A NOTE ON θ-GENERALIZED CLOSED SETS

C. W. BAKER

(Received 22 September 1999)

ABSTRACT. The purpose of this note is to strengthen several results in the literature concerning the preservation of θ-generalized closed sets. Also conditions are established under which images and inverse images of arbitrary sets are θ-generalized closed. In this process several new weak forms of continuous functions and closed functions are developed.

2000 Mathematics Subject Classification. Primary 54C10.

1. Introduction. Recently Dontchev and Maki [5] have introduced the concept of a θ-generalized closed set. This class of sets has been investigated also by Arockiarani et al. [1]. The purpose of this note is to strengthen slightly some of the results in [5] concerning the preservation of θ-generalized closed sets. This is done by using the notion of a θ-c-closed set developed by Baker [2]. These sets turn out to be a very natural tool to use in investigating the preservation of θ-generalized closed sets. In this process we introduce a new weak form of a continuous function and a new weak form of a closed function, called θ-g-c-continuous and θ-g-c-closed, respectively. It is shown that θ-g-c-continuity is strictly weaker than strong θ-continuity and that θ-g-c-closed is strictly weaker than θ-g-closed.

2. Preliminaries. The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. If A is a subset of a space X, then the closure and interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. The θ-closure of A [8], denoted by $\text{Cl}_\theta(A)$, is the set of all $x \in X$ for which every closed neighborhood of x intersects A nontrivially. A set A is called θ-closed if $A = \text{Cl}_\theta(A)$. The θ-interior of A [8], denoted by $\text{Int}_\theta(A)$, is the set of all $x \in X$ for which A contains a closed neighborhood of x. A set A is said to be θ-open provided that $A = \text{Int}_\theta(A)$. Furthermore, the complement of a θ-open set is θ-closed and the complement of a θ-closed set is θ-open.

Definition 2.1 (Dontchev and Maki [5]). A set A is said to be θ-generalized closed (or briefly θ-g-closed) provided that $\text{Cl}_\theta(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A set is called θ-generalized open (or briefly θ-g-open) if its complement is θ-generalized closed.

The following theorem from [5] gives a useful characterization of θ-g-openness.
Theorem 2.2 (Dontchev and Maki [5]). A set A is θ-g-open if and only if $F \subseteq \text{Int}_\theta(A)$ whenever $F \subseteq A$ and F is closed.

Definition 2.3 (Dontchev and Maki [5]). A function $f : X \to Y$ is said to be θ-g-closed provided that $f(A)$ is θ-g-closed in Y for every closed subset F of X.

Definition 2.4 (Dontchev and Maki [5]). A function $f : X \to Y$ is said to be θ-g-irresolute (θ-g-continuous), if for every θ-g-closed (closed) subset A of Y, $f^{-1}(A)$ is θ-g-closed in X.

Definition 2.5 (Noiri [7]). A function $f : X \to Y$ is said to be strongly θ-continuous provided that, for every $x \in X$ and every open neighborhood V of $f(x)$, there exists an open neighborhood U of x for which $f(\text{Cl}(U)) \subseteq V$.

3. Sufficient conditions for images of θ-g-closed sets to be θ-g-closed. Dontchev and Maki [5] proved that the θ-g-closed, continuous image of a θ-g-closed set is θ-g-closed. In this section, we strengthen this result by replacing both the θ-g-closed and continuous requirements with weaker conditions. Our replacement for the θ-g-closed condition uses the concept of a θ-c-open set from [2].

Definition 3.1 (Baker [2]). A set A is said to be θ-c-closed provided there is a set B for which $A = \text{Cl}_\theta(B)$.

We define a function $f : X \to Y$ to be θ-g-closed if $f(A)$ is θ-g-closed in Y for every θ-c-closed set A in X. Since θ-c-closed sets are obviously closed, θ-g-closed implies θ-g-c-closed. The following example shows that the converse implication does not hold.

Example 3.2. Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and let $f : X \to X$ be the identity mapping. Since the θ-closure of every nonempty set is X, f is obviously θ-g-c-closed. However, since $f(\{c\})$ fails to be θ-g-closed, f is not θ-g-closed.

Theorem 3.3. If $f : X \to Y$ is continuous and θ-g-c-closed, then $f(A)$ is θ-g-closed in Y for every θ-g-closed set A in X.

Proof. Assume A is a θ-g-closed subset of X and that $f(A) \subseteq V$, where V is an open subset of Y. Then $A \subseteq f^{-1}(V)$, which is open. Since A is θ-g-closed, $\text{Cl}_\theta(A) \subseteq f^{-1}(V)$ and hence $f(\text{Cl}_\theta(A)) \subseteq V$. Because $\text{Cl}_\theta(A)$ is θ-c-closed and f is θ-g-c-closed, $f(\text{Cl}_\theta(A))$ is θ-g-closed. Therefore $\text{Cl}_\theta(f(\text{Cl}_\theta(A))) \subseteq V$ and hence $\text{Cl}_\theta(f(A)) \subseteq \text{Cl}_\theta(f(\text{Cl}_\theta(A))) \subseteq V$, which proves that $f(A)$ is θ-g-closed.

Corollary 3.4 (Dontchev and Maki [5]). If $f : X \to Y$ is continuous and θ-g-closed, then $f(A)$ is θ-g-closed in Y for every θ-g-closed subset A of X.

Theorem 3.3 can be strengthened further by replacing continuity with a weaker condition. Instead of requiring inverse images of open sets to be open, we require that the inverse images of open sets interact with θ-g-closed sets in the same way as open sets.
Definition 3.5. A function \(f : X \to Y \) is said to be approximately \(\theta \)-continuous (or briefly \(a-\theta \)-continuous) provided that \(\text{Cl}_\theta(A) \subseteq f^{-1}(V) \) whenever \(A \subseteq f^{-1}(V) \), \(A \) is \(\theta-g \)-closed, and \(V \) is open.

The proof of Theorem 3.3 is easily modified to obtain the following result.

Theorem 3.6. If \(f : X \to Y \) is \(a-\theta \)-continuous and \(\theta-g \)-closed, then \(f(A) \) is \(\theta-g \)-closed in \(Y \) for every \(\theta-g \)-closed set \(A \) in \(X \).

Obviously continuity implies \(a-\theta \)-continuity and the following example shows that \(a-\theta \)-continuity is strictly weaker than continuity.

Example 3.7. Let \((X, \tau)\) be the space in Example 3.2 and let \(\sigma = \{X, \emptyset, \{b\}\} \). Then the identity mapping \(f : (X, \tau) \to (X, \sigma) \) is not continuous but is \(a-\theta \)-continuous.

In [4] Dontchev defined a function to be contra-continuous provided that inverse images of open sets are closed. We modify this concept slightly to obtain a \(\theta \)-contra-continuous function.

Definition 3.8. A function \(f : X \to Y \) is said to be \(\theta \)-contra-continuous if for every open subset \(V \) of \(Y \), \(f^{-1}(V) \) is \(\theta \)-closed.

If the continuity requirement in Theorem 3.3 is replaced with \(\theta \)-contra-continuity, then a much stronger result is obtained. The step in the proof of Theorem 3.3 where we obtain \(\text{Cl}_\theta(A) \subseteq f^{-1}(V) \) now holds for every set \(A \), because \(f^{-1}(V) \) is \(\theta \)-closed. Therefore we have the following theorem.

Theorem 3.9. If \(f : X \to Y \) is \(\theta \)-contra-continuous and \(\theta-g \)-closed, then \(f(A) \) is \(\theta-g \)-closed in \(Y \) for every subset \(A \) of \(X \).

4. **Sufficient conditions for \(\theta-g \)-irresoluteness.** Dontchev and Maki[5] proved that a strongly \(\theta \)-continuous, closed function is \(\theta-g \)-irresolute. We strengthen this result slightly by replacing strong \(\theta \)-continuity and closure with weaker conditions.

We define a function \(f : X \to Y \) to be \(\theta-g \)-continuous provided that, for every \(\theta-g \)-closed subset \(A \) of \(Y \), \(f^{-1}(A) \) is \(\theta-g \)-closed. Since strong \(\theta \)-continuity is equivalent to the requirement that inverse images of closed sets be \(\theta-g \)-closed [6], strong \(\theta \)-continuity obviously implies \(\theta-g \)-continuity. The function in Example 3.2 is \(\theta-g \)-continuous but not strongly \(\theta \)-continuous.

Theorem 4.1. If \(f : X \to Y \) is \(\theta-g \)-continuous and closed, then \(f \) is \(\theta-g \)-irresolute.

Proof. Assume \(A \subseteq Y \) is \(\theta-g \)-closed and that \(f^{-1}(A) \subseteq U \), where \(U \) is open. Then \(X - U \subseteq X - f^{-1}(A) \) and we see that \(f(X - U) \subseteq Y - A \). Since \(A \) is \(\theta-g \)-closed, \(Y - A \) is \(\theta-g \)-open. Also, since \(f \) is closed, \(f(X - U) \) is closed. Thus \(f(X - U) \subseteq \text{Int}_\theta(Y - A) = Y - \text{Cl}_\theta(A) \) or \(X - U \subseteq f^{-1}(Y - \text{Cl}_\theta(A)) = X - f^{-1}(\text{Cl}_\theta(A)) \) and we have that \(f^{-1}((\text{Cl}_\theta(A)) \subseteq U \). Since \(f \) is \(\theta-g \)-continuous, \(f^{-1}(\text{Cl}_\theta(A)) \) is \(\theta-g \)-closed. Therefore \(\text{Cl}_\theta(f^{-1}(A)) \subseteq \text{Cl}_\theta(f^{-1}(\text{Cl}_\theta(A))) \subseteq U \), which proves that \(f^{-1}(A) \) is \(\theta-g \)-closed. Thus \(f \) is \(\theta-g \)-irresolute. \(\Box \)
Corollary 4.2 (Dontchev and Maki [5]). If \(f : X \to Y \) is strongly \(\theta \)-continuous and closed, then \(f \) is \(\theta \)-\(g \)-irresolute.

Obviously \(\theta \)-\(g \)-continuity implies \(\theta \)-\(g \)-\(c \)-continuity. Therefore we have the following result.

Corollary 4.3. If \(f : X \to Y \) is \(\theta \)-\(g \)-continuous and closed, then \(f \) is \(\theta \)-\(g \)-irresolute.

The function in Example 3.2 is \(\theta \)-\(g \)-\(c \)-continuous but not \(\theta \)-\(g \)-continuous.

Theorem 4.1 can be strengthened in much the same way as Theorem 3.3 was strengthened by replacing the closure requirement with a weaker condition.

Definition 4.4. A function \(f : X \to Y \) is said to be approximately \(\theta \)-closed (or briefly \(a \)-\(\theta \)-closed) provided that \(f(F) \subseteq \text{Int}_{\theta}(A) \) whenever \(f(F) \subseteq A \), \(F \) is closed, and \(A \) is \(\theta \)-\(g \)-open.

Note that, under an \(a \)-\(\theta \)-closed function, images of closed sets interact with \(\theta \)-\(g \)-open sets in the same manner as closed sets. Obviously closed functions are \(a \)-\(\theta \)-closed. The inverse of the function in Example 3.7 is \(a \)-\(\theta \)-closed but not closed. The proof of the following theorem is analogous to that of Theorem 4.1.

Theorem 4.5. If \(f : X \to Y \) is \(\theta \)-\(g \)-\(c \)-continuous and \(a \)-\(\theta \)-closed, then \(f \) is \(\theta \)-\(g \)-irresolute.

Finally, Theorem 4.1 can be modified by replacing the requirement that the function be closed with a variation of a contra-closed function. Contra-closed functions, introduced by Baker [3], are characterized by having open images of closed sets.

Definition 4.6. A function \(f : X \to Y \) is said to be \(\theta \)-contra-closed provided that \(f(F) \) is \(\theta \)-open for every closed subset \(F \) of \(X \).

Theorem 4.7. If \(f : X \to Y \) is \(\theta \)-\(g \)-\(c \)-continuous and \(\theta \)-contra-closed, then for every subset \(A \) of \(Y \) \(f^{-1}(A) \) is \(\theta \)-\(g \)-closed (and hence also \(\theta \)-\(g \)-open).

The proof of Theorem 4.7 follows that of Theorem 4.1, except that the step \(f(X - U) \subseteq \text{Int}_{\theta}(Y - A) \) holds for every subset \(A \) of \(Y \) because \(f(X - U) \) is \(\theta \)-open.

References

C. W. Baker: Department of Mathematics, Indiana University Southeast, New Albany, IN 47150, USA

E-mail address: cbaker@ius.edu