RESEARCH NOTES

A SIMPLE CHARACTERIZATION OF COMMUTATIVE H^*-ALGEBRAS

PARFENY P. SAWOROTNOW

(Received 23 March 1998)

Abstract. Commutative H^*-algebras are characterized without postulating the existence of Hilbert space structure.

Keywords and phrases. H^*-algebra, commutative H^*-algebra, maximal regular ideals, multiplicative linear functionals, Gelfand transform, completely symmetric algebra.

1991 Mathematics Subject Classification. 46K15, 46J40.

1. Introduction. Let \mathfrak{M} be the space of all maximal regular ideals in a commutative H^*-algebra A and let $x(M)$, $M \in \mathfrak{M}$, denote the Gelfand transform of x, Loomis [3] (in the sequel we use notation of Naimark [5]). Then it is easy to show (see Theorem 1 below) that the series $\sum x(M)\hat{y}(M)$ converges absolutely for all $x, y \in A$. Also, if we assume that each minimal self-adjoint idempotent in A has norm one, then it is true that for each bounded linear function f on A($f \in A^*$) there exists $a \in A$ such that $f(x) = \sum x(M)a(M)$ for all $x \in A$.

In this note we show that these properties could be used to characterize commutative proper H^*-algebras of this kind. More specifically we show that each semi-single completely symmetric, Naimark [5], Banach algebra with the above properties is a proper H^*-algebra with respect to some Hilbertian norm which is equivalent to its original norm. Also, there is a characterization of all proper commutative H^*-algebras.

2. Characterizations. Let A be a complex commutative Banach algebra. We do not assume that A has an identity and so, because of this, we have to deal with regular maximal ideals. An ideal I in A is regular if the algebra A/I has an identity. If M is maximal regular ideal then it is closed and the algebra A/M is isomorphic to the complex field (Gelfand-Mazur theorem, complex case, Loomis [3, 22F]). It follows that there exists a continuous linear functional F_M, Loomis [3, 23B], such that $M = \{x \in A : F_M(x) = 0\}$, i.e., M is the kernel (null space) of F_M.

The Gelfand transform $x()$ (we use the Naimark’s notion, Naimark [5], here) of x is defined by setting $x(M) = F_M(x)$ (Loomis uses the notion x^\wedge in Loomis [3, 23B]), where M is a regular maximal ideal in A.

The algebra A is said to be semi-simple if $\cap_{M \in \mathfrak{M}} M = \{0\}$ (as it is stated above, \mathfrak{M} denotes the space of all maximal regular ideals as A). Equivalent condition: mapping $x \to x()$ is one to one. The algebra A is said to be completely symmetric, Naimark [5],...
if it has an involution \(x \rightarrow x^* \) such that \(x^*(M) = \bar{x}(M) \) for all \(M \in \mathfrak{M} \).

More details of Gelfand theory could be found in Gelfand-Raikov-Silov [2], Loomis [3], Mackey [4], Naimark [5], Simmons [7], and others.

A proper \(H^* \)-algebra is a Banach algebra \(A \) with an involution \(x \rightarrow x^* \) and a scalar product \((\, ,) \) such that \((x, x) = \|x\|^2 \) and \((xy, z) = (y, x^*z) = (x, y^*z) \) for all \(x, y, z \in A \). Note that \(A \) is semi-simple. For simplicity, a nonzero self-adjoint idempotent will be called projection (e.g., Saworotnow [6]). A projection \(e \) is minimal if it is not a sum of two projections whose product is zero.

A completely symmetric commutative Banach algebra is a Banach algebra with involution \(x \rightarrow x^* \) such that \(x^*(M) = \bar{x}(M) \) for all \(x \in A \) and \(M \in \mathfrak{M} \), Naimark [5, Sec. 14].

Theorem 1. Each proper commutative \(H^* \)-algebra \(A \) is completely symmetric in the sense of Naimark [5]. Also, the series \(\sum_{M \in \mathfrak{M}} |x(M)|^2 \) converges for each \(x \in A \) and if we assume that each minimal projection in \(A \) has norm one, then each bounded linear functional \(f \) on \(A(f \in \mathcal{A}^*) \) has the form \(f(x) = \sum x(M)\tilde{a}(M)(x \in A) \) for some \(a \in \mathcal{A} \).

Proof. First and second parts of the theorem follow from Loomis [3, 27G]. For each \(M \in \mathfrak{M} \) there exists a minimal projection \(e_M \) such that \(x(M) = (x, e_M)\|e_M\|^2 \), \(x = \sum_{M \in \mathfrak{M}} x(M) \times e_M \) and \(e_M e_M = 0 \) if \(M_1 \neq M_2 \) (Loomis [3] uses notation "\(e_a \)" instead of \("e_M" \)). Note that \(\|e_M\| \geq 1 \) for each \(M \in \mathfrak{M} \) (\(\|e_M\| = \|e_M^*\| \leq \|e_M\|^2 \)).

It follows that \(\|x\|^2 = \sum_{M \in \mathfrak{M}} |x(M)|^2 \|e_M\|^2 \geq \sum_{M \in \mathfrak{M}} |x(M)|^2 \). The last part follows from Loomis [3, 10G]: If we assume that each minimal projection has norm one, then \(\|x\|^2 = \sum_{M \in \mathfrak{M}} |x(M)|^2 \) and \((x, a) = \sum_{M \in \mathfrak{M}} x(M)\tilde{a}(M) \) for all \(x, a \in A \) (and there exists \(a \in A \) such that \(f(x) = (x, a) \) for all \(x \in A \)).

Now we have a characterization of those commutative \(H^* \)-algebra in which each minimal projection has norm one.

Theorem 2. Let \(A \) be a semi-simple commutative completely symmetric Banach algebra. Assume further that the series \(\sum_{M \in \mathfrak{M}} |x(M)|^2 \) converges for each \(x \in A \) and that for each bounded linear functional \(f \) on \(A \) there exists \(a \in A \) such that \(f(x) = \sum_{M \in \mathfrak{M}} x(M)\tilde{a}(M) \) for all \(x \in A \). Then there exists a Hilbertian norm \(\| \|_2 \) on \(A \), equivalent to the original norm such that \(A \) is an \(H^* \)-algebra with respect to the scalar product \((\, ,) \) associated with \(\| \|_2 \) and the original involution. Also, each minimal projection in \(A \) has norm 1.

Proof. For each \(x, y \in A \), define \((x, y) = \sum_{M \in \mathfrak{M}} x(M)\tilde{y}(M) \). This series converges absolutely for all \(x, y \in A \), since

\[
\sum_{i=1}^{k} |x(M_i)\tilde{y}(M_i)| \leq \frac{1}{2} \left(\sum_{i=1}^{k} |x(M_i)|^2 + \sum_{i=1}^{k} |y(M_i)|^2 \right)
\]

for each finite subset \(\{M_1, \ldots, M_k\} \) of \(\mathfrak{M} \). Hence, the inner product \((\, ,) \) is defined everywhere on \(A \). Let \(\| \|_2 \) be the corresponding norm, \(\|x\|_2 = (x, x) \) for all \(x \in A \). Let us show that \(A \) is complete with respect to \(\| \|_2 \).

First, note that the completion \(A' \) of \(A \) with respect to \(\| \|_2 \) is a proper \(H^* \)-algebra (since \(\|x^*\|_2 = \|x\|_2 \) for all \(x \in A \)). Hence, \(A' \) is semi-simple. (It is a consequence of
Let us show that each \(x \in M \) there exists an \(a \in A \) if and this implies that \(Loomis [3, 27A] \). So we can apply [5, Sec. 12, Thm. 1]: there exists \(M > 0 \) such that \(\| a \|_2 \leq M \) for each \(n \). For each fixed \(x \in A \) define

\[
f(x) = \lim_{m \to \infty} \langle x, a_m \rangle.
\]

From \(|\langle x, a_m \rangle| < \| x \|_2 \| a_m \|_2 \leq M \| x \| \) we conclude that \(f \) is a bounded linear functional on \(A \). Hence, there exists \(a \in A \) so that \(f(x) = \sum_{M \in \mathbb{Z}} x(M) a(M) \) for each \(x \in A \).

Let us show that \(\| a - a_n \|_2 \to 0 \). Let \(\varepsilon > 0 \) be arbitrary, take \(n_0 \) so that \(\| a_m - a_n \|_2 < \varepsilon/2 \) if \(m, n > n_0 \). Let \(n > n_0 \) and \(x \in A \) be fixed. Then \(\| a - a_n \|_2^2 = |(a - a_n, a - a_n)| + |(a - a_n, a_m - a_n)| \leq |f(a - a_n) - (a - a_n, a_m)| + \| a - a_n \|_2 \| a_m - a_n \|_2 \).

Select \(m > n_0 \) so that

\[
|f(a - a_n) - (a - a_n, a_m)| \leq \frac{\varepsilon}{2} \| a - a_n \|_2.
\]

Thus

\[
\| a - a_n \|_2^2 \leq \frac{\varepsilon}{2} \| a - a_n \|_2 + \frac{\varepsilon}{2} \| a - a_n \|_2 = \varepsilon \| a - a_n \|_2,
\]

and this implies that \(\| a - a_n \|_2 < \varepsilon \) for each \(n > n_0 \). So, \(A \) is complete with respect to \(\| \cdot \|_2 \).

It follows from [5, Sec. 12, Thm. 1] that the norm \(\| \cdot \|_2 \) and the original norm \(\| \cdot \| \) on \(A \) are equivalent.

It is also easy to see that \(A \) is an \(H^* \)-algebra with respect to the scalar product \((\ , \) \) (and the original involution).

Let us show that every minimal projection in \(A \) has norm one. First note that the product of any two distinct minimal projections \(e_1 \) and \(e_2 \) is zero, \(e_1 e_2 = 0 \). It follows from the fact that \(e = e_1 e_2 \) is also a projection and that \(e e_i = e_i \), \(i = 1, 2 \). This means that if \(e \neq 0 \), then both \(e = e_1 \) and \(e = e_2 \), which is impossible, since \(e_1 \neq e_2 \). Thus \(e_{M_1} e_{M_2} = 0 \) if \(M_1 \neq M_2 \) (as was remarked in a proof above). But this also means that every minimal projection \(e \) is of the form \(e = e_{M'} \) for some \(M' \in \mathbb{Z} \). It follows then that \(e(M') = 1 \) and \(e(M) = 0 \) if \(M \neq M' \). Thus \(\| e \|_2^2 = |e(M')|^2 = 1 \).

For the general case we have Theorems 3 and 4 below, which constitute a characterization of any proper commutative \(H^* \)-algebra. The characterization is stated in terms of multiplicative functionals (it could also be done in terms of ideals) (needless to say, Theorems 1 and 2 could be restated in terms of multiplicative functionals also).

Theorem 3. For each proper commutative \(H^* \)-algebra \(A \) there exists a real valued function \(k(q) \), defined on the set \(Q \) of all its continuous multiplicative linear functionals, with the following properties:

(i) \(k(q) \geq 1 \) for each \(q \in Q \),

(ii) The series \(\sum_{q \in Q} |q(x)|^2 k(q) \) converges for each \(x \in A \),

(iii) For each \(f \in A^* \), there exists \(\alpha \in A \) such that \(f(x) = \sum_{q \in Q} q(x) \alpha(q) k(q) \) for each \(x \in A \). \((A^* \) denotes the dual of \(A \).\)
Proof. It is easy consequence of Loomis [3, 27G] that for each nonzero member \(q \) of \(Q \) there exists a unique minimal projection \(e_q \) such that \(q(x) = (x, e_q) \| e_q \|^2 \) and

\[
x = \sum_{q \in Q} q(x)e_q
\]
(2.5)

for each \(x \in A \) (note that \(\{e_q\}_{q \neq 0} \) is an orthogonal basis for \(A \)). We define the function \(k(q) \) by setting \(k(q) = \| e_q \|^2 \) for each nonzero member \(q \) of \(Q \) and \(k(0) = 1 \). We leave it to the reader to verify that \(k(q) \) has desired properties. \(\square \)

Theorem 4. Let \(A \) be a semi-simple commutative completely symmetric algebra and let \(Q \) be the set of all its continuous multiplicative linear functionals. Assume that there exists a real valued function \(k(q) \) on \(Q \) with properties (i), (ii), and (iii) in Theorem 3.

Then \(A \) is an \(H^* \)-algebra with respect to some Hilbert space norm \(\| \|_2 \) equivalent to the original norm of \(A \), and the original involution.

Proof. Define the scalar product \((\cdot, \cdot) \) on \(A \) by setting

\[
(x, y) = \sum_{q \in Q} q(x)q(y^*)k(q),
\]
(2.6)

and take that corresponding norm \(\| \|_2 \) (with the property that \((x, x) = \|x\|_2^2 \)). Then we proceed as in the proof of Theorem 2. \(\square \)

References

Saworotnow: Department of Mathematics, The Catholic University of America, Washington, DC 20064, USA