NEW CHARACTERIZATIONS OF SOME L^p-SPACES

RUSSELL S. JENKINS and RAMESH V. GARIMELLA

(Received 5 October 1998)

ABSTRACT. For a complete measure space (X, Σ, μ), we give conditions which force $L^p(X, \mu)$, for $1 \leq p < \infty$, to be isometrically isomorphic to $\ell^p(\Gamma)$ for some index set Γ which depends only on (X, μ). Also, we give some new characterizations which yield the inclusion $L^p(X, \mu) \subset L^q(X, \mu)$ for $0 < p < q$.

Keywords and phrases. Complete measure space, L^p-spaces.

2000 Mathematics Subject Classification. Primary 28A20, 46E30.

1. Introduction. Suppose X is a nonempty set, Σ is σ-algebra of subsets of X, μ a positive measure on Σ. For each positive number p, let $L^p(X, \mu)$ denote the space of all real valued Σ-measurable functions f on X such that $\int_X |f|^p \, d\mu < \infty$, and $L^\infty(X, \mu)$ denote the space of all essentially bounded, real valued Σ-measurable functions on X. In [2, 3, 5] some characterizations of the positive measure μ on (X, Σ) for which $L^p(X, \mu) \subset L^q(X, \mu)$, $0 < p < q$, are given. The purpose of this note is to give some new characterizations of such measure μ which yield the inclusion $L^p(X, \mu) \subset L^q(X, \mu)$ for $0 < p < q$. Our proofs are more transparent, direct, and work even if the measure μ is not σ-finite. Further we show that in a situation when $L^p(X, \mu) \subset L^q(X, \mu)$ for some pair p, q with $0 < p < q$, then $L^p(X, \mu)$, for $1 \leq p < \infty$, is isometrically isomorphic to $\ell^p(\Gamma)$ for some index set Γ which depends only on the measure space (X, Σ, μ).

2. Preliminaries. Throughout the following (X, Σ, μ) is a positive measure space. We assume that the measure μ is complete. For the sake of simplicity, we write $L^p(\mu)$ for $L^p(X, \mu)$ and $L^\infty(\mu)$ for $L^\infty(X, \mu)$. A set $A \in \Sigma$ is called an atom if $\mu(A) > 0$ and for every $E \subset A$ with $E \in \Sigma$, either $\mu(E) = 0$ or $\mu(E) = \mu(A)$. A measurable subset E with $\mu(E) > 0$ is nonatomic if it does not contain any atom. We say that two atoms A_1 and A_2 are distinct if $\mu(A_1 \cap A_2) = 0$. We say that two atoms A_1 and A_2 are indistinguishable if $\mu(A_1 \cap A_2) = \mu(A_1) = \mu(A_2)$. A measurable space (X, Σ, μ) is said to be atomic if every measurable set of positive measure contains an atom. For more information on measurable spaces and related topics we refer to [1, 2, 4]. We collect some interesting and useful properties of atomic and nonatomic sets in the following proposition.

Proposition 2.1. Let (X, Σ, μ) be a complete measure space.

(a) If $\{A_n\}$ is a sequence of distinct atoms, then there exists a sequence $\{B_n\}$ of disjoint atoms such that for each n, $B_n \subseteq A_n$ and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$.

(b) If $\{A_n\}$ is a sequence of distinct atoms, and A is an atom contained in $\bigcup A_n$, then there exists a unique m such that A is indistinguishable from A_m.

(c) If \(A \) is a nonatomic set of positive measure, then there exists a sequence \(\{E_n\} \) of disjoint measurable subsets of \(A \) of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \).

(d) If \(f \in L^p(\mu) \) and \(A \) is an atom in \(\Sigma \), then \(f \) is constant almost everywhere (a.e.) on \(A \).

Proof. (a) Let \(B_1 = A_1 \) and \(B_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k \). Obviously, \(B_i \)'s are disjoint and \(\cup A_n = \cup B_n \). Also, \(\mu(B_n) = \mu(A_n \setminus \bigcup_{k=1}^{n-1} A_k) \) is either zero or is equal to \(\mu(A_n) \). If \(\mu(B_n) = 0 \), then \(\mu(A_n) = \mu(A_n \cap (\bigcup_{k=1}^{n-1} A_k)) \leq \sum_{k=1}^{n-1} \mu(A_n \cap A_k) \). Since \(A_k \)'s are distinct atoms, this implies \(\mu(A_n) = 0 \), which is absurd. Hence \(\mu(B_n) = \mu(A_n) \).

(b) Suppose \(A \) is contained in \(\cup A_n \). From part (a) of the proposition, there exists a sequence \(\{B_n\} \) of disjoint atoms such that \(B_n \subseteq A_n \) for each \(n \) and \(\cup A_n = \cup B_n \).

Clearly \(\mu(A \cap B_n) \) is either zero or \(\mu(A) \) for each \(n \). Hence by (2.1), there exists a unique \(m \) such that \(\mu(A \cap B_m) = \mu(A) \). Since \(A \) and \(B_m \) are indistinguishable, \(B_m \subset A_m \), it follows that \(A \) and \(A_m \) are indistinguishable.

(c) Suppose \(A \) is a nonatomic set of positive measure and \(\mu(A) = \delta \). There exists a measurable subset \(E_1 \) of \(A \) such that \(0 < \mu(E_1) < \delta/2 \). Since \(A \setminus E_1 \) is nonatomic, there exists a measurable subset \(E_2 \) of \(A \setminus E_1 \) such that \(0 < \mu(E_2) < \delta/4 \). Having chosen \(E_1, E_2, \ldots, E_{n-1} \), choose a measurable subset \(E_n \) of \(A \setminus (E_1 \cup E_2 \cup \ldots \cup E_{n-1}) \) such that \(\mu(E_n) < \sigma/2^n \). Obviously, \(E_n \)'s are disjoint and \(\mu(E_n) \to 0 \) as \(n \to \infty \).

(d) Since \(A \) is an atom, it is enough to show that if \(f \) is integrable then \(f \) is constant a.e. on \(A \). Choose a real number \(c \) such that \(c \mu(A) = \int_A f(x) \, d\mu \). Let \(B = \{x \in A \mid f(x) \neq c\} \). We claim \(\mu(B) = 0 \). Obviously \(B = \{x \in A \mid f(x) < c\} \cup \{x \in A \mid f(x) > c\} \).

First, we show that \(\mu(\{x \in A \mid f(x) > c\}) = 0 \). We can use a similar argument to show that \(\mu(\{x \in A \mid f(x) > c\}) = 0 \). We note that \(\{x \in A \mid f(x) > c\} = \bigcup_{i=1}^{\infty} B_i \cup B_0 \), where \(B_i = \{x \in A \mid c + 1/(1 + i) \leq f(x) < c + 1/(1 + i)\} \) and \(B_0 = \{x \in A \mid f(x) \geq c + 1\} \). Obviously all \(B_i \)'s are disjoint. Since \(A \) is an atom, at most one of the \(B_i \)'s can have a positive measure. If \(B_k \) is positive for some \(k \), \(0 \leq k < \infty \), then \(c \mu(A) = \int_A f(x) \, d\mu(x) = \int_{B_k} f(x) \, dx \geq (c + 1/(k + 1)) \mu(A) \). This is absurd. Therefore, \(\mu(B_k) = 0 \) for all \(i \geq 0 \). Hence \(\{x \in A \mid f(x) > c\} \) is of measure zero. This completes the proof.

The following lemmas are quite useful in the proof of the main result.

Lemma 2.2. Let \((X, \Sigma, \mu) \) be a complete measure space.

(a) If \(\{B_n\} \) is a sequence of measurable sets of positive measure and \(\mu(B_n) \to 0 \) as \(n \to \infty \), then there exists a sequence \(\{C_n\} \) of disjoint measurable sets of positive measure such that \(\mu(C_n) \to 0 \) as \(n \to \infty \).

(b) If \(\{E_n\} \) is a sequence of disjoint measurable sets of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \), then for any positive number \(m > 1 \) there exists a subsequence \(\{E_{n_k}\} \) of \(\{E_n\} \) and an increasing sequence \(\{k_i\} \) of positive integers such that \(\mu(E_{n_k}) \in ((1/k_i)^m, (1/k_i)^{m-1}] \).

Proof. (a) Without loss of generality, we may assume that \(\mu(B_n) < 1 \) for each \(n \). If for some positive integer \(k \), \(B_k \) is nonatomic, by using an argument similar to
that of Proposition 2.1(c), we can construct a sequence \(C_n \) of disjoint measurable sets of positive measure such that \(\mu(C_n) \to 0 \) as \(n \to \infty \). Suppose that \(B_k \) is atomic for each positive integer \(k \), let \(A_1 \) be an atom contained in \(B_1 \). Since \(\mu(B_n) \to 0 \) as \(n \to \infty \), \(\mu(A_1 \cap B_k) \) can be positive only for finitely many \(k > 1 \). Let \(n_1 \) be the smallest positive integer such that \(\mu(A_1 \cap B_{n_1}) = 0 \). Now choose an atom \(A_2 \) contained in \(B_{n_1} \). Obviously \(A_2 \) is indistinguishable from \(A_1 \). Also, \(\mu(A_2 \cap B_k) \) can be positive for at most finitely many \(k \) greater than \(n_1 \). Let \(n_2 \) be the smallest positive integer greater than \(n_1 \) such that \(\mu(A_2 \cap B_{n_2}) = 0 \). Now choose an atom \(A_3 \) contained in \(B_{n_2} \). Clearly \(A_3 \) is indistinguishable from \(A_1 \) and \(A_2 \). Continuing in this fashion, we get a sequence \(\{A_k\} \) of atoms which are indistinguishable and \(A_k \subseteq B_{n_{k-1}} \) for each \(k \geq 2 \). By Proposition 2.1(a), we may choose a sequence \(\{E_k\} \) of disjoint atoms such that \(E_k \subseteq A_k \). Clearly, \(0 < \mu(E_k) = \mu(A_k) \leq \mu(B_{n_{k-1}}) \). This completes the proof of part (a).

(b) Let \(\{E_n\} \) be a sequence of measurable sets of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \). Without loss of generality, we may assume that \(\{\mu(E_n)\} \) is a strictly decreasing sequence. Let \(m > 1 \). Let \(k_0 > 2 \) be a positive integer such that \(1/2 < \left(k/(k+1) \right)^{m-1} \) for all \(k \geq k_0 \). Clearly \(\left((1/\ell + 1)^m, 1/(\ell + 1)^{m-1} \right) \cap \left((1/\ell)^m, (1/\ell)^{m-1} \right) \) is nonempty for each \(\ell \geq k_0 \). Since \(\mu(E_n) \) is decreasing to zero, the set \(\{\mu(E_n) \mid n \geq 1\} \) must have a nonempty intersection with an interval \(((1/k)^m, (1/k)^{m-1}) \) for some \(k \geq k_0 \). Let \(k_1 \) be the smallest positive integer greater than \(k_0 \) such that \(\{\mu(E_n) \mid n \geq 1\} \cap ((1/k_1)^m, (1/k_1)^{m-1}) \neq \emptyset \). Let \(n_1 \) be the smallest positive integer such that \(\mu(E_{n_1}) \in ((1/k_1)^m, (1/k_1)^{m-1}) \). Next choose the smallest integer \(k_2 \) greater than \(k_1 \) such that \(\{\mu(E_n) \mid n > n_1\} \cap ((1/k_2)^m, (1/k_2)^{m-1}) \neq \emptyset \). Let \(n_2 \) be the smallest integer greater than \(n_1 \) such that \(\mu(E_{n_2}) \in ((1/k_2)^m, (1/k_2)^{m-1}) \). Continuing inductively in this way, we can choose strictly increasing sequences of positive integers \(\{k_i\} \) and \(\{n_i\} \) such that \(\mu(E_{n_i}) \in ((1/k_i)^m, (1/k_i)^{m-1}) \). This completes the proof of part (b).

\[\square \]

Lemma 2.3. If \(L^p(\mu) \subseteq L^q(\mu) \) for \(0 < p < q \), then there does not exist a disjoint sequence \(\{E_n\} \) of measurable sets of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \).

Proof. Suppose there exists a disjoint sequence \(\{E_n\} \) of measurable sets of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \). Let

\[m = 3 - \frac{3p}{p-q} = -\frac{3q}{p-q}. \quad (2.2) \]

Clearly \(m > 1 \). By Lemma 2.2(b), there exists a subsequence \(\{E_{n_i}\} \) of \(\{E_n\} \) and a strictly increasing sequence of positive integers \(\{k_i\} \) such that \(\mu(E_{n_i}) \in ((1/k_i)^m, (1/k_i)^{m-1}) \). Define a function \(f \) from \(X \) into real numbers by \(f(x) = (1/k_i)^{3p/(p-q)} \) if \(x \in E_{n_i} \) and \(f(x) = 0 \) for all \(x \notin \bigcup_{i=1}^{\infty} E_{n_i} \). Then

\[\int_X |f(x)|^p d\mu = \sum_{i=1}^{\infty} \int_{E_{n_i}} |f(x)|^p d\mu = \sum_{i=1}^{\infty} \left(\frac{1}{k_i} \right)^{3p/(p-q)} \mu(E_{n_i}) \leq \sum_{i=1}^{\infty} \left(\frac{1}{k_i} \right)^{3p/(p-q)} \left(\frac{1}{k_i} \right)^{m-1} = \sum_{i=1}^{\infty} \left(\frac{1}{k_i} \right)^2 < \infty. \quad (2.3) \]
On the other hand,
\[
\int_X |f(x)|^q \, d\mu = \sum_{i=1}^{\infty} \int_{E_{n_i}} |f(x)|^q \, d\mu = \sum_{i=1}^{\infty} \left(\frac{1}{k_i} \right)^{3q/(p-q)} \mu(E_{n_i}) \\
\geq \sum_{i=1}^{\infty} \left(\frac{1}{k_i} \right)^{3q/(p-q)} \left(\frac{1}{k_i} \right)^m = \infty.
\]
(2.4)

Thus \(f \in L^p(\mu) \) but \(f \notin L^q(\mu) \). This completes the proof of the lemma. \(\square \)

3. Main results. For the sake of clarity, we first start with a definition. For any nonempty set \(\Gamma \), and \(p > 0 \), we define \(\ell^p(\Gamma) \) to be the set of all extended real valued functions \(f \) on \(\Gamma \) such that \(f \) is nonzero only on a countable subset of \(\Gamma \) and \(\sum_{\alpha} |f(\alpha)|^p < \infty \).

When \(p \geq 1 \), \(\ell^p(\Gamma) \) becomes a Banach space under the norm defined by \(\| f \|_{\ell^p(\Gamma)} = (\sum_{\alpha} |f(\alpha)|^p)^{1/p} \). Now, we are ready to state the main result.

Theorem 3.1. Let \((X, \Sigma, \mu)\) be a complete measure space. The following six conditions are equivalent:

1. \(L^p(\mu) \subset L^q(\mu) \) for some pair of real numbers \(p \) and \(q \) with \(0 < p < q \).
2. \(L^p(\mu) \subset L^\infty(\mu) \) for some \(p > 0 \).
3. \(L^p(\mu) \subset L^\infty(\mu) \) for all positive numbers \(p \).
4. \(L^p(\mu) \subset L^q(\mu) \) for all \(p \) and \(q \) with \(0 < p < q \).
5. There is no sequence \(\{B_n\} \) in \(\Sigma \) such that \(\mu(B_n) > 0 \) for each \(n \) and \(\mu(B_n) \to 0 \) as \(n \to \infty \).
6. \((X, \Sigma, \mu)\) is atomic with \(\inf_{A \in \Pi} \mu(A) > 0 \), where \(\Pi \) is the set of all atoms in \(\Sigma \).

Moreover, these statements imply that: for each positive number \(p \geq 1 \), \(L^p(\mu) \) is isometrically isomorphic to \(\ell^p(\Gamma) \) for some index set \(\Gamma \) which depends only on \((X, \Sigma, \mu)\).

Proof. Since the implication (4)\(\Rightarrow \) (1) is obvious, in order to prove the equivalence of the statements (1) through (6), it is enough to prove the following implications:

1. \(\Rightarrow \) (2), (2)\(\Rightarrow \) (3), (3)\(\Rightarrow \) (4), (4)\(\Rightarrow \) (5), (5)\(\Rightarrow \) (6), and (6)\(\Rightarrow \) (2).

(1)\(\Rightarrow \) (2): suppose that \(L^p \subset L^q \) for some pair \(p, q \) with \(0 < p < q \). We claim \(L^p \subset L^\infty \).

Suppose there is an \(f \) in \(L^p \) which is not essentially bounded. Then there exists a strictly increasing sequence \(\{n_k\} \) of positive integers such that for each \(k \geq 1 \), the set \(E_k = \{x \in X | n_k \leq |f(x)| < n_k + 1\} \) is of a positive measure. Obviously \(E_k \)'s are disjoint. Since \(\mu(E_k) n_k^p \leq \int_X |f|^p \, d\mu \leq \int_X |f|^p \, d\mu \), it follows \(\mu(E_k) \to 0 \). This is a contradiction in view of Lemma 2.2.

(2)\(\Rightarrow \) (3): suppose that \(L^p(\mu) \subset L^\infty(\mu) \) for some \(p > 0 \). Let \(r \) be any positive real number. We show \(L^r(\mu) \subset L^\infty(\mu) \). Let \(f \in L^r(\mu) \). If \(A = \{x : |f(x)| > 1\} \) is of measure zero, then obviously \(f \in L^\infty(\mu) \). Suppose that \(A \) is a positive measure. Let \(g = X_A f \), where \(X_A \) is the characteristic function of the set \(A \). Clearly, \(g \in L^r(\mu) \) and \(|g| \geq 1 \) a.e. Since \(|g|^r/p \in L^p, |g|^r/p \in L^\infty \) Let \(M = \text{ess sup} |g|^r/p \). Let \(\epsilon > 0 \). Choose \(\delta > 0 \) such that \((M + \delta)^p/r - M^p/r < \epsilon \). Since \(\{x : |g(x)| > (M + \delta)^p/r\} \subset \{x : |g(x)| > (M + \delta)^p/r\} \), and \(\mu(\{x : |g(x)|^r/p > M + \delta\}) = 0 \), it follows that \(\text{ess sup} |g| \leq M^p/r \).

(3)\(\Rightarrow \) (4): suppose that \(L^p \subset L^\infty \) for all \(p \geq 0 \). Let \(g \in L^p \). Write \(A = \{x : |g(x)| > 1\} \). If \(A \) is a nonatomic set of positive measure, by Proposition 2.1(c), \(A \) contains a disjoint
sequence \(\{ E_n \} \) of measurable subsets of \(A \) of positive measure such that \(\mu(E_n) \to 0 \) as \(n \to \infty \). As is noted in the proof of Lemma 2.3, we can construct a function \(f \) in \(L^p \) which is not in \(L^\infty \). Hence \(A \) contains an atom. Since the measure of \(A \) is finite, in view of Proposition 2.1(a), \(A \) cannot contain infinitely many atoms. Therefore, \(A \) can be written as a finite disjoint union of atoms. Suppose that \(A = \bigcup_{i=1}^{\infty} \theta_i \), where \(\theta_i \)'s are disjoint atoms. By Proposition 2.1(d), \(g \) is constant on each \(\theta_i \). Let \(g_{\theta_i} \) be the value of \(g \) on \(\theta_i \). Then for any \(q > p \),

\[
\int_X |g|^q \, d\mu = \int_{X-A} |g|^q \, d\mu + \int_{A} |g|^q \, d\mu \\
\leq \int_{X-A} |g|^p \, d\mu + \sum_{i=1}^{n} |g_{\theta_i}|^q \mu(\theta_i) \\
\leq \int_{X} |g|^p \, d\mu + \sum_{i=1}^{n} |g_{\theta_i}|^q \mu(\theta_i) < \infty.
\]

Hence \(L^p \subset L^q \) for \(q > p \).

(4)\(\implies \) (5): this follows from Lemmas 2.2(a) and 2.3.

(5)\(\implies \) (6): Proposition 2.1(c) implies that the space \((X,\Sigma,\mu) \) is atomic. Since atoms are of positive measure, obviously statement (5) implies that \(\inf_{A \in \pi} \mu(A) > 0 \).

(6)\(\implies \) (2): Suppose \((X,\Sigma,\mu) \) is atomic with \(\inf_{A \in \pi} \mu(A) > 0 \). Let \(p > 0 \) and \(g \in L^p(\mu) \). Suppose \(\mu(B) > 0 \). Obviously \(\mu(B) \) is finite. Since \(\inf_{A \in \pi} \mu(A) > 0 \), \(B \) cannot contain infinitely many atoms. Therefore, \(B \) can be written as finite disjoint union of atoms. Since \(g \) is constant on each atom, it follows that \(g \in L^\infty \).

Finally, we show that for \(p \geq 1 \), one of the statements (1) through (6) (and hence all of them) imply statement (7). Let \((X,\Sigma,\mu) \) be a measure space such that \(L^p(\mu) \subset L^q(\mu) \) for some \(1 \leq p < q \). Let \(\{ \theta_i \}_{i \in \Gamma} \) be the collection of all atoms in \(X \) where \(\Gamma \) is some index set. Let \(f \in L^p(\mu) \) be an arbitrary nonzero element of \(f \). By Proposition 2.1(d) \(f \) is constant almost everywhere on any atom. We denote the value of \(f \) on an atom \(\theta \) lies in the support of \(f \) by \(f_{\theta} \). Since the support of \(f \) is \(\sigma \)-finite, and by statement (5) of the theorem any measurable set of finite measure is disjoint union of finitely many atoms, the support of \(f \) can be written as countable union of atoms. Let \(\{ \theta_n(f) \} \) be the set of all atoms that forms the support of \(f \). We define \(F : L^p(\mu) \rightarrow \ell^p(\Gamma) \) by

\[
F(f)(\gamma) = \begin{cases}
 f_{\theta_n}(\mu(\theta_n))^{1/p}, & \text{if } \theta_y = \theta_n(f) \text{ for some } n, \\
 0, & \text{if } \theta_y \notin \{ \theta_n(f) \}
\end{cases}
\]

for any nonzero \(f \) in \(L^p(\mu) \). The function \(F \) is well defined since any two functions that are equal in \(L^p(\mu) \) are equal almost everywhere and thus share the same support. It is straightforward to verify that \(F \) is a one-to-one linear operator from \(L^p(\mu) \) into \(\ell^p(\Gamma) \). Let \(h \in \ell^p(\Gamma) \). Since \(h \) is nonzero only on a countable subset \(\Gamma_h \) of \(\Gamma \), define \(f \) on \(X \) as follows:

\[
f(x) = \begin{cases}
 h(y), & \text{if } x \in \theta_y, \ y \in \Gamma_h, \\
 (\mu(\theta_y))^{1/p}, & \text{if } x \notin \bigcup_{y \in \Gamma_h} \theta_y.
\end{cases}
\]
Obviously, \(f \in L^p(\mu) \) and \(F(f) = h \). Thus \(F \) is an isomorphism from \(L^p(\mu) \) onto \(\ell^p(\Gamma) \). Further for any \(f \in L^p(\mu) \),

\[
\|F(f)\|_{\ell^p(\Gamma)}^p = \sum_i |f_{\theta_i}(\mu(\theta_i))^{1/p}|^p = \sum_i |f_{\theta_i}|^p \mu(\theta_i)
\]

\[
= \sum_i \int_{\theta_i} |f(x)|^p d\mu = \int_X |f(x)|^p d\mu = \|f\|^p,
\]

where the sum runs over \(i \in \Gamma \) such that \(\theta_i \) is in the support of \(f \).

Therefore \(F \) is an isometry. This completes the proof of the theorem. \(\square \)

REFERENCES

JENKINS: AMERICAN GENERAL LIFE AND ACCIDENT INSURANCE COMPANY, 450S AMERICAN GENERAL CENTER, NASHVILLE, TN 37250, USA

E-mail address: russell_jenkins@agla.com

GARIMELLA: DEPARTMENT OF MATHEMATICS, BOX 5054, TENNESSEE TECHNOLOGICAL UNIVERSITY, COOKEVILLE, TN 38505, USA

E-mail address: rgarimella@tntech.edu