ON A CLASS OF UNIVALENT FUNCTIONS

DINGGONG YANG and JINLIN LIU

(Received 15 September 1997)

Abstract. We consider the class of univalent functions defined by the conditions \(f(z)/z \neq 0 \) and \(|(z/f(z))''| \leq \alpha, |z| < 1 \), where \(f(z) = z + \cdots \) is analytic in \(|z| < 1 \) and \(0 < \alpha \leq 2 \).

Keywords and phrases. Univalent functions, subordination.

1991 Mathematics Subject Classification. 30C45.

1. Introduction. Let \(A \) denote the class of functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the unit disk \(E = \{ z : |z| < 1 \} \). A function \(f(z) \in A \) is said to be star-like in \(|z| < r (r \leq 1) \) if and only if it satisfies

\[
\Re \frac{zf'(z)}{f(z)} > 0, \quad (|z| < r).
\]

In [2], Nunokawa, Obradovic, and Owa proved the following theorem:

Theorem A. Let \(f(z) \in A \) with \(f(z) \neq 0 \) for \(0 < |z| < 1 \) and let

\[
\left| \left(\frac{z}{f(z)} \right)'' \right| \leq 1, \quad (z \in E).
\]

Then \(f(z) \) is univalent in \(E \).

For \(0 < \alpha \leq 2 \), let \(S(\alpha) \) denote the class of functions \(f(z) \in A \) which satisfy the conditions

\[
f(z) \neq 0 \quad \text{for} \quad 0 < |z| < 1
\]

and

\[
\left| \left(\frac{z}{f(z)} \right)'' \right| \leq \alpha, \quad (z \in E).
\]

In this paper, we give an extension of Theorem A and obtain some results for the class \(S(\alpha) \).

By virtue of a result due to Ozaki and Nunokawa [4], Obradovic et al. [3] considered a class of univalent functions.

2. A criterion for univalence

Theorem 1. Let \(f(z) \in A \) with \(f(z) \neq 0 \) for \(0 < |z| < 1 \) and let \(g(z) \in A \) be bounded...
in E and satisfy
\[m = \inf \left\{ \left| \frac{g(z_1) - g(z_2)}{z_1 - z_2} \right| : z_1, z_2 \in E \right\} > 0. \quad (2.1) \]

If
\[\left| \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' \right| \leq K, \quad (z \in E), \quad (2.2) \]

where
\[K = \frac{2m}{M^2} \quad \text{and} \quad M = \sup \left\{ |g(z)| : z \in E \right\}, \quad (2.3) \]

then $f(z)$ is univalent in E.

Proof. If we put
\[h(z) = \left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)'' , \quad (2.4) \]

then the function $h(z)$ is analytic in E and, by integration from 0 to z, we get
\[\left(\frac{z}{f(z)} - \frac{z}{g(z)} \right)' = b_2 - a_2 + \int_0^z h(u) du \quad (2.5) \]

and
\[\frac{z}{f(z)} - \frac{z}{g(z)} = (b_2 - a_2)z + \int_0^z dv \int_0^v h(u) du, \quad (2.6) \]

where $f(z) = z + a_2 z^2 + \cdots$ and $g(z) = z + b_2 z^2 + \cdots$.

Thus, we have
\[f(z) = \frac{g(z)}{1 + (b_2 - a_2)g(z) + g(z)(\psi(z)/z)'}, \quad (2.7) \]

where
\[\psi(z) = \int_0^z dv \int_0^v h(u) du. \quad (2.8) \]

Since
\[\left(\frac{\psi(z)}{z} \right)' = \frac{1}{z^2} \int_0^z u \psi''(u) du = \frac{1}{z^2} \int_0^z uh(u) du, \quad (2.9) \]

from (2.2) and (2.4), we get
\[\left| \left(\frac{\psi(z)}{z} \right)' \right| \leq \int_0^1 t|h(zt)| dt \leq \frac{K}{z}, \quad (2.10) \]

and so
\[\left| \frac{\psi(z_2)}{z_2} - \frac{\psi(z_1)}{z_1} \right| = \left| \int_{z_1}^{z_2} \left(\frac{\psi(z)}{z} \right)' dz \right| \leq \frac{K}{z} |z_2 - z_1| \quad (2.11) \]

for $z_1, z_2 \in E$ and $z_1 \neq z_2$.

If $z_1 \neq z_2$ then $g(z_1) \neq g(z_2)$ and it follows, from (2.7) and (2.11), that
\[\left| f(z_1) - f(z_2) \right| = \frac{\left| g(z_1) - g(z_2) + g(z_1)g(z_2) \left(\frac{\psi(z_2)}{z_2} - \frac{\psi(z_1)}{z_1} \right) \right|}{\left| 1 + (b_2 - a_2)g(z_1) + g(z_1) \frac{\psi(z_1)}{z_1} \right| \left| 1 + (b_2 - a_2)g(z_2) + g(z_2) \frac{\psi(z_2)}{z_2} \right|} > \frac{|g(z_1) - g(z_2)| - M^2K\frac{|z_1 - z_2|}{2}}{1 + (b_2 - a_2)g(z_1) + g(z_1)\frac{\psi(z_1)}{z_1} \left| 1 + (b_2 - a_2)g(z_2) + g(z_2)\frac{\psi(z_2)}{z_2} \right|} \geq 0. \] (2.12)

Hence, \(f(z) \) is univalent in \(E \).

COROLLARY 1. Let \(f(z) \in A \) with \(f(z) \neq 0 \) for \(0 < |z| < 1 \). If

\[\left| \left(\frac{z}{f(z)} \right)^{''} \right| \leq 2, \quad (z \in E), \] (2.13)

then \(f(z) \) is univalent in \(E \). The bound 2 in (2.13) is best possible.

PROOF. Setting \(g(z) = z \) in Theorem 1, we conclude that \(f(z) \) is univalent in \(E \) for \(f(z) \) satisfying condition (2.13).

To show that the result is sharp, we consider

\[f(z) = \frac{z}{(1 + z)^{2+\epsilon}}, \quad (\epsilon > 0). \] (2.14)

Note that

\[\left| \left(\frac{z}{f(z)} \right)^{''} \right| = (2 + \epsilon)(1 + \epsilon)|1 + z|^\epsilon, \quad (z \in E) \] (2.15)

and \(f'(1/(1+\epsilon)) = 0 \). Hence, \(f(z) \) is not univalent in \(E \) and the proof is complete. \(\square \)

From Corollary 1, we easily get

COROLLARY 2. Let

\[f(z) = \frac{z}{1 + \sum_{n=1}^{\infty} n b_n z^n} \in A \] (2.16)

and

\[\sum_{n=2}^{\infty} n(n-1)|b_n| \leq 2. \] (2.17)

Then \(f(z) \) is univalent in \(E \).

3. **The class \(S(\alpha) \).** According to Corollary 1, all the functions in \(S(\alpha)(0 < \alpha \leq 2) \) are univalent in \(E \). Let the functions \(f(z) \) and \(g(z) \) be analytic in \(E \). Then \(f(z) \) is said to be subordinate to \(g(z) \), written \(f(z) \prec g(z) \), if there exists a function \(w(z) \) analytic in \(E \), with \(w(0) = 0 \) and \(|w(z)| < 1 (z \in E) \), such that \(f(z) = g(w(z)) \) for \(z \in E \).

For our next results, we need the following.
Lemma 1 [5]. Let \(f(z) \) and \(g(z) \) be analytic in \(E \) with \(f(0) = g(0) \). If \(h(z) = zg'(z) \) is star-like in \(E \) and \(zf'(z) < h(z) \), then
\[
f(z) < g(z) = g(0) + \int_0^z \frac{h(t)}{t} \, dt. \tag{3.1}
\]

Theorem 2. Let \(f(z) = z + a_2 z^2 + \cdots \in S(\alpha) \) with \(0 < \alpha \leq 2 \). Then, for \(z \in E \),
\[
\left| \frac{z}{f(z)} - 1 \right| \leq |z| \left(|a_2| + \frac{\alpha}{2} |z| \right); \tag{3.2}
\]
\[
1 - |z| \left(|a_2| + \frac{\alpha}{2} |z| \right) \leq \text{Re} \frac{z}{f(z)} \leq 1 + |z| \left(|a_2| + \frac{\alpha}{2} |z| \right); \tag{3.3}
\]
\[
|f(z)| \geq \frac{|z|}{1 + |a_2| |z| + \frac{\alpha}{2} |z|^2}. \tag{3.4}
\]

Equalities in (3.2), (3.3), and (3.4) are attained if we take
\[
f(z) = \frac{z}{1 \pm az^2 + \frac{\alpha}{2} z^2} \in S(\alpha), \quad (0 \leq a \leq \sqrt{2\alpha}). \tag{3.5}
\]

Proof. In view of (1.5), we have
\[
z \left(\frac{z}{f(z)} \right)'' < \alpha z. \tag{3.6}
\]
Applying the lemma to (3.6), we find that
\[
\left(\frac{z}{f(z)} \right)' + a_2 < \alpha z. \tag{3.7}
\]
By using a result of Hallenbeck and Ruscheweyh [1, Thm. 1], (3.7) gives
\[
\frac{1}{z} \int_0^z \left[\left(\frac{t}{f(t)} \right)' + a_2 \right] dt < \frac{\alpha}{2} z, \tag{3.8}
\]
i.e.,
\[
\frac{z}{f(z)} = 1 - a_2 z + \frac{\alpha}{2} z w(z), \tag{3.9}
\]
where \(w(z) \) is analytic in \(E \) and \(|w(z)| \leq |z|(|z| \in E)\) by Schwarz lemma.

Now, from (3.9), we can easily derive the inequalities (3.2), (3.3), and (3.4).

Theorem 3. Let \(f(z) \in S(\alpha) \) and have the form
\[
f(z) = z + a_3 z^3 + a_4 z^4 + \cdots. \tag{3.10}
\]

(a) If \(2/\sqrt{5} \leq \alpha \leq 2 \), then \(f(z) \) is star-like in \(|z| < \sqrt{2/\alpha} \cdot 1/\sqrt{5}\);

(b) If \(\sqrt{3} - 1 \leq \alpha \leq 2 \), then \(\text{Re} f'(z) > 0 \) for \(|z| < \sqrt{((\sqrt{3} - 1)/\alpha)}\).

Proof. If we put
\[
p(z) = \frac{z^2 f'(z)}{f^2(z)} = 1 + p_2 z^2 + \cdots, \tag{3.11}
\]
then, by (1.5), we have

\[zp'(z) = -z^2 \left(\frac{z}{f(z)} \right)'' < \alpha z, \]

(3.12)

and it follows, from the lemma, that

\[p(z) < 1 + \alpha z, \]

(3.13)

which implies that

\[\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| \leq \alpha |z|^2, \quad (z \in E). \]

(3.14)

(a) Let \(2/\sqrt{5} \leq \alpha \leq 2 \) and

\[|z| < r_1 = \sqrt{\frac{2}{\alpha} \cdot \frac{1}{\sqrt{5}}}. \]

(3.15)

Then, by (3.14), we have

\[\left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| < \arcsin \frac{2}{\sqrt{5}}. \]

(3.16)

Also, from (3.2) in Theorem 2 with \(a_2 = 0 \), we obtain

\[\left| \frac{z}{f(z)} - 1 \right| < \frac{\alpha}{2} r_1^2, \]

(3.17)

and so

\[\left| \arg \frac{z}{f(z)} \right| < \arcsin \frac{1}{\sqrt{5}}. \]

(3.18)

Therefore, it follows, from (3.16) and (3.18), that

\[\left| \arg \frac{z^2 f'(z)}{f(z)} \right| \leq \left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| + \left| \arg \frac{z}{f(z)} \right| < \arcsin \frac{2}{\sqrt{5}} + \arcsin \frac{1}{\sqrt{5}} = \frac{\pi}{2} \]

(3.19)

for \(|z| < r_1 \). This proves that \(f(z) \) is star-like in \(|z| < r_1 \).

(b) Let \(\sqrt{3} - 1 \leq \alpha \leq 2 \) and

\[|z| < r_2 = \sqrt{\frac{\sqrt{3} - 1}{\alpha}}. \]

(3.20)

Then we have

\[\left| \arg f'(z) \right| \leq \left| \arg \frac{z^2 f'(z)}{f^2(z)} \right| + 2 \left| \arg \frac{z}{f(z)} \right| < \arcsin (\alpha r_2^2) + 2 \arcsin \left(\frac{\alpha}{2} r_2^2 \right) \]

\[= \arcsin \left(\sqrt{3} - 1 \right) + 2 \arcsin \left(\frac{\sqrt{3} - 1}{2} \right) = \frac{\pi}{2}. \]

(3.21)

Thus, \(\text{Re} f'(z) > 0 \) for \(|z| < r_2 \).

\[\square \]

Corollary 3. Let \(f(z) \in S(\alpha) \) and have the form (3.10)

(a) If \(0 < \alpha \leq 2/\sqrt{5} \), then \(f(z) \) is star-like in \(E \);

(b) If \(0 < \alpha \leq \sqrt{3} - 1 \), then \(\text{Re} f'(z) > 0 \) for \(z \in E \).
References

Yang: Department of Mathematics, Suzhou University, Suzhou 215006, China

Liu: Water Conservancy College, Yangzhou University, Yangzhou 225009, China