ON THE DECOMPOSITION OF $x^d + a_1 x + \cdots + a_0$

JAVIER GOMEZ-CALDERON

(Received 9 July 1998 and in revised form 28 March 1999)

Abstract. Let K denote a field. A polynomial $f(x) \in K[x]$ is said to be decomposable over K if $f(x) = g(h(x))$ for some polynomials $g(x)$ and $h(x) \in K[x]$ with $1 < \deg(h) < \deg(f)$. Otherwise $f(x)$ is called indecomposable. If $f(x) = g(x^m)$ with $m > 1$, then $f(x)$ is said to be trivially decomposable. In this paper, we show that $x^d + a_1 x + a_0$ is indecomposable and that if e denotes the largest proper divisor of d, then $x^d + a_{d-e-1} x^{d-e-1} + \cdots + a_1 x + a_0$ is either indecomposable or trivially decomposable. We also show that if $g_d(x,a)$ denotes the Dickson polynomial of degree d and parameter a and $g_d(x,a) = f(h(x))$, then $f(x) = g_1(x-c,a)$ and $h(x) = g_e(x,a) + c$.

Keywords and phrases. Polynomials and fields.

2000 Mathematics Subject Classification. Primary 11T06.

Let K denote a field. A polynomial $f(x) \in K[x]$ is said to be decomposable over K if

$$f(x) = g(h(x))$$

for some polynomials $g(x)$ and $h(x) \in K[x]$ with $1 < \deg(h) < \deg(f)$. Otherwise $f(x)$ is called indecomposable.

Examples. (a) $f(x) = x^{mn}$, m and $n > 1$, is decomposable because $f(x) = g(h(x))$ where $h(x) = x^m + c$ and $g(x) = (x - c)^n$.

(b) $f(x) = x^p$, p a prime, is indecomposable because p does not have proper divisors.

(c) $f(x) = \sum_{i=0}^{n} a_i x^i$ is decomposable because $f(x) = g(h(x))$ where $h(x) = x^m$ and $g(x) = \sum_{i=0}^{n} a_i x^i$.

Decompositions such as the one given in (c) are trivial and consequently we say that $f(x)$ is trivially decomposable if $f(x) = g(x^m)$ for some polynomial $g(x)$ with $m > 1$.

In this paper, we show that $x^d + a_1 x + b$ is indecomposable and that if e denotes the largest proper divisor of d, then $x^d + a_{d-e-1} x^{d-e-1} + \cdots + a_1 x + a_0$ is either indecomposable or trivially decomposable. We will also show that if $g_d(x,a)$ denotes the Dickson polynomial of degree d and parameter a and $g_d(x,a) = f(h(x))$, then $f(x) = g_1(x-c,a)$ and $h(x) = g_e(x,a) + c$. More precisely, we prove the following.

Theorem 1. Let K be a field. Let d be a positive integer. If K has a positive characteristic p, assume that $(d,p) = 1$.

(a) $x^d + a_1 x + b$, $a \neq 0$, is decomposable.

(b) If e denotes the largest proper divisor of d, then $x^d + a_{d-e-1} x^{d-e-1} + \cdots + a_1 x + a_0$ is either indecomposable or trivially decomposable.
(c) If $x^d = f(h(x))$ for some polynomials $f(x)$ and $h(x)$ in $K[x]$, then $f(x) = (x - c)^t$ and $h(x) = x^e + c$ for some $c \in K$ and $d = et$.

(d) If $g_d(x, a)$ denotes the Dickson polynomial of degree d and parameter a and $g_d(x, a) = f(h(x))$, then $f(x) = g_t(x - c, a)$ and $h(x) = g_e(x, a) + c$ for some $c \in K$.

The proof of the theorem needs the following lemmas.

Lemma 2. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial over a field K. If K has a positive characteristic p, assume that $(p, d) = 1$. Let the irreducible factorization of $f(x) - f(y)$ be given by

$$f(x) - f(y) = \prod_{i=1}^{s} f_i(x, y)$$

Let

$$f_i(x, y) = \sum_{j=0}^{n_i} g_{ij}(x, y)$$

be the homogeneous decomposition of $f_i(x, y)$ so that $n_i = \deg(f_i(x, y))$ and $g_{ij}(x, y)$ is homogeneous of degree j. Assume $a_{d-1} = a_{d-2} = \cdots = a_d = 0$ for some $r \geq 1$. Then,

$$g_{i, n_i-1}(x, y) = g_{i, n_i-2}(x, y) = \cdots = g_{i, R_i}(x, y) = 0$$

where

$$R_i = \begin{cases} n_i - r & \text{if } n_i \geq r_i \\ 0 & \text{if } n_i < r_i \end{cases}$$

Proof. Let e_i denote the second highest degree of $f_i(x, y)$ defined by

$$e_i = \begin{cases} \deg(f_i(x, y) - g_{i, n_i}(x, y)) & \text{if } f_i(x, y) \neq g_{i, n_i}(x, y) \\ -\infty & \text{if } f_i(x, y) = g_{i, n_i}(x, y) \end{cases}$$

Assume, without loss of generality, that $n_1 - e_1 \leq n_2 - e_2 \leq \cdots \leq n_s - e_s$. Let b denote the largest integer i such that $N = n_1 - e_1 = n_2 - e_2 = \cdots = n_i - e_i$. Our goal is to show that $N > r$. So, assume that N is finite. Hence, $g_{i, e_i}(x, y) \neq 0$ for all i, $1 \leq i \leq b$ and

$$a_{d-N}(x^{d-N} - y^{d-N}) = \sum_{i=1}^{b} g_{i, e_i}(x, y) \prod_{j=1}^{s} g_{j, n_j}(x, y)$$

On the other hand, we have

$$x^d - y^d = \prod_{i=1}^{s} g_{i, n_i}(x, y)$$

Therefore,

$$a_{d-N} \frac{x^{d-N} - y^{d-N}}{x^d - y^d} = \sum_{i=1}^{b} \frac{g_{i, e_i}(x, y)}{g_{i, n_i}(x, y)}$$
As \((d, p) = 1\), \(x^d - y^d\) has no multiple divisors in the algebraic closure of \(K\). So, the denominators in the right-hand side of the above formula are relatively prime to each other, and if the denominator and numerator of each summand have a common factor, it can be canceled out. Hence, the right-hand side of (9) does not vanish. Thus, \(a_{d-N} \neq 0\) and consequently \(d - N < d - r\). Therefore, \(N > r\) and the proof of the lemma is complete.

Lemma 3. Let \(f(x)\) be a monic polynomial over a field \(K\). If \(K\) has a positive characteristic \(p\), assume that \(p\) does not divide the degree of \(f(x)\). Let \(N\) denote the number of linear factors of \(f(x) - f(y)\) over \(\overline{K}\), the algebraic closure of \(K\). Then, there exists a constant \(b\) in \(K\) such that

\[
f(x) = g((x + b)^N)
\]

for some polynomial \(g(x) \in K[x]\).

Proof. Choose \(b\) in \(F\) such that \(f(x - b) = F(x) = x^d + a_{d-2}x^{d-2} + \cdots + a_1x + a_0\). Hence, by Lemma 2, all linear factors of \(F(x) - F(y)\) have the form \(x - aiy\) for \(i = 1, 2, \ldots, N\). Thus, \(F(ai - jx) = F(x)\) for all \(i\) and \(j\), and consequently \(F(ai(x) - jx) = F(ai(x) - jx)\) for all \(i\) and \(j\). Therefore, \(a_1, a_2, \ldots, a_N\) form a multiplicative cyclic group of order \(N\) and \(\prod_{i=1}^{N} (x - ai) = x^N - y^N\).

Now write

\[
F(x) = f_0(x) + f_1(x)x^N + f_2(x)x^{2N} + \cdots + f_m(x)x^{mN}
\]

with \(\deg(f_i(x)) < N\) for all \(i\). This decomposition is clearly unique. Thus,

\[
F(x) = f_0(x) + f_1(x)x^N + f_2(x)x^{2N} + \cdots + f_m(x)x^{mN}
\]

for \(i = 1, 2, \ldots, N\) implies that \(f_j(x) = c_j \in K\) for all \(0 \leq j \leq m\).

Therefore,

\[
F(x) = \sum_{i=0}^{m} c_i x^{Ni} = g(x^N)
\]

where \(g(x) = \sum_{i=0}^{m} c_i x^i \in K[x]\). This completes the proof of the lemma.

Lemma 4. Let \(d\) be a positive integer and assume that \(K\) contains a primitive \(n\)th root \(\zeta\) of unity. Put

\[
B_k = \zeta^k + \zeta^{-k}, \quad C_k = \zeta^k - \zeta^{-k}.
\]

Then for each \(a \in K\) we have

(a) If \(d = 2n + 1\) is odd

\[
g_d(x, a) - g_d(y, a) = (x - y) \prod_{i=1}^{n} (x^2 - B_k x y + y^2 + aC_k^2)
\]
If \(d = 2n \) is even
\[
g_d(x, a) - g_d(y, a) = (x^2 - y^2) \prod_{i=1}^{n-1} (x^2 - A_k xy + y^2 + aC_k^2) \quad (16)
\]
Moreover for \(a \neq 0 \) the quadratic factors are different from each other and are irreducible in \(K[x, y] \).

Proof. See [1, page 46].

Proof of the theorem. (a) Assume \(x^d + ax + b = f(h(x)) \) with \(1 < \deg(h(x)) < d \) and \(a \neq 0 \). Let \(\bar{K} \) denote the algebraic closure of \(K \). Let the irreducible factorization of \(f(x) - f(y) \) over \(\bar{K} \) be given by
\[
f(x) - f(y) = (x - y) \prod_{i=1}^{m} G_i(x, y). \quad (17)
\]
Then,
\[
x^d + ax - y^d - ay = (h(x) - h(y)) \prod_{i=1}^{m} G_i(h(x), h(y)) = \prod_{i=1}^{r} f_i(x, y) \quad (18)
\]
for some irreducible polynomials \(f_i(x, y) \in \bar{K}[x, y] \) with \(\deg(f_i(x, y)) \leq d - 2 \) for \(1 \leq i \leq r \). Hence, applying Lemma 2, each of the factors \(f_i(x, y) \) has a second highest degree of \(-\infty\). Therefore, considering only the highest degree terms in (18),
\[
x^d - y^d = \prod_{i=1}^{r} f_i(x, y) \quad (19)
\]
and consequently \(ax - ay = 0 \). Since this is clearly a contradiction, then \(h(x) \) has either degree 1 or \(d \).

(b) Let \(e \) denotes the largest proper divisor of \(d \). Assume that the polynomial \(g_e(x) = x^d + a_d x^{d-e-1} + \cdots + a_1 x + a_0 \) is decomposable. So, \(g_e(x) = f(h(x)) \) for some \(h(x) \in K[x] \) with \(1 < \deg(h(x)) \leq e \). Let the irreducible factorization of \(f(x) - f(y) \) over \(\bar{K} \) be given by
\[
f(x) - f(y) = (x - y) \prod_{i=1}^{r} f_i(x, y). \quad (20)
\]
Then
\[
g_e(x) - g_e(y) = (h(x) - h(y)) \prod_{i=1}^{r} f_i(h(x), h(y)). \quad (21)
\]
Hence, by Lemma 2, \(h(x) - h(y) \) is homogeneous and consequently a factor of \(x^d - y^d \). So, \(h(x) - h(y) \) is a product of homogeneous linear factors and, by Lemma 3, \(h(x) = x^m + c \) for some \(c \in K \). Thus, \(g_e(x) = f(x^m + c) = f_2(x^m) \) where \(f_2(x) = f(x + c) \). Therefore, \(g_e(x) \) is either indecomposable or trivially decomposable.
ON THE DECOMPOSITION OF $x^d + a_dx^e + \cdots + a_1x + a_0$

(c) If $x^d = f(h(x))$ then, we did this before,

\[x^d - y^d = f(h(x)) - f(h(y)) \]

\[= (h(x) - h(y)) \prod_{i=1}^{m} G_i(h(x), h(y)) = \prod_{i=0}^{d-1} (x - \zeta^i y) \]

(22)

for some dth primitive root of unity ζ in K. Thus, $h(x) = x^e + c$ for some $c \in K$ and $e \mid d$.

Therefore,

\[f(h(x)) - f(h(y)) = (x^e)^{d/e} - (y^e)^{d/e} = \prod_{j=1}^{d/e} (x^e - \zeta^{e^j} y^e) \]

\[= \prod_{j=1}^{d/e} (h(x) - c - \zeta^{e^j}(h(y) - c)) \]

(23)

and $f(x) = (x - c)^{d/e}$.

(d) Similar to (c) using Lemma 4.

\[\square \]

Acknowledgement. The author thanks the referee for his suggestions which improved the final version of the paper.

References

Calderon: Department of Mathematics, New Kensington Campus, Pennsylvania State University, New Kensington, PA, 15068, USA