L1 SPACES FAIL A CERTAIN APPROXIMATIVE PROPERTY

AREF KAMAL
Department of Mathematics and Computer Sciences
U.A.E University
P.O. Box 17551
Al-Ain, UNITED ARAB EMIRATES

(Received May 4, 1994)

ABSTRACT. In this paper the author studies some cases of Banach space that does not have the property P1. He shows that if X = ℓ1 or L1(μ) for some non-purely atomic measure μ, then X does not have the property P1. He also shows that if X = ℓ∞ or C(Q) for some infinite compact Hausdorff space Q, then X* does not have the property P1.

KEY WORDS AND PHRASES: Property P1, classical Banach spaces ℓ1, L1(μ) ℓ1, compact width

1. INTRODUCTION

The Banach space X is said to have the property P1, if for each ε > 0 and each r > 0, there is δ > 0, such that for each x and y in X, there is z E B(x, ε) satisfying that for each θ with 0 < θ < δ

B(x, r + δ) ∩ B(y, r + θ) ⊆ B(z, r + θ)

where B(x, r) is the open ball of radius r and centered at x, and B(x, r) is its clouser.

The property P1 plays an important role in approximation theory, and many authors used it. This property appears in approximation by compact operators, simultaneous approximation and other areas (see for example Roversi [1], Lau [2], Mach [3] and Kamal [4]). Mach [3] showed that if X is uniformly convex then it has the property P1 [3], and that if X = C(Q), or X = B(Q) then X has the property P1 [4]. Mach [4, page 259] asked if the space L1(μ) has the property P1.

In this paper the author studies some cases of normed linear space X, for which X does not have the property P1. In section 2, it is shown that if X = ℓ1 then X does not have the property P1, and in section 3, it is shown that if μ is a non-purely atomic measure, then L1(μ) does not have the property P1. These two results give a negative answer for the question of Mach [4]. In section 3, it will be shown also that if X = (ℓ∞)*, or X = (C(Q))* where Q is an infinite compact Hausdorff space, then X does not have the property P1.

In this paper ℓ1 is the Banach space of all real sequences x = {x_i} satisfying that Σ |x_i| < ∞, together with the norm ||x|| = Σ |x_i|. Also ℓ1 n is the Banach space of all real n-tuples x = (x_1, x_2, ..., x_n) together with the norm ||x|| = Σ_{i=1}^n |x_i|.

2. L1 DOES NOT HAVE THE PROPERTY P1

The proof of the fact that ℓ1 does not have the property P1 depends on the behavior of the property P1 in ℓ1 n. In Lemma 2.3, it will be shown that if ε > 0 is fixed, and δ_n corresponds to ε for X = ℓ1 n in Lemma 2.1, then δ_n → 0 when n → ∞, so using the fact that ℓ1 n is a norm-one-complemented subspace of ℓ1, it will be shown in Theorem 2.4, that ℓ1 does not have the property P1.
Lemma 2.1. If the Banach space X has the property P_1 then for each $\epsilon > 0$, there is $\delta > 0$ such that for each $y \in X$, there is $z \in B(0, \epsilon)$ such that if $0 < \theta < \delta$ then

$$B(0, 1 + \delta + \theta) \cap B(y, 1 + \theta) \subseteq B(z, 1 + \theta).$$

Proof. Let $r = 1$ and let $\epsilon > 0$ be given. By the definition of the property P_1, there is $\delta > 0$ such that for each x and y in X, there is $z \in B(x, \epsilon)$ satisfying the following; for each $\theta' < 0$, $B(x, 1 + \delta') \cap B(y, 1 + \theta') \subseteq B(z, 1 + \theta').$

Let $x = 0$ and $\delta = 1/2 \delta'$, then for all θ satisfying $0 < \theta < \delta$;

$$B(0, 1 + \delta + \theta) \cap B(y, 1 + \theta) \subseteq B(0, 1 + \delta') \cap B(y, 1 + \theta) \subseteq B(z, 1 + \theta).$$

Lemma 2.2. Let $n \geq 3$ be a positive integer, let $\delta > 0$ be given and let $(z_1, ..., z_n)$ be an n-tuple of real numbers

If $\sum_{i=1}^{n} z_i \geq \delta$, and for each $i \leq n - 1$

$$z_1 + ... + z_{i-1} - z_i + z_{i+1} + ... + z_n \leq -\delta,$$

then $\sum_{i=1}^{n} |z_i| \geq (2n - 3)\delta$.

Proof. For each $i = 1, 2, ..., n$, let $y_i = z_1 + ... + z_{i-1} - z_i + z_{i+1} + ... + z_n$, then

$$\sum_{i=1}^{n} y_i = (n - 2) \sum_{i=1}^{n} z_i,$$

thus

$$y_n = (n - 2) \sum_{i=1}^{n} z_i - \sum_{i=1}^{n-1} y_i.$$

Therefore

$$\sum_{i=1}^{n} |z_i| \geq |y_n| \geq (n - 2)\delta + (n - 1)\delta = (2n - 3)\delta.$$

Lemma 2.3. Let $n \geq 3$ be a positive integer and let $\delta > 0$ be a given real number such that $(2n - 5)\delta \leq 1$. Then the element $x_n = (\delta, \delta, ..., \delta, - (n - 2)\delta)$ in ℓ_1^n satisfies the following conditions

1. $\forall \theta$ such that $\theta > 0$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \neq \emptyset.$$

2. If $z \in \ell_1^n$ and for each θ with $0 < \theta < \delta$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \subseteq B(z, 1 + \theta),$$

then $||z|| \geq (2n - 3)\delta$.

Proof. Let $\{e_i\}_{i=1}^{n}$ be the standard basis in ℓ_1^n, that is $e_i = (x_1^i, x_2^i, ..., x_n^i)$, where $x_j^i = 1$ if $i = j$ and $x_j^i = 0$ if $i \neq j$ and let

$$x_n = \delta \sum_{i=1}^{n-1} e_i - (n - 2)\delta e_n = (\delta, \delta, ..., \delta, - (n - 2)\delta) \in \ell_1^n.$$

Then $||x_n|| = (n - 1)\delta + (n - 2)\delta = (2n - 3)\delta \leq 1 + 2\delta \leq 2 + \delta$, therefore for each θ such that $0 < \theta < \delta$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \neq \emptyset.$$

Assume that $z = (z_1, z_2, ..., z_n) \in \ell_1^n$ is such that for each θ with $0 < \theta < \delta$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \subseteq B(z, 1 + \theta).$$
It will be shown that:

1. \(\sum_{i=1}^{n} z_i \geq \delta \), and
2. for each \(i \leq n - 1 \)
 \[z_1 + \ldots + z_{i-1} - z_i + z_{i+1} + \ldots + z_n \leq -\delta. \]

If these are true then by Lemma 2.2, \(\|z\| = \sum_{i=1}^{n} |z_i| \geq (2n - 3)\delta \)

1. Assume that \(z_1 + \ldots + z_n < \delta \). Let
 \[y = \delta \sum_{i=1}^{n-2} e_i + \frac{1+\delta}{2} e_{n-1} + \left[\frac{1-(2n-5)}{2} \right] e_n \]
 \[e_{n-1} = \left(\delta, \ldots, \delta, \frac{1+\delta}{2}, \frac{1-(2n-5)}{2} \right) \in \ell^n_1. \]

Then
\[\|y\| = (n-2)\delta + \frac{1+\delta}{2} + \frac{1-(2n-5)\delta}{2} = 1 + \delta. \]

On the other hand
\[\|y - z_n\| = \left| \frac{1+\delta}{2} - \delta \right| + \frac{1-(2n-5)\delta}{2} + (n-2)\delta \]
\[= 1. \]

Thus, for each \(\theta \) such that \(0 < \theta < \delta \),
\[y \in B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta). \]

But
\[\|y - z\| = \sum_{i=1}^{n} |y_i - z_i| \geq \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} z_i \]
\[= 1 + \delta - \sum_{i=1}^{n} z_i \]
\[= 1 + \left(\delta - \sum_{i=1}^{n} z_i \right) \]
\[> 1, \]
so for any \(\theta < \left(\delta - \sum_{i=1}^{n} z_i \right), y \notin B(z, 1 + \theta). \)

2. Assume that for a certain \(i_0 \leq n - 1 \)
 \[z_1 + \ldots + z_{i_0-1} - z_{i_0} + z_{i_0+1} + \ldots + z_n > -\delta. \]

Let
\[y = \left(\frac{1+\delta}{2} \right) e_{i_0} - \left(\frac{1+\delta}{2} \right) e_n = \left(0, 0, \ldots, 0, \frac{1+\delta}{2}, 0, \ldots, 0, -\left(\frac{1+\delta}{2} \right) \right) \in \ell^n_1. \]

\[i_0 \text{-th term} \]
Then
\[\|y\| = 1 + \delta, \]
and
\[\|y - x_n\| = (n-2)\delta + \left| \frac{1 + \delta}{2} \right| - \delta + \left| \frac{1 + \delta}{2} + (n-2)\delta \right| \\
= (n-2)\delta + \frac{1 - \delta}{2} + \frac{1 - (2n-5)\delta}{2} \\
= 1. \]

Thus, for each \(\theta \) such that \(0 < \theta < \delta \), \(y \in B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \). But

\[\|y - z\| = \sum_{i=1}^{n} |y_i - z_i| \geq |(y_1 + ... + y_{n-1} - y_n + y_{n+1} + ... + y_n) - (z_1 + ... + z_{n-1} - z_n + z_{n+1} + ... + z_n)| \\
= | - 1 - \delta - (z_1 + ... + z_{n-1} - z_n + z_{n+1} + ... + z_n)| \\
= |1 + [\delta + (z_1 + ... + z_{n-1} - z_n + z_{n+1} + ... + z_n)]| \\
> 1. \]

Thus, for some \(\theta > 0 \), \(y \notin B(z, 1 + \theta) \).

THEOREM 2.4. \(\ell_1 \) does not have the property \(P_1 \)

PROOF. It will be shown that for each \(\delta > 0 \), there is \(x_\delta \in \ell_1 \), such that if \(z \in \ell_1 \) and for all \(\theta \) with \(0 < \theta < \delta \) it is true that \(B(0, 1 + \delta + \theta) \cap B(x_\delta, 1 + \theta) \subseteq B(z, 1 + \theta) \), then \(\|z\| > \frac{1}{2} \). Let \(\{e_i\}_{i=1}^{\infty} \) be the standard basis in \(\ell_1 \), and let \(\delta > 0 \) be given. If \(\delta > 1 \) then for each \(\theta > 0 \)

\[B(0, 1 + \delta + \theta) \cap B(x_\delta, 1 + \theta) \subseteq B(0, 1 + \delta + \theta) \cap B(z, 1 + \theta). \]

Thus one can take \(x_\delta \) to be \(x_\delta \). So without loss of generality one may assume that \(\delta \leq 1 \)

Let \(n \geq 3 \) be a positive integer satisfying \((2n - 5)\delta \leq 1 \) and \((2n - 3)\delta > \frac{1}{2} \), and let \(x_n \) be as in Lemma 2.3 Define

\[x_\delta = \delta \sum_{i=1}^{n-1} e_i - (n-2)\delta e_n = (\delta, \delta, ..., \delta, -(n-2)\delta, 0, 0, ...) \in \ell_1. \]

Then \(\|x_\delta\| = \|x_n\| \leq 2 + \delta \), thus

\[B(0, 1 + \delta + \theta) \cap B(x_\delta, 1 + \theta) \neq \emptyset \quad \text{for} \quad 0 < \theta < \delta. \]

Let \(P_n : \ell_1 \to \ell_1^n \) be the mapping defined by \(P_n(x) = \{x_i\}_{i=1}^{n} \). By the construction of \(x_\delta \) its image under \(P_n \) is the element \(x_n \)

Assume that for some \(z \in \ell_1 \)

\[B(0, 1 + \delta + \theta) \cap B(x_\delta, 1 + \theta) \subseteq B(z, 1 + \theta) \quad \text{for} \quad 0 < \theta < \delta, \]

then in \(\ell_1^n \)

\[B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \subseteq B(P_n(z), 1 + \theta) \quad \text{for} \quad 0 < \theta < \delta, \]

Thus by Lemma 2.3 \(\|P_n(z)\| \geq (2n - 3)\delta > \frac{1}{2} \). Therefore

\[\|z\| \geq \|P_n(z)\| > \frac{1}{2}. \]

3. **OTHER SPACES THAT DO NOT HAVE THE PROPERTY \(P_1 \)**

The subspace \(Y \) of \(X \) is called a norm-one-complemented subspace of \(X \) if there is a linear projection \(P : X \to Y \) satisfying that \(\|P\| = 1 \). If \(A \) is a subset of \(X \), and \(x \in X \) then

\[d(x, A) = \inf\{\|x - y\| : y \in A\}, \]

and if \(B \) is another subset of \(X \), then the deviation of \(A \) from \(B \) is defined by

\[\delta(A, B) = \sup\{d(x, B) : x \in A\}. \]
The compact width of A in X is defined by

$$a(A, X) = \inf\{ \delta(A, K); K \text{ is a compact subset of } X \}.$$

The compact width is said to be attained if there is a compact subset K of X satisfying that $a(A, X) = \delta(A, K)$.

In this section it will be shown that if $X = (C(Q))^*$, where Q is an infinite compact Hausdorff space, $X = (\ell_\infty)^*$, or $X = L_1(\mu)$ where μ is non-purely atomic measure, then X does not have the property P_1.

The proof of the following proposition is elementary

PROPOSITION 3.1. Let X be a Banach space that has the property P_1, and let Y be a closed subspace of X. If Y is a norm-one-complemented subspace of X, then Y has the property P_1.

COROLLARY 3.2. If μ is non-purely atomic measure then $L_1(\mu)$ does not have the property P_1.

PROOF. By Feder [5, Theorem 2], $L_1[0,1]$ has a subset A for which the compact width $a(A, L_1[0,1])$ is not attained, thus by Kamal [6, Theorem 4.3] $L_1[0,1]$ does not have the property P_1, but by Lacy [7, sec 8], $L_1[0,1]$ is a norm-one-complemented subspace of $L_1(\mu)$, therefore by Proposition 3 1, $L_1(\mu)$ does not have the property P_1.

NOTE 3.3. Theorem 2.4 together with Corollary 3.2 give a negative answer to the question of Mach [4, page 259].

COROLLARY 3.4. If $X = \ell_\infty$ or $X = C(Q)$ for some compact infinite Hausdorff space Q. Then X^* does not have the property P_1.

PROOF. If $X = \ell_\infty$ then ℓ_1 is a norm-one-complemented subspace of X^*, and if $X = C(Q)$ then by Kamal [8, Lemma 3.2], ℓ_1 is a norm-one-complemented subspace of X^*, in both cases one concludes by Proposition 3.1 that X^* does not have the property P_1.

REFERENCES

