BANACH-MACKEY, LOCALLY COMPLETE SPACES, AND $\ell_{p,q}$-SUMMABILITY

CARLOS BOSCH and ARMANDO GARCÍA

(Received 7 December 1998)

ABSTRACT. We defined the $\ell_{p,q}$-summability property and study the relations between the $\ell_{p,q}$-summability property, the Banach-Mackey spaces and the locally complete spaces.

We prove that, for c_0-quasibarrelled spaces, Banach-Mackey and locally complete are equivalent. Last section is devoted to the study of CS-closed sets introduced by Jameson and Kakol.

Keywords and phrases. Banach-Mackey spaces, locally complete spaces, barrelled, bornivorous.

2000 Mathematics Subject Classification. Primary 46A03; Secondary 46A17.

1. Introduction. Let (E, τ) be a locally convex space. If A is absolutely convex its linear span E_A may be endowed with the seminorm topology given by the Minkowski functional of A, we denote it by (E_A, ρ_A). If A is bounded then (E_A, ρ_A) is a normed space. If every bounded set B is contained in an absolutely convex, closed, bounded set, called a disk A such that (E_A, ρ_A) is complete (barrelled) then E is said to be locally complete (barrelled).

A locally convex space is a Banach-Mackey space if $\sigma(E, E')$-bounded sets are $\beta(E, E')$-bounded sets.

Finally, let us define the $\ell_{p,q}$-summability property. For $1 \leq p \leq \infty$ let q be such that $(1/p) + (1/q) = 1$. A sequence $(x_n)_n \subset E$ is p-absolutely summable if for every ρ continuous seminorm in (E, τ) the sequence $(\rho(x_n))_n$ is in ℓ_p. A p-absolutely summable sequence is $\ell_{p,q}$-summable if for every $(\lambda_n)_n \in \ell_q$, the series $\sum_{n=1}^{\infty} \lambda_n x_n$ converges to x for some $x \in E$. A locally convex space E has the $\ell_{p,q}$-summability property if each p-absolutely summable sequence is $\ell_{p,q}$-summable.

2. $\ell_{p,q}$-summability. Let $(E, \tau) = (c_0, \sigma(c_0, \ell_1))$. (E, τ) is a locally complete space. Take $\alpha = (\alpha_n)_n \in \ell_1$ and $(e_n)_n$ the canonical unit vectors in c_0. Then $\rho_\alpha(e_n) = |\alpha_n|$ so $\sum_{n=1}^{\infty} \rho_\alpha(e_n) = \sum_{n=1}^{\infty} |\alpha_n| < \infty$ which means that $(e_n)_n$ is absolutely summable for every continuous seminorm in $\sigma(c_0, \ell_1)$. Now, since $\sum_{n=1}^{\infty} (e_n) \notin c_0$ we have here an example of a space that has the $\ell_{\infty,1}$-summability property and does not have the $\ell_{1,\infty}$-summability property.

Now let us establish some properties of the spaces with the $\ell_{p,q}$-summability property.
Theorem 2.1. Let \((E, \tau)\) be a locally convex space. If \(E\) satisfies the \(\ell_{p,q}\)-summability property for \(1 \leq p, q \leq \infty\) with \((1/p) + (1/q) = 1\), then \(E\) is locally complete.

Proof. Let \(A\) be a bounded set and \(B = \overline{\text{conv}} A; B\) is a disk. Take \((x_n)_n \in E\) a sequence such that \((\rho_B(x_n))_n \in \ell_p\). Since \(i: (E_B, \rho_B) \hookrightarrow (E, \tau)\) is continuous, for every continuous seminorm \(\rho\) in \(E\), we have \((\rho(x_n))_n \in \ell_p\). So for every \((a_n)_n \in \ell_q\), we have \(\sum_{n=1}^{\infty} a_n x_n \to x\) with respect to \(\tau\) since \(E\) has the \(\ell_{p,q}\)-summability property.

Now the sequence of partial sums \(\sum_{n=1}^{k} a_n x_n\) is \(\rho_B\)-bounded since it is a \(\rho_B\)-Cauchy sequence as we can see

\[
\rho_B \left(\sum_{n=1}^{k+r} a_n x_n - \sum_{n=1}^{k} a_n x_n \right) = \rho_B \left(\sum_{k+1}^{k+r} a_n x_n \right) \leq \left| (a'_n)_n \right|_q \cdot \left| (\rho_B(x'_n))_n \right|_p, \quad (2.1)
\]

which is small for \(k\) big enough, \((a'_n)_n = (0, \ldots, 0, a_{k+1}, \ldots, a_{k+r}, 0, \ldots)\) and \((x'_n)_n = (0, \ldots, 0, x_{k+1}, \ldots, x_{k+r}, 0, \ldots)\).

So \(\{\sum_{n=1}^{k} a_n x_n : K \in \mathbb{N}\}\) is a \(\rho_B\) bounded set in \((E_B, \rho_B)\).

By [5, Theorem 3.2.4] we have that \((\sum_{n=1}^{k} a_n x_n)_K\) converges to \(x\) in \((E_B, \rho_B)\). So \((E_B, \rho_B)\) has also the \(\ell_{p,q}\)-summability property.

Now, we will prove the space \((E_B, \rho_B)\) is complete. Let \((x_n)_n \in E\) be an absolutely summable sequence with \(x_n \neq 0\) for every \(n \in \mathbb{N}\), so \((\rho_B(x_n))_n \in \ell_1\) then

\[
(a_n)_n = \left(\rho_B^{1/p}(x_n) \right)_n \in \ell_p, \quad (\beta_n)_n = \left(\rho_B^{1/q}(x_n) \right)_n \in \ell_q. \quad (2.2)
\]

Let \(y_n = x_n / \rho_B(x_n)\) then \((y_n)_n\) is \(\rho_B\)-bounded. So \((a_n y_n)_n \in E_B, (\rho_B(\alpha_n y_n)_n) \in \ell_p\) and \(\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} \alpha_n y_n\) converges in \((E_B, \rho_B)\) since \((E_B, \rho_B)\) has the \(\ell_{p,q}\)-summability property so \((E_B, \rho_B)\) is a Banach disk. \(\square\)

Corollary 2.2. Let \((E, \tau)\) be a locally convex space. \((E, \tau)\) is locally complete if and only if \((E, \tau)\) has the \(\ell_{\infty,1}\)-summability property.

Proof. Let \((E, \tau)\) be a locally complete space and \((x_n)_n \subset (E, \tau)\) be a bounded sequence, so there exists a Banach disk \(B \subset E\) such that \(\{x_n\}_n \subset B\) and \((x_n)_n\) is bounded in \((E_B, \rho_B)\).

Let \((\alpha_n)_n \in \ell_1,\) then \((\alpha_n x_n)_n\) is \(\rho_B\)-absolutely summable, that is \(\sum_{n=1}^{\infty} \alpha_n x_n < \infty\).

Hence \(\sum_{n=1}^{\infty} \alpha_n x_n\) converges in \((E_B, \rho_B)\) so it also converges in \((E, \tau)\) since \(i: (E_B, \rho_B) \hookrightarrow (E, \tau)\) is continuous. So \(E\) has the \(\ell_{\infty,1}\)-summability property. \(\square\)

Corollary 2.3. \(E\) is a Banach space if and only if \(E\) is normed and has the \(\ell_{p,q}\)-summability property.

Proof. We can reproduce the last part of the proof of Theorem 2.1 to show that \(E\) normed and with the \(\ell_{p,q}\)-summability property is a locally complete normed space and so a Banach space.

Now suppose \(E\) is a Banach space and denote the norm by \(\|\|\). Let \((x_n)_n \subset E\) be a sequence such that \((\|x_n\|)_n \in \ell_p\) and let \((\beta_n)_n \in \ell_1\) then the sequence \((\beta_n x_n)_n\) is absolutely summable that is
\[\sum_{n=1}^{\infty} \| \beta_n x_n \| \leq \left(\sum_{n=1}^{\infty} \| x_n \|^p \right)^{1/p} \left(\sum_{n=1}^{\infty} \| \beta_n \|^q \right)^{1/q} < \infty \] \hspace{1cm} (2.3)

hence summable, since \(E \) is a Banach space so \(E \) has the \(\ell_{p,q} \)-summability property. \(\square \)

3. Banach-Mackey space

Definition 3.1. \(E \) is a \(c_0 \)-barrelled (or \(c_0 \)-quasibarrelled) space if each null sequence in \((E', \sigma(E',E)) ((E', \beta(E',E)))\) is \(E \)-equicontinuous.

Note that a \(c_0 \)-barrelled space is a \(c_0 \)-quasibarrelled space.

Lemma 3.2. If \((E, \mu(E,E'))\) is a Banach-Mackey space, where \(\mu(E,E') \) denotes the Mackey topology, and \(c_0 \)-quasibarrelled space then it is a \(c_0 \)-barrelled space.

Proof. Let \(A \subset (E', \sigma(E',E)) \) be a bounded set, since \(E \) is a Banach-Mackey space, \(E' \) is also a Banach-Mackey space (cf. [9, Theorem 5, page 158]), and then \(A \) is \(\beta(E',E) \)-bounded so it is contained in a bounded Banach disk by [2, Observation 8.2.23], since the space is \(c_0 \)-quasibarrelled. Then by the same observation we have that \((E', \sigma(E',E))\) is locally complete. \(\square \)

Corollary 3.3. \((E, \mu(E,E'))\) is \(c_0 \)-quasibarrelled and Banach-Mackey if and only if \((E', \sigma(E',E))\) is locally complete.

Proof. Necessity follows from previous lemma and [2, Observation 8.2.23]. The other implication follows from the same observation, the note following Definition 3.1 and the fact that by [7, Corollary 3, Theorem 1] we have that \((E', \sigma(E',E))\) locally complete implies \((E, \mu(E,E'))\) is a Banach-Mackey space. \(\square \)

Following Saxon and Sánchez [8], a space \(E \) is dual locally complete if \((E, \sigma(E',E))\) is locally complete; then we can extend the result shown in [8, Theorem 2.6].

Corollary 3.4. \((E, \mu(E,E'))\) is dual locally complete if and only if it is Banach-Mackey and \(c_0 \)-quasibarrelled.

A locally convex space \(E \) is quasibarrelled if each barrel that absorbs bounded sets is a neighborhood of zero in \(E \). It is clear that a barrelled space is quasibarrelled, in certain cases they are equivalent.

Note that using [7, Theorem 1] we can easily prove that: a locally convex space \(E \) is quasibarrelled and Banach-Mackey if and only if it is a barrelled space. Next proposition summarizes what we know about Banach-Mackey spaces in the case of quasibarrelled spaces.

Proposition 3.5. Let \((E, \tau)\) be a locally convex quasibarrelled space, then the following properties are equivalent:

(a) \(E' \) is a Banach-Mackey space.

(b) \(E \) is a Banach-Mackey space.

(c) \(E \) is barrelled.

(d) \(E' \) is semireflexive.

(e) In \(E' \), abconv \(K \) is compact for each \(K \subset E' \) compact.
(f) For every $x_n \to 0$ in E' and every $(\alpha_n)_n \in \ell_1$, $\sum_{n=1}^{\infty} \alpha_n x_n \to x$ for some $x \in E'$.

(g) E' is locally complete.

(h) E' is locally barrelled.

Proof. (a) \Rightarrow (b) using [9, Theorem 5, page 158]. (b) \Rightarrow (c) from the previous note. (c) \Rightarrow (d) by [9, Theorem 4, page 153]. (d) \Rightarrow (e) is obtained using the same theorem and the fact that a convex hull of a compact set is totally bounded together with [9, Exercise 5, page 122]. (e) \Rightarrow (f) by [7, Theorems 2 and 3]. (f) \Rightarrow (g) using [3, Proposition III.1.4] and [2, Theorem 5.1.11]. (g) \Rightarrow (h) is trivial. (h) \Rightarrow (a) using [1, Theorem 1].

Note that (f) and (g) are equivalent in general, [3, Proposition III.1.4] and [2, Theorem 5.1.11] prove (f) \Rightarrow (g) and do not assume E is quasibarrelled, and the other implication can be obtained using an argument similar to the one in Corollary 2.2.

4. CS-closed sets. In this section, we give a more precise definition of the convex series and their properties, first studied by Jameson [4] and Käkol [6].

Definition 4.1. Let (E, τ) be a locally convex space.

(a) Let $A \subset E$, $(a_n)_n \subset A$ and $(c_n) \subset [0,1]$ such that $\sum_{n=1}^{\infty} c_n = 1$ if $\sum_{n=1}^{\infty} c_n a_n$ is convergent we say that it is a convex convergent series of elements of A.

(b) $A \subset E$ is CS-closed if each convex convergent series of elements of A belongs to A.

(c) $A \subset E$ is CS-compact if each convex series of elements of A converges to an element of A.

(d) $A \subset E$ is ultrabounded if each convex series of elements of A is convergent in E.

(e) The CS-closure of A is the intersection of all CS-closed sets that contain A.

Observation. (i) An ultrabounded set is bounded.

(ii) The intersection of CS-closed sets is a CS-closed set.

For convenience let us introduce another definition.

Definition 4.2. (a) $B \subset E$ is called a CS-barrel if it is absolutely convex, absorbent and CS-closed.

(b) E is a locally CS-barrelled (barrelled) space if for each bounded set $A \subset E$ there exists a disk B such that $A \subset B$ and E_B is a CS-barrelled (barrelled) space, that is that each CS-barrel (barrel) is a neighborhood of zero.

Now several properties of barrels also hold for CS-barrels although the last sets are somehow “smaller” than the first sets.

It is clear that if E is a CS-barrelled space then it is a barrelled space.

Now if (E, τ) is locally barrelled, then for each bounded set $A \subset E$ there exists a closed bounded disk B such that $A \subset B \subset E$ and (E_B, ρ_B) is barrelled, so for each CS-barrel U in E_B, \overline{U} is a barrel so it is a zero neighborhood with respect to ρ_B, since (E_B, ρ_B) is metrizable by [4, Theorem 1], U is also a zero neighborhood with respect to ρ_B. So we have proved the following.

Proposition 4.3. (E, τ) is a locally barrelled space if and only if it is locally CS-barrelled space.
The CS-compact hull of a set A is the set of convex convergent series of its elements. A is CS-compact if each convex series of elements of A converges to an element of A, so we have that the CS-compact hull of a set is not necessarily a CS-compact set. This is the moment to bring in the ultrabounded sets, since the CS-compact hull of an ultrabounded set is a CS-compact set.

Proposition 4.4. In a locally convex space (E,τ), CS-barrels absorb ultrabounded sets.

Proof. Let W be a CS-barrel and A an ultrabounded set in E. Let D be the balanced CS-compact hull of A, by [6, Corollaries 2–4] D is a Banach disk so D is barrelled, and the identity map $i : E_D \to E$ is continuous so $W^\tau \cap E_D$ is a barrel in (E_D,ρ_D), furthermore it is a neighborhood of zero in D_D, so $A \subset D \subset \lambda W \cap E_D$ for some $\lambda > 0$. Now for $(x_n)_n \subset W \cap E_D$ and $(a_n)_n \in [0,1]$, with $\sum_n a_n = 1$ such that $\sum_n a_n x_n \to x$ in (E_D,ρ_D), since W is a CS-barrel in (E,τ), we have $\sum_n a_n x_n \to x$ in (E,τ) and $x \in W$, then $x \in W \cap E_D$ and it is a CS-barrel in (E_D,ρ_D). By [4, Theorem 1], $W \cap E_D$ and $W^\tau \cap E_D$ have the same interior with respect to ρ_B, so $A \subset D \subset \lambda (W \cap E_D) \subset \lambda W$. \hfill \square

Remark 4.5. Since every Banach disk is ultrabounded (cf. [6, Proposition 2.2]) then each CS-barrel absorbs Banach disks.

To close this section let us mention that if E is locally barrelled then each CS-barrel is a bornivorous (see [7, proof of Theorem 2(1)]).

Acknowledgement. The first author was partially supported by Fulbright grant # 22799 and by the Asociación Mexicana de Cultura A. C.

References

BOSCH: DEPARTAMENTO DE MATEMÁTICAS, ITAM, RIO HONDO #1, 01000 MÉXICO D. F., MEXICO

E-mail address: bosch@itam.mx

GARCÍA: INSTITUTO DE MATEMÁTICAS, ZONA DE LA INVESTIGACION CIENTífICA, CIRCUITO EXTERIOR, CIUDAD UNIVERSITARIA, 04510 MÉXICO D. F., MEXICO