(X \) be a field with \(|X| \geq 3\). An algebra \((X; \ast)\) is said to be quadratic if \(x \ast y \) is defined by \(x \ast y := a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6 \), where \(a_1, \ldots, a_6 \in X \), for any \(x, y \in X \). A quadratic algebra \((X; \ast)\) is said to be quadratic \(Q \)-algebra (resp., \(QS \)-algebra) if it satisfies conditions (I), (II), and (III) (resp., (IV)).

Theorem 4.1. Let \(X \) be a field with \(|X| \geq 3\). Then every quadratic \(Q \)-algebra \((X; \ast, e), e \in X, \) has the form \(x \ast y = x - y + e \) where \(x, y \in X \).

Proof. Define

\[
x \ast y := Ax^2 + Bxy + Cy^2 + Dx + Ey + F. \tag{4.1}
\]

Consider (I).

\[
e = x \ast x = (A + B + C)x^2 + (D + E)x + F. \tag{4.2}
\]

Let \(x := 0 \) in (4.2). Then we obtain \(F = e \). Hence (4.1) turns out to be

\[
x \ast y = Ax^2 + Bxy + Cy^2 + Dx + Ey + e. \tag{4.3}
\]

If \(y := x \) in (4.3), then

\[
e = x \ast x = (A + B + C)x^2 + (D + E)x + e, \tag{4.4}
\]

for any \(x \in X \), and hence we obtain \(A + B + C = 0 = D + E \), that is, \(E = -D \) and \(B = -A - C \). Hence (4.3) turns out to be

\[
x \ast y = (x - y)(Ax - Cy + D) + e. \tag{4.5}
\]

Let \(y := e \) in (4.5). Then by (II) we have

\[
x = x \ast e = (x - e)(Ax - Ce + D) + e, \tag{4.6}
\]
that is, \((Ax - Ce + D - 1)(x - e) = 0\). Since \(X\) is a field, either \(x - e = 0\) or \(Ax - Ce + D - 1 = 0\). Since \(|X| \geq 3\), we have \(Ax - Ce + D - 1 = 0\), for any \(x \neq e\) in \(X\). This means that \(A = 0, 1 - D + Ce = 0\). Thus (4.5) turns out to be

\[x \ast y = (x - y) + C(x - y)(e - y) + e. \]

(4.7)

To satisfy condition (III) we consider \((x \ast y) \ast z\) and \((x \ast z) \ast y\).

\[(x \ast y) \ast z = (x \ast y - z) + C(x \ast y - z)(e - z) + e \]
\[= (x - y - z) + C(x - y)(e - y)(e - z) + 2e \]
\[+ C[(x - y) + C(x - y)(e - y) + (e - z)](e - z) \]

(4.8)

\[= (x - y - z) + C(x - y)(2e - y - z) + 2e \]
\[+ C^2(x - y)(e - y)(e - z) + C(e - z)^2. \]

Interchange \(y\) with \(z\) in (4.8). Then

\[(x \ast z) \ast y = (x - z - y) + C(x - z)(2e - z - y) + 2e \]
\[+ C^2(x - z)(e - z)(e - y) + C(e - y)^2. \]

(4.9)

By (4.8) and (4.9) we obtain

\[0 = (x \ast y) \ast z - (x \ast z) \ast y = C^2(e - y)(e - z)(z - y). \]

(4.10)

Since \(X\) is a field with \(|X| \geq 3\), we obtain \(C = 0\). This means that every quadratic \(Q\)-algebra \((X; \ast, e)\), has the form \(x \ast y = x - y + e\) where \(x, y \in X\), completing the proof. \(\square\)

Example 4.2. Let \(\mathbb{R}\) be the set of all real numbers. Define \(x \ast y := x - y + \sqrt{2}\). Then \((\mathbb{R}; \ast, \sqrt{2})\) is a quadratic \(Q\)-algebra.

Example 4.3. Let \(\mathcal{F} := \text{GF}(p^n)\) be a Galois field. Define \(x \ast y := x - y + e, e \in \mathcal{F}\). Then \((\mathcal{F}; \ast, e)\) is a quadratic \(Q\)-algebra.

Theorem 4.4. Let \(X\) be a field with \(|X| \geq 3\). Then every quadratic \(Q\)-algebra on \(X\) is a (quadratic) \(QS\)-algebra.

Proof. Let \((X; \ast, e)\) be a quadratic \(Q\)-algebra. Then \(x \ast y = x - y + e\) for any \(x, y \in X\), and hence

\[(x \ast y) \ast (x \ast z) = (x - y + e) \ast (x - z + e) \]
\[= (x - y + e) - (x - z + e) + e \]
\[= z - y + e = z \ast y, \]

(4.11)

completing the proof. \(\square\)

Remark 4.5. Usually a nonquadratic \(Q\)-algebra need not be a \(QS\)-algebra. See the following example.
Example 4.6. Consider the Q-algebra $(X; \ast, 0)$ in Example 2.2. This algebra is not a QS-algebra, since $(3 \ast 1) \ast (3 \ast 2) = 3 \neq 0 = 2 \ast 1$.

Corollary 4.7. Let X be a field with $|X| \geq 3$. Then every quadratic Q-algebra on X is a BCI-algebra.

Proof. It is an immediate consequence of Theorems 2.5 and 4.4.

Theorem 4.8. Let X be a field with $|X| \geq 3$. Then every quadratic Q-algebra $(X; \ast, e)$ is p-semisimple. Furthermore, if $\text{char}(X) \neq 2$, then $G(X) = B(X)$.

Proof. Notice that $B(X) = \{ x \in X \mid e \ast x = e \} = \{ x \in X \mid e - x + e = e \} = \{ x \in X \mid e - x = 0 \} = \{ e \}$, that is, $(X; \ast, e)$ is p-semisimple. Also, if $\text{char}(X) \neq 2$, then 2 is invertible in X and $G(X) = \{ x \in X \mid e \ast x = x \} = \{ x \in X \mid e - x + e = x \} = \{ x \in X \mid 2e = 2x \} = \{ x \in X \mid e = x \} = \{ e \}$. Of course, if $\text{char}(X) = 2$, then $2e = 0$ for all $x \in X$, whence $G(X) = X$.

This shows that there is a large class of examples of p-semisimple QS-algebras obtained as quadratic Q-algebras.

Theorem 4.9. Let X be a field with $|X| \geq 3$. Then every quadratic Q-algebra on X is isomorphic to every other such algebra defined on X.

Proof. Let $x \ast y := x - y + e_1$ and $x \ast' y := x - y + e_2$, where $e_1, e_2 \in X$. Let $\pi(x) := x + (e_2 - e_1)$, for all $x \in X$. Then $\pi(x \ast y) = [(x - y) + e_1] + (e_2 - e_1) = (x - y) + e_2 = (x + (e_2 - e_1)) + (y + (e_2 - e_1)) + e_2 = \pi(x) \ast' \pi(y)$, whence the fact that $\pi^{-1}(x) = x + (e_1 - e_2)$ yields the conclusion that π is an isomorphism of Q-algebras.

Theorem 4.10. Let X be a field with $|X| \geq 3$. Then every quadratic Q-algebra $(X; \ast, e)$ determines the abelian group $(X, +)$ via the definition $x + y = x \ast (e - y)$.

Proof. Note that $x \ast (e - y) = x - (e - y) + e = x + y$ returns the additive operation of the field X, which is an abelian group.

Not every quadratic Q-algebra $(X; \ast, e)$, $e \in X$, on a field X with $|X| \geq 3$ need be a BCK-algebra, since $((x \ast y) \ast (x \ast z)) \ast (z \ast y) = e + (y - z) \neq e$ in general.

Problem 4.11. Construct a cubic Q-algebra which is not quadratic. Verify that among such cubic Q-algebras there are examples which are not QS-algebras. Furthermore, the question whether there are non-p-semisimple cubic Q-algebras is also of interest.

References

JOSEPH NEGGERS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487-0350, USA

E-mail address: jneggers@gp.as.ua.edu

SUN SHIN AHN: DEPARTMENT OF MATHEMATICS EDUCATION, DONGGUK UNIVERSITY, SEOUL 100-715, KOREA

E-mail address: sunshine@dgu.ac.kr

HEE SIK KIM: DEPARTMENT OF MATHEMATICS, HANYANG NATIONAL UNIVERSITY, SEOUL 133-791, KOREA

E-mail address: heekim@hanyang.ac.kr