SUBCLASSES OF UNIVALENT FUNCTIONS SUBORDINATE TO CONVEX FUNCTIONS

YONG CHAN KIM
Department of Mathematics
Yungnam University
Gyongsan 712-749, KOREA

IL BONG JUNG
Department of Mathematics
Kyungpook National University
Taegu 702-701, KOREA

(Received May 17, 1995 and in revised form August 30, 1995)

ABSTRACT. In this paper, we define a new subclass $M_\alpha(A, B)$ of univalent functions and investigate several interesting characterization theorems involving a general class $S^*[A, B]$ of starlike functions.

KEY WORDS AND PHRASES: Univalent function, subordination, α-convex function

1991 AMS SUBJECT CLASSIFICATION CODES: 30C45, 30D30

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, let S denote the class of all functions in U which are univalent in U.

A function $f(z)$ belonging to S is said to be starlike of order α ($0 \leq \alpha < 1$) if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in U; 0 \leq \alpha < 1).$$

We denote by $S^*(\alpha)$ the subclass of S consisting of functions which are starlike of order α.

A function $f(z)$ belonging to S is said to be convex of order α ($0 < \alpha < 1$) if and only if

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in U; 0 < \alpha < 1).$$

We denote by $K(\alpha)$ the subclass of S consisting of functions which are convex of order α.

We note that

$$S^*(\alpha) \subseteq S^*(0) \equiv S^* \quad (0 \leq \alpha < 1) \quad (1.4)$$

and

$$K(\alpha) \subseteq K(0) \equiv K \quad (0 \leq \alpha < 1). \quad (1.5)$$

With a view to introducing an interesting family of analytic functions, we should recall the concept of subordination between analytic functions. Given two functions $f(z)$ and $g(z)$, which are analytic in U, the function $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $h(z)$, analytic in U with

$$h(0) = 0 \quad \text{and} \quad|h(z)| < 1,$$

such that

$$f(z) = g(h(z)) \quad (z \in U). \quad (1.6)$$

We denote this subordination by

$$f(z) \prec g(z).$$
In particular, if \(g(z) \) is univalent in \(\mathcal{U} \), the subordination (1.8) is equivalent to

\[
 f(0) = g(0) \quad \text{and} \quad f(\mathcal{U}) \subset g(\mathcal{U}).
\]

Janowski [1] introduced the class \(\mathcal{P}[A, B] \). For \(-1 < B < A < 1\), a function \(p \), analytic in \(\mathcal{U} \) with \(p(0) = 1 \), belongs to the class \(\mathcal{P}[A, B] \) if \(p(z) \) is subordinate to \((1 + Az)/(1 + Bz) \). Also \(\mathcal{S}^*[A, B] \) and \(\mathcal{K}[A, B] \) denote the subclasses of \(\mathcal{S} \) consisting of all functions \(f(z) \) such that

\[
 \frac{zf'(z)}{f(z)} \in \mathcal{P}[A, B] \quad \text{and} \quad \left(\frac{zf'(z)}{f(z)} \right) ' = \frac{-zf''(z)}{f'(z)} \in \mathcal{P}[A, B],
\]

respectively. We note that \(\mathcal{S}^*[-1, 1] = \mathcal{S}^* \) and \(\mathcal{K}[-1, 1] = \mathcal{K} \).

Definition 1. Let \(\alpha \) be a real number. A function \(f(z) \) belonging to the class \(\mathcal{A} \) with \(f(z)/z \neq 0 \) is said to be \(\alpha \)-convex in \(\mathcal{U} \) if and only if

\[
 \Re \left[(1 - \alpha) \frac{zf''(z)}{f'(z)} + \alpha \left(1 + \frac{zf'(z)}{f(z)} \right) \right] > 0.
\]

Also we denote the class of \(\alpha \)-convex functions by \(\mathcal{M}_\alpha \). Then it is easy to see that

\[
 \mathcal{M}_\alpha = \left\{ f \in \mathcal{S} : \Re \left[(1 - \alpha) \frac{zf''(z)}{f'(z)} + \alpha \left(1 + \frac{zf'(z)}{f(z)} \right) \right] > 0, \quad z \in \mathcal{U} \right\}.
\]

See Eenigenberg and Miller [5] for further information on them.

We now define the class \(\mathcal{M}_\alpha(A, B) \) as follows: If \(\alpha \) is a real number, then

\[
 \mathcal{M}_\alpha(A, B) = \left\{ f \in \mathcal{S} : \Re \left[(1 - \alpha) \frac{zf''(z)}{f'(z)} + \alpha \left(1 + \frac{zf'(z)}{f(z)} \right) \right] < \frac{1 + Az}{1 + Bz}, \right\}
\]

where \(-1 < B < A < 1, z \in \mathcal{U} \) (1.13).

Clearly, we have

\[
 \mathcal{M}_\alpha(1, -1) = \mathcal{M}_\alpha, \quad \mathcal{M}_1(A, B) = \mathcal{K}[A, B],
\]

and

\[
 \mathcal{M}_0(A, B) = \mathcal{S}^*[A, B].
\]

2. MAIN RESULTS

Applying the method of the integral representation [2] for functions in \(\mathcal{M}_\alpha(A, B) \) (\(\alpha > 0 \)), it is not difficult to deduce

Lemma 1. The function \(f(z) \) is in \(\mathcal{M}_\alpha(A, B) \), \(\alpha > 0 \), if and only if there exists a function \(g(z) \) belonging to the class \(\mathcal{S}^*[A, B] \) such that

\[
 f(z) = \left[\frac{1}{\alpha} \int_0^1 \{g(t)\}^{1/\alpha} t^{-1} dt \right]^\alpha.
\]

Proof. Setting \(g(z) = f(z) \left(\frac{zf'(z)}{f(z)} \right)^\alpha \), so that (2.1) is satisfied, we observe that

\[
 \frac{zg'(z)}{g(z)} = (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf'(z)}{f(z)} \right).
\]

Hence \(f \in \mathcal{M}_\alpha(A, B) \) if and only if \(g \in \mathcal{S}^*[A, B] \).

Before stating our first theorem, we need the following definition

Definition 2. Let \(c \) be a complex number such that \(\Re c > 0 \), and let
If h is the univalent function $h(z) = 2Nz/(1 - z^2)$ and $b = h^{-1}(c)$, then we define the "open door" (cf [3]) function Q_c as

$$Q_c(z) = h[(z + b)/(1 + b)]/z, \quad z \in \mathcal{U}. \quad (2.3)$$

Theorem 1. Let $f \in \mathcal{M}_\alpha(A, B)$ ($\alpha > 0$), and let

$$z + b z^2 z f'(z) f(z) = 1, \quad (2.7)$$

Then $f \in S^*$

Proof. Since $f \in \mathcal{M}_\alpha(A, B)$ ($\alpha > 0$), it follows that there exists a function $g \in S^*[A, B]$ such that

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \{g(t)\}^{1/\alpha} t^{-1} dt \right] \in S^*. \quad (2.5)$$

by using Lemma 1. By the hypothesis, we also have

$$1 + \frac{zg'(z)}{g(z)} = 1 + \frac{1 + Az}{1 + Bz} \in Q_b(z). \quad (2.6)$$

Thus, by a result of Miller and Mocanu ([3], Corollary 3.1), we have

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \{g(t)\}^{1/\alpha} t^{-1} dt \right] \in S^*. \quad (2.5)$$

Lemma 2. (Mocanu [4]) Let \mathcal{P} be an analytic function in \mathcal{U} satisfying $\mathcal{P} < Q_c$. If p is analytic in \mathcal{U}, $p(0) = 1/c$, and

$$zp'(z) + P(z)p(z) = 1, \quad (2.7)$$

then $\text{Re} \, p(z) > 0$ in \mathcal{U}

Making use of Lemma 2, we now prove

Theorem 2. Let $f \in \mathcal{M}_\alpha(A, B)$ ($\alpha > 0$), and let

$$zf'(z) f(z) = 1 - Q_1. \quad (2.8)$$

Then $f \in S^*[A, B]$.

Proof. If we set $p(z) = zf'(z)/f(z)$, then

$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)}. \quad (2.9)$$

Hence

$$(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) = p(z) + \alpha \frac{zp'(z)}{p(z)}. \quad (2.10)$$

Since $f \in \mathcal{M}_\alpha(A, B)$,

$$p(z) + \alpha \frac{zp'(z)}{p(z)} \leq \frac{1 + Az}{1 + Bz}. \quad (2.11)$$

Setting $\mathcal{P}(z) = p(z) + 1/p(z) - 1$, we obtain

$$zp'(z) + \mathcal{P}(z)p(z) = 1 \quad (2.12)$$
and \(\mathcal{P} \prec Q_1 \) by the hypothesis (2.8)

Thus, by Lemma 2, we have

\[
\text{Re} p(z) > 0 \quad (z \in \mathcal{U}).
\]

(2.13)

Since \(\alpha > 0 \),

\[
\text{Re} \left\{ \frac{1}{\alpha} p(z) \right\} > 0 \quad (z \in \mathcal{U}).
\]

(2.14)

Also \((1 + Az)/(1 + Bz)\) (with \(-1 \leq B < A \leq 1\)) is a convex univalent function. Therefore, by appealing to a known result ([6], Theorem 7), we conclude from (2.11) and (2.14) that

\[
p(z) < \frac{1 + Az}{1 + Bz}.
\]

(2.15)

This evidently completes the proof of Theorem 2.

As an example of ([7], Corollary 3.2, see also [9]), consider the case when \(\alpha > 0 \), \(-1 \leq B < A \leq 1\), and \(A \neq B \). Then the differential equation

\[
q(z) + \alpha \frac{zq'(z)}{q(z)} = \frac{1 + Az}{1 + Bz}
\]

has a univalent solution given by

\[
q(z) = \begin{cases}
\frac{z \frac{1}{2} (1 + Bz)^{\frac{1}{2}} (A \frac{1}{2} B^2)}{\frac{1}{2} \int_0^1 t \frac{1}{2} e^{\frac{1}{2} t} (1 + Bt)^{\frac{1}{2}} (A \frac{1}{2} B^2) dt} & \text{if } B \neq 0 \\
\frac{z \frac{1}{2} e^{\frac{1}{2} z}}{\frac{1}{2} \int_0^1 t \frac{1}{2} e^{\frac{1}{2} t} dt} & \text{if } B = 0.
\end{cases}
\]

(2.17)

If \(p(z) \) is analytic in \(\mathcal{U} \) and satisfies

\[
p(z) + \alpha \frac{zp'(z)}{p(z)} < \frac{1 + Az}{1 + Bz},
\]

(2.18)

then

\[
p(z) < q(z) < \frac{1 + Az}{1 + Bz}.
\]

(2.19)

Hence, by the equations (2.11) and (2.19), we obtain

\textbf{THEOREM 3.} Let \(\alpha > 0 \) and \(f \in \mathcal{M}_\alpha(A, B) \). Then

\[
\frac{zf'(z)}{f(z)} < q(z) < \frac{1 + Az}{1 + Bz},
\]

(2.20)

where \(q(z) \) is given by (2.17).

\textbf{THEOREM 4.} \(\mathcal{K}(\alpha) \subset \mathcal{M}_\alpha(1 - 2\alpha, -1) \) \((0 \leq \alpha < 1)\).

\textbf{PROOF.} If we define

\[
h_\alpha(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \quad (0 \leq \alpha < 1),
\]

(2.21)

then we can easily see that \(f \in \mathcal{K}(\alpha) \) if and only if

\[
1 + \frac{zf''(z)}{f'(z)} < h_\alpha(z)
\]

(2.22)

(cf [10], Equation (9)). Hence, by Theorem 1 of [10], we have
Therefore we conclude from [8, Lemma 2.2] that

\[\frac{zf'(z)}{f(z)} < h_\alpha(z). \] (2.23)

Therefore we conclude from [8, Lemma 2.2] that

\[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) < h_\alpha(z). \] (2.24)

This completes the proof of Theorem 4

ACKNOWLEDGMENT. This work was partially supported by KOSEF (project No 94-1400-02-01-3) and TGRC-KOSEF, and by the Basic Science Research Institute Program (BSRI-95-1401)

REFERENCES