ON AN APPLICATION OF ALMOST INCREASING SEQUENCES

HÜSEYİN BOR

(Received 3 May 2000 and in revised form 25 October 2000)

ABSTRACT. Using an almost increasing sequence, a result of Mazhar (1977) on |C, 1|k summability factors has been generalized for |C, α; β|k and |N, p; β|k summability factors under weaker conditions.

2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. Introduction. A sequence of (bn) of positive numbers is said to be δ-quasi-monotone, if bn → 0, bn > 0 ultimately and ∆bn ≥ −δn, where (δn) is a sequence of positive numbers (see [2]). Let ∑an be a given infinite series with (sn) as the sequence of its nth partial sums. Let σα n and tα n denote the nth (C, α) means of the sequences (sn) and (nan), respectively, that is,

σα n = 1 / Aα n ∑v=0 n Aα−1 n−v sv,

(1.1)

and

tα n = 1 / Aα n ∑v=1 n Aα−1 n−v va v,

(1.2)

where

Aα n = O (nα), α > −1, α0 = 1, Aα−n = 0, for n > 0.

(1.3)

The series ∑an is said to be summable |C, α|k, k ≥ 1 and α > −1, if (see [6])

∑n=1∞ nβk−1 |σα n − σα n−1| k = ∑n=1∞ 1 / n |tα n| k < ∞,

(1.4)

and it is said to be summable |C, α; β|k, k ≥ 1, α > −1 and β ≥ 0, if (see [7])

∑n=1∞ nβk−1 |σα n − σα n−1| k = ∑n=1∞ nβk−1 |tα n| k < ∞.

(1.5)

Let (pn) be a sequence of positive numbers such that

Pn = ∑n v=0 pv → ∞ as n → ∞, P−i = p−i = 0, i ≥ 1.

(1.6)

The sequence-to-sequence transformation

Tn = 1 / Pn ∑v=0 n pv sv

(1.7)
defines the sequence \((T_n)\) of the Riesz mean or simply the \((\bar{N}, p_n)\) mean of the sequence \((s_n)\), generated by the sequence of coefficients \((p_n)\) (see [8]).

The series \(\sum a_n\) is said to be summable \(|\bar{N}, p_n|_k, k \geq 1\), if (see [3])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\Delta T_{n-1}|^k < \infty, \quad (1.8)
\]

and it is said to be summable \(|\bar{N}, p_n; \beta|_k, k \geq 1, \beta \geq 0\), if (see [4])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\beta k} |\Delta T_{n-1}|^k < \infty, \quad (1.9)
\]

where

\[
\Delta T_{n-1} = -\frac{p_n}{p_n p_{n-1}} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \geq 1. \quad (1.10)
\]

In the special case when \(\beta = 0\) (resp., \(p_n = 1\) for all values of \(n\)), \(|\bar{N}, p_n|_k\) summability is the same as \(|\bar{N}, p_n|_k\) (resp., \(|C, 1; \beta|_k\)) summability.

Also it is known that \(|C, \alpha; \beta|_k\) and \(|\bar{N}, p_n; \beta|_k\) summabilities are, in general, independent of each other.

Mazhar [9] has proved the following theorem for \(|C, 1|_k\) summability factors of infinite series.

Theorem 1.1 (see [9]). Let \(\lambda_n \to 0\) as \(n \to \infty\). Suppose that there exists a sequence of numbers \((B_n)\) such that it is \(\delta\)-quasi-monotone with \(\sum n \delta_n \log n < \infty\), \(\sum B_n \log n\) is convergent and \(|\Delta \lambda_n| \leq |B_n|\) for all \(n\). If

\[
\sum_{n=1}^{m} \frac{1}{n} |t_n|^k = O(\log m) \quad \text{as} \quad m \to \infty, \quad (1.11)
\]

where \((t_n)\) is the \(n\)th \((C, 1)\) mean of the sequence \((n a_n)\), then the series \(\sum a_n \lambda_n\) is summable \(|C, 1|_k, k \geq 1\).

Remark 1.2. It should be noted that the condition “\(\sum \delta_n \log n\) is convergent” is enough to prove Theorem 1.1 rather than the conditions “\(\sum \delta_n \log n < \infty\) and \(\sum B_n \log n\) is convergent.”

2. The main result. In view of Remark 1.2, the aim of this paper is to generalize Theorem 1.1 for \(|C, \alpha; \beta|_k\) and \(|\bar{N}, p_n; \beta|_k\) summabilities under weaker conditions. For this we need the concept of almost increasing sequence. A positive sequence \((d_n)\) is said to be almost increasing if there exists a positive increasing sequence \((c_n)\) and two positive constants \(A\) and \(B\) such that \(Ac_n \leq d_n \leq Bc_n\) (see [1]).Obviously, every increasing sequence is almost increasing but the converse need not be true as can be seen from the example \(d_n = ne^{(-1)^n}\). Since \(\log n\) is increasing, we are weakening the hypotheses of the theorem replacing the increasing sequence by an almost increasing sequence.
Now, we prove the following theorems.

Theorem 2.1. Let \((X_n)\) be an almost increasing sequence and \(\lambda_n \to 0\) as \(n \to \infty\). Suppose that there exists a sequence of numbers \((B_n)\) such that it is \(\delta\)-quasi-monotone with \(\sum nB_nX_n\) convergent and \(|\Delta \lambda_n| \leq |B_n|\) for all \(n\). If the sequence \((u_n^\alpha)\), defined by (see [10])
\[
u_n^\alpha = \begin{cases} |t_n^\alpha|, & \alpha = 1, \\ \max_{1 \leq v \leq n} |t_v^\alpha|, & 0 < \alpha < 1, \end{cases}
\] (2.1)
satisfies the condition
\[
\sum_{n=1}^{m} n^{\beta k - 1} (u_n^\alpha)^k = O(X_m) \quad \text{as } m \to \infty,
\] (2.2)
then the series \(\sum a_n \lambda_n\) is summable \(|C, \alpha; \beta|_k\), \(k \geq 1\) and \(0 \leq \beta < \alpha \leq 1\).

Theorem 2.2. Let \((X_n)\) be an almost increasing sequence and \(\lambda_n \to 0\) as \(n \to \infty\). Suppose that there exists a sequence of numbers \((B_n)\) such that it is \(\delta\)-quasi-monotone with \(\sum nB_nX_n\) convergent and \(|\Delta \lambda_n| \leq |B_n|\) for all \(n\). If \((p_n)\) is a sequence such that
\[
\sum_{n=v+1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\beta k-1} \frac{1}{p_n^\alpha} = O\left(\left(\frac{P_v}{p_v} \right)^{\beta k} \frac{1}{p_v^\alpha} \right),
\]
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\beta k-1} |t_n|^k = O(X_m) \quad \text{as } m \to \infty,
\]
\[
\sum_{n=1}^{m} \left(\frac{P_n}{p_n} \right)^{\beta k-1} \frac{1}{n} |t_n|^k = O(X_m) \quad \text{as } m \to \infty,
\]
\[
\sum_{n=1}^{m} \frac{|\lambda_n|}{n} = O(1) \quad \text{as } m \to \infty,
\] (2.3)
then the series \(\sum a_n \lambda_n\) is summable \(|\bar{N}, p_n; \beta|_k\) for \(k \geq 1\) and \(0 \leq \beta < 1/k\).

We need the following lemmas for the proof of our theorems.

Lemma 2.3 (see [5]). If \(0 < \alpha \leq 1\) and \(1 \leq v \leq n\), then
\[
\left| \sum_{p=0}^{v} A_{n-p}^\alpha a_p \right| \leq \max_{1 \leq m \leq v} \left| \sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_p \right|. \tag{2.4}
\]

Under the conditions of Theorem 2.2 we obtain the following result.

Lemma 2.4. The following equation holds:
\[
|\lambda_n| X_n = O(1) \quad \text{as } n \to \infty. \tag{2.5}
\]
Proof. Since $\lambda_n \to 0$ as $n \to \infty$, we have

$$|\lambda_n| X_n = X_n \left| \sum_{v=n}^{\infty} \Delta \lambda_v \right| \leq X_n \sum_{v=n}^{\infty} |\Delta \lambda_v| \leq \sum_{v=0}^{\infty} X_v |\Delta \lambda_v| \leq \sum_{v=0}^{\infty} X_v |B_v| < \infty. \quad (2.6)$$

Hence $|\lambda_n| X_n = O(1)$ as $n \to \infty$.

3. Proof of Theorem 2.1. Let (T_α^m) be the nth (C, α), with $0 < \alpha \leq 1$, mean of the sequence $(na_n \lambda_n)$. Then, by (1.1), we have

$$T_\alpha^m = \frac{1}{A^n} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v \lambda_v. \quad (3.1)$$

Applying Abel’s transformation, we get

$$T_\alpha^m = \frac{1}{A^n} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_p + \frac{\lambda_n}{A^n} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v, \quad (3.2)$$

so that making use of Lemma 2.3, we have

$$|T_\alpha^m| \leq \frac{1}{A^n} \sum_{v=1}^{n-1} \Delta \lambda_v \left| \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_p \right| + \frac{|\lambda_n|}{A^n} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v \leq \frac{1}{A^n} \sum_{v=1}^{n-1} A_{v}^\alpha u_v^\alpha \Delta \lambda_v + \frac{1}{A^n} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v$$

$$= T_{\alpha,1}^m + T_{\alpha,2}^m. \quad (3.3)$$

Since

$$|T_{\alpha,1}^m + T_{\alpha,2}^m|^k \leq 2^k \left(|T_{\alpha,1}^m|^k + |T_{\alpha,2}^m|^k \right), \quad (3.4)$$

to complete the proof of Theorem 2.1, it is enough to show that

$$\sum_{n=1}^{\infty} n^{\beta k-1} |T_{n,r}^\alpha|^k < \infty \quad \text{for } r = 1, 2. \quad (3.5)$$

Now, when $k > 1$, applying Hölder’s inequality with indices k and k', where $1/k + 1/k' = 1$, we get

$$\sum_{n=2}^{m+1} n^{\beta k-1} |T_{n,1}^\alpha|^k \leq \sum_{n=2}^{m+1} n^{\beta k-1} (A_n^\alpha)^{-k} \left(\sum_{v=1}^{n} A_{v}^\alpha u_v^\alpha |B_v| \right)^k$$
\[
\begin{align*}
&\leq \sum_{n=2}^{m+1} n^{\beta k-1} (A_n^\alpha)^{-k} \left\{ \sum_{v=1}^{n-1} (A_v^\alpha)^k (u_v^\alpha)^k \mid B_v \right\} \left\{ \sum_{v=1}^{n-1} |B_v| \right\}^{k-1} \\
&= O(1) \sum_{n=2}^{m+1} n^{\beta k-\alpha k-1} \left\{ \sum_{v=1}^{n-1} v^{\alpha k} (u_v^\alpha)^k \mid B_v \right\} \\
&= O(1) \sum_{v=1}^{m} v^{\alpha k} (u_v^\alpha)^k |B_v| \int_1^{\infty} \frac{dx}{x^{1+\alpha k-\beta k}} \\
&= O(1) \sum_{v=1}^{m} v^{\beta k} (u_v^\alpha)^k |B_v| = O(1) \sum_{v=1}^{m} v |B_v| v^{\beta k-1} (u_v^\alpha)^k \\
&= O(1) \sum_{v=1}^{m} \Delta(v |B_v|) v^{\beta k-1} (u_v^\alpha)^k + O(1) m |B_m| \left| \sum_{v=1}^{m} v^{\beta k-1} (u_v^\alpha)^k \right| \\
&= O(1) \sum_{v=1}^{m} \Delta(v |B_v|) X_v + O(1) m |B_m| X_m \\
&= O(1) \sum_{v=1}^{m} v |B_v| X_v + O(1) \sum_{v=1}^{m-1} (v+1) |B_{v+1}| X_{v+1} + O(1) m |B_m| X_m \\
&= O(1) \quad \text{as } m \to \infty,
\end{align*}
\] (3.6)

by virtue of the hypotheses of Theorem 2.1.

Finally, since \(|\lambda_n| = O(1)|B_v|\), by hypothesis

\[
\begin{align*}
\sum_{n=1}^{m} n^{\beta k-1} |T_{n,2}^\alpha| &= \sum_{n=1}^{m} |\lambda_n|^{k-1} n^{\beta k-1} (u_n^\alpha)^k \\
&= O(1) \sum_{n=1}^{m} |\lambda_n| n^{\beta k-1} (u_n^\alpha)^k \sum_{v=n}^{\infty} |\Delta \lambda_v| \\
&= O(1) \sum_{v=1}^{\infty} |\Delta \lambda_v| \sum_{n=1}^{v} n^{\beta k-1} (u_v^\alpha)^k \\
&= O(1) \sum_{v=1}^{\infty} |B_v| X_v < \infty,
\end{align*}
\] (3.7)

by virtue of the hypotheses of Theorem 2.1.

Therefore, we get

\[
\sum_{n=1}^{m} n^{\beta k-1} |T_{n,r}^\alpha| = O(1) \quad \text{as } m \to \infty, \quad \text{for } r = 1, 2.
\] (3.8)

This completes the proof of Theorem 2.1. \(\square\)

Remark 3.1. It is natural to ask whether our theorem is true with \(\alpha > 1\). All we can say with certainty is that our proof fails if \(\alpha > 1\), for our estimate of \(T_{n,1}^\alpha\) depends upon Lemma 2.3, and Lemma 2.3 is known to be false when \(\alpha > 1\) (see [5] for details).
Proof of Theorem 2.2. Let \((T_n)\) denote the \((\bar{N}, p_n)\) mean of the series \(\sum a_n \lambda_n\). Then, by definition and changing the order of summation, we have

\[
T_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v \sum_{i=0}^{v} a_i \lambda_i = \frac{1}{P_n} \sum_{v=0}^{n} (P_n - P_{v-1}) a_v \lambda_v. \tag{3.9}
\]

Then, for \(n \geq 1\), we have

\[
T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_v a_v \lambda_v = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} \lambda_v a_v. \tag{3.10}
\]

By Abel’s transformation, we have

\[
T_n - T_{n-1} = \frac{n+1}{nP_n} p_n t_n \lambda_n - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v t_v \lambda_v \frac{v+1}{v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v t_v \frac{v+1}{v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v t_v \lambda_v \frac{1}{v} \tag{3.11}
\]

\[
= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}.
\]

Since

\[
|T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}|^k \leq 4^k \left(|T_{n,1}|^k + |T_{n,2}|^k + |T_{n,3}|^k + |T_{n,4}|^k \right), \tag{3.12}
\]

to complete the proof of Theorem 2.2, it is enough to show that

\[
\sum_{n=1}^{m} \left(\frac{p_n}{p_n} \right)^{\beta k - 1} |T_{n,r}|^k < \infty \quad \text{for } r = 1, 2, 3, 4. \tag{3.13}
\]

Since \((\lambda_n) \to 0\) as \(n \to \infty\) by the hypothesis of Theorem 2.2, we have

\[
\sum_{n=1}^{m} \left(\frac{p_n}{p_n} \right)^{\beta k - 1} |T_{n,1}|^k = O(1) \sum_{n=1}^{m} \left(\frac{p_n}{p_n} \right)^{\beta k - 1} |\lambda_n|^k |t_n|^k
\]

\[
= O(1) \sum_{n=1}^{m} |\lambda_n| \left(\frac{p_n}{p_n} \right)^{\beta k - 1} |t_n|^k
\]

\[
= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \left(\frac{p_v}{p_v} \right)^{\beta k - 1} |t_v|^k
\]

\[
+ O(1) |\lambda_m| \sum_{n=1}^{m} \left(\frac{p_n}{p_n} \right)^{\beta k - 1} |t_n|^k
\]

\[
= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m
\]

\[
= O(1) \sum_{n=1}^{m-1} |B_n| X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \to \infty,
\]

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.
Now, when \(k > 1 \), applying Hölder's inequality with indices \(k \) and \(k' \), where \(1/k + 1/k' = 1 \), as in \(T_{n,1} \), we have

\[
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k + k-1} |T_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k - 1} \left\{ \sum_{v=1}^{n-1} p_v |\lambda_v|^k |t_v|^k \right\} \\
\times \left\{ \frac{1}{p_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1}\\n= O(1) \sum_{v=1}^{m} p_v |\lambda_v|^{k-1} \left| \lambda_v \right| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k - 1} \frac{1}{p_{n-1}}\\n= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\beta k - 1} |t_v|^k |\lambda_v| = O(1) \quad \text{as } m \to \infty.
\]

Again, we have

\[
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k + k-1} |T_{n,3}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k - 1} \left\{ \sum_{v=1}^{n-1} p_v |B_v| |t_v|^k \right\} \\
\times \left\{ \frac{1}{p_{n-1}} \sum_{v=1}^{n-1} p_v |B_v| \right\}^{k-1}\\n= O(1) \sum_{v=1}^{m} p_v |B_v| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\beta k - 1} \frac{1}{p_{n-1}}\\n= O(1) \sum_{v=1}^{m} |B_v| \left(\frac{P_v}{p_v} \right)^{\beta k} \frac{1}{v} |t_v|^k\\n= O(1) \sum_{v=1}^{m} v |B_v| \left(\frac{P_v}{p_v} \right)^{\beta k} \frac{1}{v} |t_v|^k\\n= O(1) \sum_{v=1}^{m-1} \Delta(v |B_v|) \sum_{i=1}^{v} \left(\frac{P_i}{p_i} \right)^{\beta k} \frac{1}{i} |t_i|^k\\n+ O(1) m |B_m| \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\beta k} \frac{1}{v} |t_v|^k\\n= O(1) \sum_{v=1}^{m-1} \Delta(v |B_v|) |X_v| + O(1) m |B_m| |X_m|\\n= O(1) \sum_{v=1}^{m-1} v |X_v| |B_v| + O(1) m \sum_{v=1}^{m-1} (v+1) |B_{v+1}| |X_{v+1}|\\n+ O(1) m |B_m| |X_m|\\n= O(1) \quad \text{as } m \to \infty,
\]

by virtue of the hypotheses of Theorem 2.2.
Finally, we have

\[
\sum_{n=2}^{m+1} \left(\frac{P_n}{pn} \right)^{\beta k + k - 1} |T_{n,r}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{pn} \right)^{\beta k - 1} \frac{1}{P_{n-1}} \sum_{n=v+1}^{m} \frac{|\lambda_{v+1}|}{v} |t_v|^k \\
\times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{v} \right\}^{k-1} \\
= O(1) \sum_{v=1}^{m} \frac{|\lambda_{v+1}|}{P_v} \left(\frac{P_v}{P_v} \right)^{\beta k} \frac{1}{v} |t_v|^k \\
= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| \left(\frac{P_v}{P_v} \right)^{\beta k - 1} / v |t_v|^k \\
= O(1) \sum_{v=1}^{m} \Delta |\lambda_{v+1}| \sum_{r=1}^{v} \frac{1}{p_r} \left(\frac{P_r}{P_v} \right)^{\beta k - 1} \frac{1}{r} |t_v|^k \\
+ O(1) |\lambda_{m+1}| \sum_{v=1}^{m} \left(\frac{P_v}{P_v} \right)^{\beta k - 1} \frac{1}{v} |t_v|^k \\
= O(1) \sum_{v=1}^{m} \Delta |\lambda_{v+1}| |X_{v+1}| + O(1) |\lambda_{m+1}| |X_{m+1}| \\
= O(1) \sum_{v=1}^{m-1} |B_v+1| |X_{v+1}| + O(1) |\lambda_{m+1}| |X_{m+1}| \\
= O(1) \text{ as } m \to \infty,
\]

by virtue of the hypotheses of Theorem 2.2 and in view of Lemma 2.4.

Therefore, we get

\[
\sum_{n=1}^{m} \left(\frac{P_n}{pn} \right)^{\beta k + k - 1} |T_{n,r}|^k = O(1) \text{ as } m \to \infty, \text{ for } r = 1, 2, 3, 4. (3.18)
\]

This completes the proof of Theorem 2.2.

If we take \(p_n = 1\) for all values of \(n\) in this theorem, then we get a result concerning the \(|C, 1; \beta|_k\) summability factors.

References

HÜSEYIN BOR: DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY 38039, KAYSERI, TURKEY
E-mail address: bor@erciyes.edu.tr