A GEOMETRIC CHARACTERIZATION OF FINSLER MANIFOLDS OF CONSTANT CURVATURE $K = 1$

A. BEJANCU and H. R. FARRAN

(Received 7 December 1998)

ABSTRACT. We prove that a Finsler manifold F^m is of constant curvature $K = 1$ if and only if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle IM of F^m.

Keywords and phrases. Finsler manifold of constant curvature, Killing vector field, indicatrix bundle, horizontal Liouville vector field.

2000 Mathematics Subject Classification. Primary 53B40; Secondary 53B15.

1. Introduction. The geometry of Finsler manifolds of constant curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, under some conditions on the growth of the Cartan tensor, a Finsler manifold of constant curvature K is locally Minkowskian if $K = 0$ and Riemannian if $K = -1$. Recently, Bryant [5] has constructed interesting Finsler metrics of positive constant curvature on the sphere S^2. Shen [9] has also investigated the geometric structure of Finsler manifolds of positive constant curvature via the Riemannian Y-metrics. Some special Finsler metrics of constant curvature have been intensively studied by Matsumoto [7, 8], Shibata-Kitayama [10], and Wei [11].

The purpose of the present paper is to obtain a geometric characterization of Finsler manifolds of positive constant curvature. More precisely, we prove that $F^m = (M, F)$ is a Finsler manifold of constant curvature $K = 1$ if and only if the unit horizontal Liouville vector field $\xi = (y^i/F)\delta/\delta x^i$ is a Killing vector field on the indicatrix bundle IM of F^m. To achieve this result, we consider the Sasaki-Finsler metric G on TM and prove that the linear connection of the Cartan connection on F^m is just the projection of the Levi-Civita connection ∇ with respect to G on the vertical vector bundle (see Theorem 2.1). This enables us to express the local coefficients of ∇ in terms of the local coefficients of the Cartan connection of F^m (see Theorem 2.2). Finally, a necessary and sufficient condition for ξ to be a Killing vector field on IM leads to the proof of the main result stated in Theorem 3.3.

2. The Levi-Civita connection with respect to a Sasaki-Finsler metric. In the present section, we show that the linear connection of the Cartan connection is the projection of the Levi-Civita connection with respect to the Sasaki-Finsler metric on the vertical vector bundle. Then we express the local coefficients of the Levi-Civita connection in terms of the local coefficients of the Cartan connection.
Throughout the paper we use the Einstein convention, that is, repeated indices with one upper index and one lower index denote summation over their range. Also, for any smooth manifold \(N \), we denote by \(\mathcal{F}(N) \) the algebra of smooth functions on \(N \) and by \(\Gamma(E) \) the \(\mathcal{F}(N) \)-module of smooth sections of a vector bundle \(E \) over \(N \). For some Finsler tensor fields we put the index \(o \) to denote the contraction by the supporting element \(y^i \), as for example, \(T_{io} = T_{ij} y^j \).

Let \(\mathbb{F}^m = (M,F) \) be a Finsler manifold, where \(M \) is a real \(m \)-dimensional smooth manifold and \(F \) is the fundamental function of \(\mathbb{F}^m \) (see Antonelli-Ingarden-Matsumoto [2, page 36]). Consider \(TM^* = TM \setminus \{0\} \) and denote by \(VTM^* \) the vertical vector bundle over \(TM^* \), that is, \(VTM^* = \ker \pi_* \), where \(\pi_* \) is the tangent mapping of the canonical projection \(\pi : TM^* \to M \). We may think of the Finsler metric \(g = (g_{ij}(x,y)) \), where we set

\[
g_{ij}(x,y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}
\]

as a Riemannian metric on \(VTM^* \). The canonical nonlinear connection \(HTM^* = (N^l_i(x,y)) \) of \(\mathbb{F}^m \) is given by

\[
N^l_i = \frac{\partial G^l}{\partial y^i}, \quad G^l = \frac{1}{4} g^{lh} \left(\frac{\partial^2 F^2}{\partial y^h \partial x^k} y^k - \frac{\partial F^2}{\partial x^h} \right). \tag{2.2a, 2.2b}
\]

Then on any coordinate neighborhood \(\mathcal{U} \subset TM^* \) the vector fields

\[
\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N^l_i \frac{\partial}{\partial y^l}, \quad i \in \{1, \ldots, m\},
\]

form a basis for \(\Gamma(HTM^*_|\mathcal{U}) \). By straightforward calculations using (2.3) we obtain the following Lie brackets:

\[
\begin{align*}
\left[\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j} \right] &= G^k_{i j} \frac{\partial}{\partial y^k}, \\
\left[\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j} \right] &= R^k_{ij} \frac{\partial}{\partial y^k},
\end{align*}
\]

where we set

\[
G^k_{ij} = \frac{\partial N^k_i}{\partial y^j}, \quad R^k_{ij} = \frac{\partial N^k_i}{\partial x^j} - \frac{\partial N^k_j}{\partial x^i}. \tag{2.6a, 2.6b}
\]

On \(TM^* \) we consider the almost product structure \(Q \) locally given by

\[
Q \left(\frac{\partial}{\partial y^i} \right) = \frac{\delta}{\delta x^i} \quad \text{and} \quad Q \left(\frac{\delta}{\delta x^i} \right) = \frac{\delta}{\partial y^i}. \tag{2.7}
\]
Then by means of the pair \((g, Q)\), we define a Riemannian metric \(G\) on \(TM^*\) by (cf. Bejancu [4, page 42])

\[
G(X, Y) = g(vX, vY) + g(QhX, QhY) \quad \forall X, Y \in \Gamma(TT M^*),
\]

where \(v\) and \(h\) denote the projection morphisms of \(TT M^*\) on \(VT M^*\) and \(HT M^*\), respectively. Clearly, we have

\[
G\left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j}\right) = G\left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}\right) = g_{ij}, \quad G\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j}\right) = 0,
\]

that is, \(HT M^*\) and \(VT M^*\) are complementary orthogonal vector subbundles of \(TT M^*\) with respect to \(G\). As the Riemannian metric \(G\) is of Sasaki type and was obtained from a Finsler metric, we call it the Sasaki-Finsler metric on \(TM^*\).

The Levi-Civita connection \(\nabla\) on \(TM^*\) with respect to \(G\) is given by the well-known formula

\[
2G(\nabla X, Y, Z) = X(G(Y, Z)) + Y(G(X, Z)) - Z(G(X, Y)) + G([X, Y], Z) + G([Z, X], Y) - G([Y, Z], X),
\]

for any \(X, Y, Z \in \Gamma(TT M^*)\).

On the other hand, the Cartan connection of \(\mathbb{F}^m\) is the pair \(FC = (HT M^*, \nabla^o)\), where \(HT M^*\) is the canonical nonlinear connection given by (2.2) and \(\nabla^o\) is a linear connection on \(VT M^*\) whose local coefficients \(C_{i}^{k}j\) and \(F_{i}^{k}j\) are given by

\[
\nabla^o \frac{\partial}{\partial y^i} = C_{i}^{k}j \frac{\partial}{\partial y^k},
\]

\[
C_{i}^{k}j = \frac{1}{2}g^{kh}\frac{\partial g_{hi}}{\partial y^j},
\]

and

\[
\nabla^o \frac{\partial}{\partial x^i} = F_{i}^{k}j \frac{\partial}{\partial y^k},
\]

\[
F_{i}^{k}j = \frac{1}{2}g^{kh}\left(\frac{\partial g_{hi}}{\partial x^j} + \frac{\partial g_{hj}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^h}\right),
\]

respectively. The \(h\)- and \(v\)-covariant derivatives of a Finsler tensor field \(T = (T_{i\cdots}^{j\cdots})\) are denoted by \(T_{i\cdots}^{j\cdots|h}\) and \(T_{i\cdots}^{j\cdots|k}\), respectively.

In order to get an interrelation between the Levi-Civita connection \(\nabla\) and the linear connection \(\nabla^o\) of the Cartan connection we set \(G_j = g_{jh}G^h\), and by direct calculations using (2.1) and (2.2b), we deduce that

\[
\frac{\partial}{\partial y^k} \left(\frac{\partial G_i}{\partial y^j} \frac{\partial G_i}{\partial y^i}\right) = \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{jk}}{\partial x^i}.
\]

Now, we state the following result.
Theorem 2.1. The linear connection \(\nabla^* \) of the Cartan connection \(FC \) is the projection of the Levi-Civita connection \(\nabla \) on \(VTM^* \), i.e., we have

\[
\nabla^*_XY = v \nabla_XY, \quad (2.14)
\]

for any \(X \in \Gamma(TTM^*) \) and \(Y \in \Gamma(VTM^*) \).

Proof. First, we put

\[
v \nabla \frac{\partial}{\partial y_j} \frac{\partial}{\partial y_i} = A_i^j k \frac{\partial}{\partial y_k}, \quad \text{and} \quad v \nabla \frac{\delta}{\delta x_j} \frac{\partial}{\partial y_i} = B_i^j k \frac{\partial}{\partial y_k}. \quad (2.15)
\]

Then in (2.10) we replace \((X, Y, Z)\) in turn by \((\partial/\partial y_j, \partial/\partial y_i, \partial/\partial y_k)\) and \((\delta/\delta x_j, \partial/\partial y_i, \partial/\partial y_k)\) and by using (2.1), (2.4), (2.9), and (2.11b), we obtain

\[
A_i^j k = C_i^j k \quad (2.16)
\]

and

\[
B_i^j k = \frac{1}{2} g^{kh} \left(\delta g_{hi} \delta x^j - g_{th} G^t_j i - g_{ti} G_j t h \right). \quad (2.17)
\]

Furthermore, by using (2.2a), (2.3) and (2.13), we derive

\[
g_{th} G^t_j i - g_{ti} G_j t h = g_{th} \frac{\partial^2 G^t}{\partial y^j, \partial y^j} - g_{ti} \frac{\partial^2 G^t}{\partial y^h \partial y^j} \\
= \frac{\partial}{\partial y^j} \left(\frac{\partial G_h}{\partial y^i} - \frac{\partial G_i}{\partial y^h} \right) - N^l_i \frac{\partial g_{li}}{\partial y^j} + N^l_h \frac{\partial g_{ti}}{\partial y^j} \\
= \left(\frac{\partial g_{hi}}{\partial x^j} - N^l_i \frac{\partial g_{hj}}{\partial y^j} \right) - \left(\frac{\partial g_{li}}{\partial x^h} - N^l_h \frac{\partial g_{ti}}{\partial y^j} \right) \\
= \frac{\delta g_{hi}}{\delta x^j} - \frac{\delta g_{li}}{\delta x^h}. \quad (2.18)
\]

Finally, by using (2.18) in (2.17) and taking into account (2.12b) we deduce that \(B_i^j k = F_i^j k \), which together with (2.16) proves the assertion of the theorem. \(\Box \)

Next, in order to get the local coefficients of \(\nabla \), we consider the local frame field \(\{ \delta/\delta x^i, \partial/\partial y^i \} \) on \(TM^* \) and set

\[
\nabla \frac{\delta}{\delta x^i} \frac{\delta}{\delta x^j} = X_i^k j \frac{\partial}{\partial y^k} + Y_i^k j \frac{\partial}{\partial x^k}, \quad (2.19)
\]

\[
\nabla \frac{\delta}{\delta y^i} \frac{\delta}{\delta y^j} = Z_i^k j \frac{\partial}{\partial y^k} + U_i^k j \frac{\partial}{\partial x^k}, \quad (2.20)
\]

\[
\nabla \frac{\delta}{\delta x^i} \frac{\partial}{\partial y^j} = V_i^k j \frac{\partial}{\partial y^k} + W_i^k j \frac{\partial}{\partial x^k}, \quad (2.21)
\]

Taking into account that \(\nabla \) is torsion free and using (2.4) and (2.21), we infer that

\[
\nabla \frac{\delta}{\delta y^i} \frac{\partial}{\partial x^j} = V_i^k j \frac{\partial}{\partial y^k} + W_i^k j \frac{\partial}{\partial x^k} - G_i^k j \frac{\partial}{\partial y^k}. \quad (2.22)
\]
Now, we replace \((X,Y,Z)\) from (2.10) in turn by \((\delta/\delta x^i, \delta/\delta y^i, \partial/\partial y^h)\) and \((\partial/\partial x^i, \delta/\delta x^i, \delta/\delta x^h)\) and using (2.4), (2.5), (2.9), and (2.19), we obtain

\[
X_{ij}^k = -C_{ij}^k - \frac{1}{2} R_{ij}^k \quad Y_{ij}^k = F_{ij}^k.
\]

Similarly, we replace \((X,Y,Z)\) from (2.10) in turn by \((\partial/\partial y^i, \partial/\partial y^i, \partial/\partial y^h)\) and \((\partial/\partial y^i, \partial/\partial y^i, \delta/\delta x^h)\) and deduce that

\[
Z_{ij}^k = C_{ij}^k \quad 2 \varrho_{hk} U_{ij}^h = -\frac{\delta g_{ij}}{\delta x^k} + g_{hj} g_{i}^h + g_{ih} G_{jk}.
\]

As \(G_{ij}^k\) given by (2.6a) are the local coefficients of the Berwald connection, we obtain

\[
2 \varrho_{hk} U_{ij}^h = -\varrho_{ijk},
\]

where \(\varrho_{ijk}\) is the \(h\)-covariant derivative of \(\varrho_{ij}\) with respect to the Berwald connection.

Next, by equation (18.24) in Matsumoto [6], we have

\[
\varrho_{ijk} = -2 C_{ijk}|_0
\]

and hence

\[
U_{ij}^k = 2 C_{ij}^k |_0.
\]

Finally, replace \((X,Y,Z)\) from (2.10) in turn by \((\delta/\delta x^i, \partial/\partial y^i, \partial/\partial y^h)\) and \((\partial/\partial x^i, \delta/\delta x^i, \delta/\delta x^h)\) and using (2.4), (2.5), (2.9), and Theorem 2.1, we derive that

\[
V_{ij}^k = F_{ij}^k, \quad W_{ij}^k = C_{ij}^k + \frac{1}{2} R_{ihj} \varrho_{ik}^h,
\]

where we set \(R_{ihj} = g_{il} R_{lj}^h\). Thus (2.19), (2.20), (2.21), (2.22), and the above calculations enable us to state the following theorem.

Theorem 2.2. The Levi-Civita connection \(\nabla\) on \(TM^*\) with respect to the Sasaki-Finsler metric \(G\) is locally expressed in terms of the local coefficients of the Cartan connection of \(\mathbb{F}^m\) as follows:

\[
\nabla_{\delta/\delta x^i} \frac{\delta}{\delta x^i} = - \left(C_{ij}^k + \frac{1}{2} R_{ij}^k \right) \frac{\delta}{\delta y^k} + F_{ij}^k \frac{\delta}{\delta x^k},
\]

\[
\nabla_{\partial/\partial y^i} \frac{\partial}{\partial y^i} = C_{ij}^k \frac{\partial}{\partial y^k} + 2 C_{ij}^k |_0 \frac{\delta}{\delta x^k},
\]

\[
\nabla_{\partial/\partial y^i} \frac{\partial}{\partial y^i} = F_{ij}^k \frac{\partial}{\partial y^k} + \left(C_{ij}^k + \frac{1}{2} R_{ihj} \varrho_{ik}^h \right) \frac{\delta}{\delta x^k}
\]

\[
= \nabla_{\partial/\partial y^i} \frac{\delta}{\delta x^i} + G_{ij}^k \frac{\partial}{\partial y^k}.
\]
3. The main result. It is well known that, on the tangent bundle \(TM \), there exists a globally defined vector field \(L = y^i(\partial/\partial y^i) \) called the Liouville vector field. By means of the almost product structure \(Q \), we obtain another vector field \(QL = y^i(\partial/\partial x^i) \) which we call the horizontal Liouville vector field of \(\mathbb{F}^m \). Clearly, \(\xi = \ell^i(\partial/\partial x^i) \), where \(\ell^i = y^i/F \) is a unit vector field with respect to \(G \). To state the next theorem, we recall that the angular metric of \(\mathbb{F}^m \) has the local components

\[
h_{ij} = g_{ij} - \ell_i \ell_j; \quad \ell_i = g_{ij} \ell^j = \frac{\partial F}{\partial y^i}. \tag{3.1}
\]

Also, we recall that the Lie derivative of \(G \) with respect to \(\xi \) is given by (cf. Yano-Kon [12, page 41])

\[
(L_\xi G)(X, Y) = G(\nabla_X \xi, Y) + G(\nabla_Y \xi, X) \quad \forall X, Y \in \Gamma(TTM^*). \tag{3.2}
\]

Now we prove the following theorem.

Theorem 3.1. The Lie derivative of \(G \) with respect to \(\xi \) satisfies the equations

\[
(L_\xi G)(vX, vY) = (L_\xi G)(hX, hY) = 0, \tag{3.3}
\]

\[
(L_\xi G)(hX, vY) = \frac{1}{F}(h_{ij} - R_{ioj})X^iY^j \tag{3.4}
\]

for any \(X, Y \in \Gamma(TTM^*) \), where \(hX = X^i(\partial/\partial x^i) \) and \(vY = Y^i(\partial/\partial y^i) \).

Proof. First, by using (2.31), (2.9) and taking into account that \(N_k^i \) are positively homogeneous of degree 1 with respect to \((y^k) \). Next, by using (2.29) and (2.9), we deduce that \(N^k_i = y^j F_{ij}^k \), we obtain

\[
G\left(\nabla_{\partial/\partial y^j} \xi, \frac{\partial}{\partial y^i}\right) = \ell^k \left(F_{jk}^h - G_{jk}^h\right)g_{hi}
\]

\[
= \frac{1}{F} \left(N^h_j - y^k \frac{\partial N_j^h}{\partial y^k}\right)g_{hi} = 0,
\]

since \(N_j^h \) are positively homogeneous of degree 1 with respect to \((y^k) \). Next, by using (2.29) and (2.9), we deduce that

\[
G\left(\nabla_{\partial/\partial x^i} \xi, \frac{\partial}{\partial x^i}\right) = g_{kl} \ell_{kij} = 0,
\]

since \(\ell_{kij} = 0 \). Taking into account (3.2), we see that (3.5) and (3.6) yield (3.3). Finally, substituting \(X \) and \(Y \) from (3.2) by \(\partial/\partial x^i \) and \(\partial/\partial y^i \), respectively, and using (2.29), (2.31), and (2.9), we infer that

\[
(L_\xi G)\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i}\right) = \ell^i_{ij} - \frac{1}{F} R_{ioj} = \frac{1}{F} (h_{ij} - R_{ioj}), \tag{3.7}
\]

since by equations (17.30) and (17.21) in Matsumoto [6] we have \(\ell^i_{ij} = (1/F)h_{ij} \) and \(R_{ioj} = R_{joi} \). As (3.7) implies (3.4), the proof is complete.

\[\square\]
Next, for a fixed point \(x \in M \) we consider the indicatrix \(I_x \) at \(x \), which is a hypersurface of the fibre \(TM_x \) given by the equation \(F(x,y) = 1 \). Then denote by \(IM \) the hypersurface of \(TM^+ \) consisting of indicatrices at all points of \(M \) and call it the \textit{indicatrix bundle} over \(F^m \). It is easy to show that \(Q\xi = \ell^i(\partial/\partial y^i) \) is the unit normal vector field with respect to the Sasaki-Finsler metric. Indeed, if the local equations of \(IM \) in \(TM^+ \) are

\[
x^i = x^i(u^\alpha), \quad y^i = y^i(u^\alpha), \quad \alpha \in \{1, \ldots, 2m-1\},
\]

then, we have

\[
\frac{\partial F}{\partial x^i} \frac{\partial x^i}{\partial u^\alpha} + \frac{\partial F}{\partial y^i} \frac{\partial y^i}{\partial u^\alpha} = 0.
\]

As the \(h \)-covariant derivative of \(F \) vanishes, by using (2.3), we obtain

\[
\left(N^k_i \frac{\partial x^i}{\partial u^\alpha} + \frac{\partial y^k}{\partial u^\alpha} \right) \ell_k = 0.
\]

The natural frame field on \(IM \) is represented by

\[
\frac{\partial}{\partial u^\alpha} = \frac{\partial x^i}{\partial u^\alpha} \frac{\partial}{\partial x^i} + \frac{\partial y^i}{\partial u^\alpha} \frac{\partial}{\partial y^i} = \frac{\partial x^i}{\partial u^\alpha} \delta^i_{\delta x^i} + \left(N^k_i \frac{\partial x^i}{\partial u^\alpha} + \frac{\partial y^k}{\partial u^\alpha} \right) \frac{\partial}{\partial y^k}.
\]

Then by (3.10), we deduce

\[
G \left(\frac{\partial}{\partial u^\alpha}, Q\xi \right) = \left(N^k_i \frac{\partial x^i}{\partial u^\alpha} + \frac{\partial y^k}{\partial u^\alpha} \right) y^h g_{hk} = 0.
\]

Thus \(Q\xi \) is orthogonal to any vector tangent to \(IM \). The horizontal Liouville vector field is tangent to \(IM \) since \(G(\xi, Q\xi) = 0 \).

To state the next corollary, we recall that \(\xi \) is a Killing vector field on \(IM \) with respect to \(G \) if and only if \(L_\xi G = 0 \) (cf. Yano-Kon [12, page 41]). Thus, by Theorem 3.1, we may state the following corollary.

Corollary 3.2. The unit horizontal Liouville vector field \(\xi \) is a Killing vector field on the indicatrix bundle \(IM \) if and only if

\[
h_{ij}(x,y) = R_{ij}(x,y) \quad \forall (x,y) \in IM.
\]

Now, we consider a Finsler vector field \(X = X^i(\partial/\partial y^i) \) which is noncollinear to the Liouville vector field \(L \). Then the \textit{curvature (flag curvature)} of \(F^m \) for the flag spanned by \(\{L, X\} \) is the function (see Equation (26.1) in Matsumoto [6] or Bao-Cheen-Shen [3])

\[
K(x,y,X) = \frac{R_{ij}X^iX^j}{F^2 h_{ij}X^iX^j}.
\]

In case \(K \) is a constant we say that \(F^m \) is a Finsler manifold of constant curvature. The above results enable us to state a geometric characterization of Finsler manifolds of constant curvature by means of the horizontal Liouville vector field, which is the main result of this paper.
Theorem 3.3. The Finsler manifold F^m is of constant curvature $K = 1$ if and only if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle IM.

Proof. Suppose $K = 1$ and from (3.14) we obtain (3.13), since $F(x, y) = 1$ on IM. Conversely, suppose ξ is a Killing vector field on IM. Then by using (3.13) in (3.14), we deduce that $K(x, y, X) = 1$ for any Finsler vector $X(x, y)$ and any $(x, y) \in IM$. Now, take a point $(x, y) \in TM \setminus IM$. Then there exists $a \in (0, \infty) \setminus \{1\}$ such that $F(x, y) = a$. As F is positive homogeneous of degree 1 with respect to y, we have $F(x, (1/a)y) = 1$. Hence $(x, (1/a)y) \in IM$ and by (3.13), we have

$$h_{ij} \left(x, \frac{1}{a}y \right) = R_{i\alpha j} \left(x, \frac{1}{a}y \right). \quad (3.15)$$

Taking into account that h_{ij} and $R_{i\alpha j}$ are positively homogeneous of degrees 0 and 2, respectively, we infer that

$$R_{i\alpha j}(x, y) = F^2(x, y) h_{ij}(x, y). \quad (3.16)$$

Thus from (3.14), we deduce $K(x, y, X) = 1$. This completes the proof. \(\square\)

In the above discussions the constant curvature was taken to be $K = 1$ for “normalisation” purposes only. However the geometric characterization remains valid for any positive constant curvature. To be more precise, we give the following. For any real number $\lambda > 0$, we define the λ-indicatrix bundle $I_\lambda M$ to be:

$$I_\lambda M = \left\{ (x, y) \in TM : F(x, y) = \frac{1}{\sqrt{\lambda}} \right\}. \quad (3.17)$$

Then simple modifications in the calculations given earlier will show that the unit horizontal Liouville vector field ξ is a Killing vector field on $I_\lambda M$ if and only if $h_{ij}(x, y) = R_{i\alpha j}(x, y)$, $\forall (x, y) \in I_\lambda M$. So, as before, this can be used to prove the following theorem.

Theorem 3.4. The Finsler manifold F^m is of constant positive curvature λ if and only if the unit horizontal Liouville vector field is a Killing vector field on $I_\lambda M$.

References

Bejancu: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: bejancu@math-1.sci.kuniv.edu.kw

Farran: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: farran@math-1.sci.kuniv.edu.kw