A NOTE ON \((gDF)\)-SPACES

RENATA R. DEL-VECCHIO, DINAMÉRICO P. POMBO, JR., and CYBELE T. M. VINAGRE

(Received 20 March 1998 and in revised form 24 July 1998)

ABSTRACT. Certain locally convex spaces of scalar-valued mappings are shown to be finite-dimensional.

Keywords and phrases. \((gDF)\)-spaces, \((DF)\)-spaces, finite-dimensional spaces.

2000 Mathematics Subject Classification. Primary 46A04.

1. Introduction. Radenovič [6], generalizing a result of Iyahen [2], has shown that if \(E\) is a Banach space and \((E, \sigma(E, E'))\) (or \((E', \sigma(E', E))\)) is a \((DF)\)-space [1], then \(E\) is finite-dimensional. His result has been extended to arbitrary locally convex spaces by Krassowska and Śliwa [3].

In [4, 5], \((DF)\)-spaces have been generalized as follows: a locally convex space \((E, \tau)\) is a \((gDF)\)-space if

(a) \((E, \tau)\) has a fundamental sequence \((B_n)_{n \in \mathbb{N}}\) of bounded sets, and

(b) \(\tau\) is the finest locally convex topology on \(E\) that agrees with \(\tau\) on each \(B_n\).

In this note, we prove that if an arbitrary vector space of scalar-valued mappings is a \((gDF)\)-space under the locally convex topology of pointwise convergence, then it is finite-dimensional. As a consequence, the above-mentioned theorem of Krassowska and Śliwa readily follows.

2. The result. Throughout this note, all vector spaces under consideration are vector spaces over a field \(\mathbb{K}\) which is either \(\mathbb{R}\) or \(\mathbb{C}\). In our result, \(E\) denotes an arbitrary set and \(H\) denotes a subspace of the vector space of all mappings from \(E\) into \(\mathbb{K}\). We consider on \(H\) the separated locally convex topology of pointwise convergence and represent by \(H'\) the topological dual of \(H\).

Theorem 2.1. The following conditions are equivalent:

(a) \(H\) is a finite-dimensional vector space;

(b) \(H\) is a \((DF)\)-space;

(c) \(H\) is a \((gDF)\)-space.

Proof. It is clear that (a) implies (b) and (b) implies (c) (every \((DF)\)-space is a \((gDF)\)-space).

Suppose that condition (c) holds. If \(H\) is infinite-dimensional, there exists a countable linearly independent subset \(\{\varphi_n; n \in \mathbb{N}\}\) of \(H'\). Let \((B_n)_{n \in \mathbb{N}}\) be an increasing fundamental sequence of bounded subsets of \(H\). Then, \((B_n^0)_{n \in \mathbb{N}}\) is a decreasing sequence of neighborhoods of zero in \((H', \beta(H', H))\) forming a fundamental system...
of neighborhoods of zero in \((H',\beta(H',H))\). For each \(n \in \mathbb{N}\), fix an \(\alpha_n > 0\) such that \(\alpha_n \varphi_n \in B_0^H\); then \((\alpha_n \varphi_n)_{n \in \mathbb{N}}\) converges to zero in \((H',\beta(H',H))\). By [5, Theorem 1.1.7], the set \(\Gamma = \{\alpha_n \varphi_n; n \in \mathbb{N}\}\) is equicontinuous. Hence, there exist \(x_1, \ldots, x_m \in E\) and there exists an \(\alpha > 0\) such that the relations

\[
f \in H, \quad |f(x_1)| \leq \alpha, \ldots, |f(x_m)| \leq \alpha, \quad \varphi \in \Gamma
\]

(2.1)

imply

\[
|\varphi(f)| \leq 1.
\]

(2.2)

For each \(i = 1, \ldots, m\), let \(\delta_i \in H'\) be given by \(\delta_i(f) = f(x_i)\) for \(f \in H\), and put \(F = \{\delta_1, \ldots, \delta_m\}\). We claim that \(\Gamma \subset [F]\), where \([F]\) is the finite-dimensional vector space generated by \(F\). Indeed, let \(\varphi \in \Gamma\) and take an \(f \in H\) such that \(\delta_1(f) = \cdots = \delta_m(f) = 0\). Then, for all \(\lambda \in \mathbb{K}\),

\[
|(\lambda f)(x_1)| = |\delta_1(\lambda f)| = 0 \leq \alpha, \ldots, |(\lambda f)(x_m)| = |\delta_m(\lambda f)| = 0 \leq \alpha.
\]

(2.3)

Consequently, \(|\varphi(\lambda f)| = |\lambda||\varphi(f)| \leq 1\). By the arbitrariness of \(\lambda, \varphi(f) = 0\). By [7, Lemma 5, Chapter II], \(\varphi \in [F]\). Therefore the vector space generated by the set \(\{\varphi_n; n \in \mathbb{N}\}\) is finite-dimensional, which contradicts the choice of \((\varphi_n)_{n \in \mathbb{N}}\). This completes the proof of the theorem. \(\square\)

Remark 2.2. The theorem of Krassowska and Śliwa mentioned at the beginning of this note follows from Theorem 2.1. In fact, let \(E\) be a separated locally convex space. If \((E', \sigma(E',E))\) is a \((DF)\)-space, then \(E'\) is finite-dimensional by Theorem 2.1, and so \(E\) is finite-dimensional. Hence, \(E\) is finite-dimensional if \((E, \sigma(E,E'))\) is a \((DF)\)-space.

References

Del-Vecchio, Pombo, and Vinagre: Instituto de Matemática, Universidade Federal Fluminense, Rua Mário Santos Braga, s/N, 24020-140 Niterói, RJ, Brasil