ON CHARACTERIZATIONS OF A CENTER GALOIS EXTENSION

GEORGE SZETO and LIANYONG XUE

(Received 16 June 1999)

ABSTRACT. Let B be a ring with 1, C the center of B, G a finite automorphism group of B, and B^G the set of elements in B fixed under each element in G. Then, it is shown that B is a center Galois extension of B^G (that is, C is a Galois algebra over C^G with Galois group $G|C \cong G$) if and only if the ideal of B generated by \{c - g(c) \mid c \in C\} is B for each $g \neq 1$ in G. This generalizes the well known characterization of a commutative Galois extension C that C is a Galois extension of C^G with Galois group G if and only if the ideal generated by \{c - g(c) \mid c \in C\} is C for each $g \neq 1$ in G. Some more characterizations of a center Galois extension B are also given.

Keywords and phrases. Galois extensions, center Galois extensions, central extensions, Galois central extensions, Azumaya algebras, separable extensions, H-separable extensions.

2000 Mathematics Subject Classification. Primary 16S30, 16W20.

1. Introduction. Let C be a commutative ring with 1, G a finite automorphism group of C and C^G the set of elements in C fixed under each element in G. It is well known that a commutative Galois extension C is characterized in terms of the ideals generated by \{c - g(c) \mid c \in C\} for $g \neq 1$ in G, that is C is a Galois extension with Galois group G if and only if the ideal generated by \{c - g(c) \mid c \in C\} is C for each $g \neq 1$ in G (see [3, Proposition 1.2, page 80]). A natural generalization of a commutative Galois extension is the notion of a center Galois extension, that is, a noncommutative ring B with a finite automorphism group G and center C is called a center Galois extension of B^G with Galois group G if C is a Galois extension of C^G with Galois group $G|C \cong G$. Ikehata (see [4, 5]) characterized a center Galois extension with a cyclic Galois group G of prime order in terms of a skew polynomial ring. Then, the present authors generalized the Ikehata characterization to center Galois extensions with Galois group G of any cyclic order [7] and to center Galois extensions with any finite Galois group G [8]. The purpose of the present paper is to generalize the above characterization of a commutative Galois extension to a center Galois extension. We shall show that B is a center Galois extension of B^G if and only if the ideal of B generated by \{c - g(c) \mid c \in C\} is B for each $g \neq 1$ in G. A center Galois extension B is also equivalent to each of the following statements:

(i) B is a Galois central extension of B^G, that is, $B = B^G C$ which is a Galois extension of B^G.

(ii) B is a Galois extension of B^G with a Galois system \{b_i \in B, c_i \in C, i = 1, 2, \ldots, m\} for some integer m.

(iii) the ideal of the subring $B^G C$ generated by \{c - g(c) \mid c \in C\} is $B^G C$ for each $g \neq 1$ in G.

2. Definitions and notations. Throughout this paper, B will represent a ring with identity 1, $G = \{g_1 = 1, g_2, \ldots, g_n\}$ an automorphism group of B of order n for some integer n, C the center of B, B^G the set of elements in B fixed under each element in G, and $B \star G$ a skew group ring in which the multiplication is given by $gb = g(b)g$ for $b \in B$ and $g \in G$.

B is called a G-Galois extension of B^G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_1$. Such a set $\{a_i, b_i\}$ is called a G-Galois system for B. B is called a central Galois extension of B^G if C is a Galois algebra over C^G with Galois group $G|_C \cong G$. B is called a central extension of B^G if $B = B^G C$, and B is called a Galois central extension of B^G if $B = B^G C$ is a Galois extension of B^G with Galois group G.

Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^{m} a_i b_i = 1$ and $\sum b_i a_i = \sum a_i b_i$ for all $b \in B$ where \otimes is over A. B is called H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule.

B is called centrally projective over A if B is a direct summand of a finite direct sum of A as a A-bimodule.

3. The characterizations. In this section, we denote $J_j^C = \{c - g_j(c) \mid c \in C\}$. We shall show that B is a center Galois extension of B^G if and only if $B = BJ_j^C$, the ideal of B generated by J_j^C, for each $g_j \neq 1$ in G. Some more characterizations of a center Galois extension B are also given. We begin with a lemma.

Lemma 3.1. If $B = BJ_j^C$ for each $g_j \neq 1$ in G (that is, $j \neq 1$), then

1. B is a Galois extension of B^G with Galois group G and a Galois system $\{b_i \in B; c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m.
2. B is a centrally projective over B^G.
3. $B \star G$ is H-separable over B.

Proof. (1) Since $B = BJ_j^C$ for each $j \neq 1$, there exist $\{b_i^{(j)} \in B, c_i^{(j)} \in C, i = 1, 2, \ldots, m_j\}$ for some integer $m_j, j = 2, 3, \ldots, n$ such that $\sum_{i=1}^{m_j} b_i^{(j)} (c_i^{(j)} - g_j(c_i^{(j)})) = 1$. Therefore, $\sum_{i=1}^{m_j} b_i^{(j)} c_i^{(j)} = 1 + \sum_{i=1}^{m_j} b_i^{(j)} g_j(c_i^{(j)})$. Let $b_i^{(j)} = -\sum_{i=1}^{m_j} b_i^{(j)} g_j(c_i^{(j)})$ and $c_i^{(j)} = 1$. Then $\sum_{i=1}^{m_j} b_i^{(j)} c_i^{(j)} = 1$ and $\sum_{i=1}^{m_j+1} b_i^{(j)} g_j(c_i^{(j)}) = 0$. Let $b_{i_1, i_2, \ldots, i_m} = b_{i_2}^{(3)} b_{i_3}^{(3)} \cdots b_{i_n}^{(3)}$. Then

$$\sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2, i_3, \ldots, i_n} c_{i_2, i_3, \ldots, i_n} = \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(3)} b_{i_3}^{(3)} \cdots b_{i_n}^{(3)} c_{i_2}^{(3)} c_{i_3}^{(3)} \cdots c_{i_n}^{(3)}$$

$$= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(3)} c_{i_2}^{(3)} b_{i_3}^{(3)} c_{i_3}^{(3)} \cdots b_{i_n}^{(3)} c_{i_n}^{(3)}$$

$$= \sum_{i_2=1}^{m_2+1} b_{i_2}^{(3)} c_{i_2}^{(3)} \sum_{i_3=1}^{m_3} b_{i_3}^{(3)} c_{i_3}^{(3)} \cdots \sum_{i_n=1}^{m_n} b_{i_n}^{(3)} c_{i_n}^{(3)} = 1$$

(3.1)
and for each $j \neq 1$

\[
\sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2,i_3,\ldots,i_n} g_j(c_{i_2,i_3,\ldots,i_n})
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)} g_j(c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_n}^{(n)})
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)} g_j(c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_n}^{(n)})
\]

\[
= \sum_{i_2=1}^{m_2+1} b_{i_2}^{(2)} g_j(c_{i_2}^{(2)}) \sum_{i_3=1}^{m_3+1} b_{i_3}^{(3)} g_j(c_{i_3}^{(3)}) \cdots \sum_{i_n=1}^{m_n+1} b_{i_n}^{(n)} g_j(c_{i_n}^{(n)}) = 0.
\]

Thus, \(\{b_{i_2,i_3,\ldots,i_n} \in B; c_{i_2,i_3,\ldots,i_n} \in C, i_j = 1,2,\ldots,m_j + 1 \text{ and } j = 2,3,\ldots,n \} \) is a Galois system for \(B \). This completes the proof of (1).

(2) By (1), \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1,2,\ldots,m \} \) for some integer \(m \). Let \(f_i : B \to B^G \) given by \(f_i(b) = \sum_{j=1}^{n} g_j(c_i b) \) for all \(b \in B, i = 1,2,\ldots,m \). Then it is easy to check that \(f_i \) is a homomorphism as \(B^G \)-bimodule and \(b = \sum_{i=1}^{m} b_i c_i b = \sum_{j=1}^{m} \sum_{i=1}^{m} b_i g_j(c_i) g_j(b) = \sum_{i=1}^{m} b_i \sum_{j=1}^{m} g_j(c_i b) = \sum_{i=1}^{m} b_i f_i(b) \) for all \(b \in B \). Hence \(\{b_i, f_i, i = 1,2,\ldots,m \} \) is a dual bases for \(B \) as \(B^G \)-bimodule, and so \(B \) is finitely generated and projective as \(B^G \)-bimodule. Therefore, \(B \) is a direct summand of a finite direct sum of \(B^G \) as a \(B^G \)-bimodule. Thus \(B \) is centrally projective over \(B^G \).

(3) By (1), \(B \) is a Galois extension of \(B^G \) with Galois group \(G \). Hence \(B \ast G \cong \text{Hom}_{B^G}(B, B) \) [2, Theorem 1]. By (2), \(B \) is centrally projective over \(B^G \). Thus, \(B \ast G \cong \text{Hom}_{B^G}(B, B) \) is \(H \)-separable over \(B \) [6, Proposition 11].

(4) We first claim that \(V_{B^G}(C) = B \). Clearly, \(B \subset V_{B^G}(C) \). Let \(\sum_{j=1}^{n} b_j g_j \) in \(V_{B^G}(C) \) for some \(b_j \in B \). Then \(c(\sum_{j=1}^{n} b_j g_j) = (\sum_{j=1}^{n} b_j g_j) c \) for each \(c \in C \), so \(c b_j = b_j g_j(c) \), that is, \(b_j(c - g_j(c)) = 0 \) for each \(g_j \in G \) and \(c \in C \). Since \(B = B^G \) for each \(g_j \neq 1 \), there exist \(b_j^{(i)} \in B \) and \(c_i^{(j)} \in C, i = 1,2,\ldots,m \) such that \(\sum_{i=1}^{m} b_j^{(i)} (c_i^{(j)} - g_j(c_i^{(j)})) = 1 \). Hence \(b_j = \sum_{i=1}^{m} b_j^{(i)} (c_i^{(j)} - g_j(c_i^{(j)})) b_j = \sum_{i=1}^{m} b_j^{(i)} b_j (c_i^{(j)} - g_j(c_i^{(j)})) = 0 \) for each \(g_j \neq 1 \). This implies that \(\sum_{j=1}^{n} b_j g_j = b_1 \in B \). Hence \(V_{B^G}(C) \subset B \) and so \(V_{B^G}(C) = B \). Therefore, \(V_{B^G}(B) \subset V_{B^G}(C) = B \). Thus \(V_{B^G}(B) = V_B(B) = C \).

We now show some characterizations of a center Galois extension \(B \).

Theorem 3.2. The following statements are equivalent.

(1) \(B \) is a center Galois extension of \(B^G \).

(2) \(B = B^{G_j} \) for each \(g_j \neq 1 \) in \(G \).

(3) \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1,2,\ldots,m \} \) for some integer \(m \).

(4) \(B \) is a Galois central extension of \(B^G \).

(5) \(B^G = B^{G_j} C^{G_j} \) for each \(g_j \neq 1 \) in \(G \).
\textbf{Proof.} (1)\implies(2). By hypothesis, \(C \) is a Galois extension of \(C^G \) with Galois group \(G|_C \cong G \). Hence \(C = C_{f_j}^{(C)} \) for each \(g_j \neq 1 \) in \(G \) [3, Proposition 1.2, page 80]. Thus, \(B = Bf_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).

(2)\implies(1). Since \(B = Bf_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \), \(B \ast G \) is \(H \)-separable over \(B \) by Lemma 3.1(3) and \(V_{B \ast G}(B) = C \) by Lemma 3.1(4). Thus \(C \) is a Galois extension of \(C^G \) with Galois group \(G|_C \cong G \) by [1, Proposition 4].

(1)\implies(3). This is Lemma 3.1(1).

(3)\implies(1). Since \(B \) is Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1,2,\ldots,m\} \) for some integer \(m \), we have \(\sum_{i=1}^{m} b_i g_j(c_i) = \delta_{i,j} \). Hence \(\sum_{i=1}^{m} b_i (c_i - g_j(c_i)) = 1 \) for each \(g_j \neq 1 \) in \(G \). So for every \(b \in B \), \(b = \sum_{i=1}^{m} b b_i (c_i - g_j(c_i)) \in Bf_j^{(C)} \). Therefore, \(B = Bf_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \). Thus, \(B \) is a center Galois extension of \(B^G \) by (2)\implies(1).

(1)\implies(4). Since \(C \) is a Galois algebra with Galois group \(G|_C \cong G \), \(B \) and \(B^G \) are Galois extensions of \(B^G \) with Galois group \(G|_{B^G C} \cong G \). Noting that \(B^G C \subset B \), we have \(B = B^G C \), that is, \(B \) is a central extension of \(B^G \). But \(B \) is a Galois extension of \(B^G \), so \(B \) is a Galois central extension of \(B^G \).

(4)\implies(1). By hypothesis, \(B = B^G C \) is a Galois extension of \(B^G \). Hence there exists a Galois system \(\{a_i; b_i \in B, i = 1,2,\ldots,m\} \) for some integer \(m \) such that \(\sum_{i=1}^{m} a_i g_j(b_i) = \delta_{i,j} \). But \(B = B^G C \), so \(a_i = \sum_{k=1}^{m} a_k^{(a_i)} b_k^{(a_i)} c_k^{(a_i)} \) and \(b_i = \sum_{l=1}^{m} b_l^{(b_i)} c_l^{(b_i)} \) for some \(a_k^{(a_i)}, b_l^{(b_i)} \) in \(B^G \) and \(c_k^{(a_i)}, c_l^{(b_i)} \) in \(C \), \(k = 1,2,\ldots,n_{a_i}, l = 1,2,\ldots,n_{b_i}, i = 1,2,\ldots,m \). Therefore,

\[\delta_{i,j} = \sum_{i=1}^{m} a_i g_j(b_i) = \sum_{i=1}^{m} \sum_{k=1}^{n_{a_i}} b_k^{(a_i)} c_k^{(a_i)} g_j \left(\sum_{l=1}^{n_{b_i}} b_l^{(b_i)} c_l^{(b_i)} \right) = \sum_{i=1}^{m} \sum_{k=1}^{n_{a_i}} \sum_{l=1}^{n_{b_i}} \left(b_k^{(a_i)} c_k^{(a_i)} b_l^{(b_i)} c_l^{(b_i)} \right) g_j \left(c_l^{(b_i)} \right). \]

This shows that \(\{b_k^{(a_i)}, c_k^{(a_i)}, b_l^{(b_i)} \in B, c_k^{(a_i)}, c_l^{(b_i)} \in C, k = 1,2,\ldots,n_{a_i}, l = 1,2,\ldots,n_{b_i}, i = 1,2,\ldots,m \} \) is a Galois system for \(B \). Thus, \(B \) is a center Galois extension of \(B^G \) by (3)\implies(1).

(1)\implies(5). Since \(B \) is a center Galois extension of \(B^G \), \(B = Bf_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \) by (1)\implies(2) and \(B = B^G C \) by (1)\implies(4). Thus, \(B^G C = B^G C f_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).

(5)\implies(1). Since \(B^G C = B^G C f_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \), \(B = Bf_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \). Thus, \(B \) is a center Galois extension of \(B^G \) by (2)\implies(1).

The characterization of a commutative Galois extension \(C \) in terms of the ideals generated by \(\{c - g(c) \mid c \in C\} \) for \(g \neq 1 \) in \(G \) is an immediate consequence of Theorem 3.2.

\textbf{Corollary 3.3.} A commutative ring \(C \) is a Galois extension of \(C^G \) if and only if \(C = C_{f_j}^{(C)} \), the ideal generated by \(\{c - g_j(c) \mid c \in C\} \) is \(C \) for each \(g_j \neq 1 \) in \(G \).

\textbf{Proof.} Let \(B = C \) in Theorem 3.2. Then, the corollary is an immediate consequence of Theorem 3.2(2).

By Theorem 3.2, we derive several characterizations of a Galois centreal extension \(B \).
\textbf{Corollary 3.4.} If \(B \) is a central extension of \(B^G \) (that is, \(B = B^G C \)), then the following statements are equivalent.
\begin{enumerate}
\item \(B \) is a Galois extension of \(B^G \).
\item \(B \) is a center Galois extension of \(B^G \).
\item \(B \ast G \) is \(H \)-separable over \(B \).
\item \(B = CJ_j(B) \) for each \(g_j \neq 1 \) in \(G \).
\item \(B = BJ_j(B) \) for each \(g_j \neq 1 \) in \(G \).
\end{enumerate}

\textbf{Proof.} (1)\(\iff \) (2). This is given by (1)\(\iff \) (4) in Theorem 3.2.
(2)\(\implies \) (3). This is Lemma 3.1(3).
(3)\(\implies \) (1). Since \(B \ast G \) is \(H \)-separable over \(B \), \(B \) is a Galois extension of \(B^G \) [1, Proposition 2].

Since \(B = B^G C \) by hypothesis, it is easy to see that \(J_j^{(B)} = B^G J_j^{(C)} \) for each \(g_j \) in \(G \). Thus, \(B = CJ_j(B) \), \(B = BJ_j(B) \), and \(B = BJ_j(C) \) are equivalent. This implies that (2)\(\iff \) (4)\(\iff \) (5) by Theorem 3.2(2).

We call a ring \(B \) the DeMeyer-Kanzaki Galois extension of \(B^G \) if \(B \) is an Azumaya \(C \)-algebra and \(B \) is a central Galois extension of \(B^G \) (for more about the DeMeyer-Kanzaki Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader than the class of the DeMeyer-Kanzaki Galois extensions. We conclude the present paper with two examples. (1) The DeMeyer-Kanzaki Galois extension of \(B^G \) and (2) a center Galois extension of \(B^G \), but not the DeMeyer-Kanzaki Galois extension of \(B^G \).

\textbf{Example 3.5.} Let \(\mathbb{C} \) be the field of complex numbers, that is, \(\mathbb{C} = \mathbb{R} + \mathbb{R}\sqrt{-1} \) where \(\mathbb{R} \) is the field of real numbers, \(B = \mathbb{C}[i,j,k] \) the quaternion algebra over \(\mathbb{C} \), and \(G = \{1,g \mid g(c_1 + c_i i + c_j j + c_k k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \text{ for each } b = c_1 + c_i i + c_j j + c_k k \in \mathbb{C}[i,j,k] \text{ and } g(u + v \sqrt{-1}) = u - v \sqrt{-1} \text{ for each } c = u + v \sqrt{-1} \in \mathbb{C} \}. \)
\begin{enumerate}
\item The center of \(B \) is \(\mathbb{C} \).
\item \(B \) is an Azumaya \(C \)-algebra.
\item \(\mathbb{C} \) is a Galois extension of \(C^G \) with Galois group \(G|\mathbb{C} \cong G \) and a Galois system \(\{a_1 = 1/\sqrt{2}, a_2 = (1/\sqrt{2}) \sqrt{-1}; b_1 = 1/\sqrt{2}, b_2 = -(1/\sqrt{2}) \sqrt{-1} \} \).
\item \(B \) is the DeMeyer-Kanzaki Galois extension of \(B^G \) by (2) and (3).
\item \(B^G = \mathbb{R}[i,j,k] \).
\item \(B = B^G \mathbb{C} \), so \(B \) is a central extension of \(B^G \).
\item \(J_j^{(C)} = \mathbb{R}\sqrt{-1} \).
\item \(B = BJ_j(C) \) since \(1 = -\sqrt{-1}\sqrt{-1} = BJ_j(C) \).
\item \(J_j^{(B)} = \mathbb{R}\sqrt{-1} + \mathbb{R}\sqrt{-1}i + \mathbb{R}\sqrt{-1}j + \mathbb{R}\sqrt{-1}k \).
\item \(B = \mathbb{C}J_j^{(B)} \).
\end{enumerate}

\textbf{Example 3.6.} By replacing in Example 3.5 the field of complex numbers \(\mathbb{C} \) with the ring \(C = \mathbb{Z} \oplus \mathbb{Z} \) where \(\mathbb{Z} \) is the ring of integers, \(g(a,b) = (b,a) \) for all \((a,b) \in C \), and \(G = \{1,g \mid g(c_1 + c_i i + c_j j + c_k k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \text{ for each } b = c_1 + c_i i + c_j j + c_k k \in B = C[i,j,k] \} \). Then
\begin{enumerate}
\item The center of \(B \) is \(C \).
\item \(C \) is a Galois extension of \(C^G \) with Galois group \(G|\mathbb{C} \cong G \) and a Galois system \(\{a_1 = (1,0), a_2 = (0,1); b_1 = (1,0), b_2 = (0,1) \} \).
(3) \(B \) is not an Azumaya \(C \)-algebra (for \(\frac{1}{2} \not\in C \)), and so \(B \) is not the DeMeyer-Kanzaki Galois extension of \(B^G \).

(4) \(C^G = \{(a, a) \mid a \in \mathbb{Z}\} \cong \mathbb{Z} \).

(5) \(B^G = C^G[i, j, k] \).

(6) \(B = B^G C \), so \(B \) is a central extension of \(B^G \).

(7) \(J^{(C)}_G = \{(a, -a) \mid a \in \mathbb{Z}\} = \mathbb{Z}(1, -1) \).

(8) \(B = B J^{(C)}_G \) since \(1 = (1, 1) = (1, -1)(1, -1) \in B J^{(C)}_G \).

(9) \(J^{(B)}_G = \mathbb{Z}(1, -1) + \mathbb{Z}(1, -1)i + \mathbb{Z}(1, -1)j + \mathbb{Z}(1, -1)k \).

(10) \(B = CJ^{(B)}_G \).

References

SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA

E-mail address: szeto@bradley.bradley.edu

XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA

E-mail address: lxue@bradley.bradley.edu