ON A CONJECTURE OF VUKMAN

QING DENG
Department of Mathematics
Southwest China Normal University
Chongqing 630715, P.R CHINA

(Received October 27, 1993 and in revised form October 30, 1995)

ABSTRACT. Let R be a ring. A bi-additive symmetric mapping $d : R \times R \to R$ is called a symmetric bi-derivation if, for any fixed $y \in R$, the mapping $x \mapsto D(x, y)$ is a derivation. The purpose of this paper is to prove the following conjecture of Vukman.

Let R be a noncommutative prime ring with suitable characteristic restrictions, and let $D : R \times R \to R$ and $f : x \mapsto D(x, x)$ be a symmetric bi-derivation and its trace, respectively. Suppose that $f(x) \in Z(R)$ for all $x \in R$, where $f_{k+1}(x) \neq [f_k(x), x]$ for $k \geq 1$ and $f_1(x) = f(x)$, then $D = 0$.

KEY WORDS AND PHRASES: Prime ring, centralizing mapping, symmetric bi-derivation.

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 16W25; Secondary 16N60

1. INTRODUCTION

Throughout this paper, R will denote an associative ring with center $Z(R)$. We write $[x, y]$ for $xy - yx$, and I_a for the inner derivation deduced by a. A mapping $D : R \times R \to R$ will be called symmetric if $D(x, y)$ holds for all pairs $x, y \in R$. A symmetric mapping is called a symmetric bi-derivation, if $D(x + y, z) = D(x, z) + D(y, z)$ and $D(xy, z) = D(x, z)y + xD(y, z)$ are fulfilled for all $x, y \in R$. The mapping $f : R \to R$ defined by $f(x) = D(x, x)$ is called the trace of the symmetric bi-derivation D, and obviously, $f(x + y) = f(x) + f(y) + 2D(x, y)$. The concept of a symmetric bi-derivation was introduced by Gy. Maksa in [1,2]. Some recent results concerning symmetric bi-derivations of prime rings can be found in Vukman [3,4]. In [4], Vukman proved that there are no nonzero symmetric bi-derivations D in a noncommutative prime ring R of characteristic not two and three, such that $[[D(x, x), x], x] \in Z(R)$. The following conjecture was raised. Let R be a noncommutative prime ring of characteristic different from two and three, and let $D : R \times R \to R$ be a symmetric bi-derivation. Suppose that for some integer $n \geq 1$, we have $f_n(x) \in Z(R)$ for all $x \in R$, where $f_{k+1}(x) = [f_k(x), x]$ for $k = 1, 2, ..., $ and $f_1(x) = D(x, x)$. Then $D = 0$.

The purpose of this paper is to prove this conjecture under suitable characteristic restrictions.

2. THE RESULTS

THEOREM 1. Let R be a prime ring of characteristic different from two. Suppose that R admits a nonzero symmetric bi-derivation. Then R contains no zero divisors.

PROOF. It is sufficient to show that, $a^2 = 0$ for $a \in R$ implies $a = 0$. We need three steps to establish this.

LEMMA A. If $D(a, *) \neq 0$, then $D(a, *) = \mu I_a$, where $\mu \in C$, the extended centroid of R.

PROOF. Since $D(a^2, x) = D(0, x) = 0$, we have...
\[aD(a, x) + D(a, x)a = 0 \quad \text{for all} \quad x \in R. \]

Replacing \(x \) by \(xy \), we obtain
\[I_a(x)D(a, y) = D(a, x)I_a(y) \quad \text{for all} \quad x \in R; \]
and replacing \(y \) by \(yz \), we get
\[I_a(x)yD(a, z) = D(a, x)yI_a(z), \quad x, y, z \in R. \quad (2.1) \]

Since \(D(a, *) \neq 0 \), we may suppose that \(D(a, z) \neq 0 \) for a fixed \(z \in R \). Obviously \(I_a(z) \neq 0 \). By (2.1), and by [5, Lemma 1.3.2], there exist \(\mu(x) \) and \(\nu(x) \) in \(C \), either \(\mu(x) \) or \(\nu(x) \) being not zero, such that
\[\mu(x)I_a(x) + \nu(x)D(a, x) = 0. \]
If \(\nu(x) \neq 0 \) then \(D(a, x) = -\frac{\mu(x)}{\nu(x)} I_a(x) \); on the other hand, if \(\nu(x) = 0 \) then \(\mu(x)I_a(x) = 0 \) and \(I_a(x) = 0 \), using (2.1) and \(I_a(z) \neq 0 \), so \(D(a, x) = 0 \). In any event, we have
\[D(a, x) = \mu(x)I_a(x) \quad \text{Hence (2.1) implies (} \mu(x) - \mu(z)\text{)} I_a(x)yI_a(z) = 0 \]
It follows that either \(I_a(x) = 0 \) or \(\mu(x) = \mu(z) \). By (2.1), the former implies \(D(a, x) = 0 \) and \(D(a, x) = \mu(z)I_a(x) \).

In both cases, we get \(D(a, x) = \mu(z)I_a(x) \) for all \(x \in R \), and \(\neq \mu(z) \) being fixed.

The fixed element \(\mu \) in Lemma A is somewhat dependent on \(a \), we write it as \(\mu_a \). For any given \(r \in R \), \(ara \) satisfies our original hypotheses on \(a \); therefore for each \(r \in R \), either \(D(ara, *) = 0 \) or \(d(ara, *) = \mu_araI_{ara} \), where \(\mu_ara \neq 0 \).

Lemma B. If \(D(ara, *) \neq 0 \), then \(\mu_ara = \mu_a \).

Proof. \(D(ara, *) \neq 0 \) implies \(ara \neq 0 \). Suppose that \(D(a, *) = 0 \), then \(D(ara, x) = D(a, x)ra + aD(r, x)a + arD(a, x) = aD(r, x)a \), but \(D(ara, x) = \mu_araI_{ara}(x) = \mu_ara(arax - zarax) \), so that \(\mu_ara(arax - zarax) = aD(r, x)a \). Right-multiplying the last equation by \(a \), we have \(\mu_araaraxa = 0 \) for all \(x \in R \). It follows that \(ara = 0 \), a contradiction. Therefore \(D(a, *) = \mu_aI_{a} \), and consequently,
\[D(ara, x) = \mu_aI_{a}(x)ra + aD(r, x)a + ar\mu_a(x); \]
and right-multiplying this equation by \(a \) yields
\[D(ara, x)a = \mu_aaraxa \quad \text{for all} \quad x \in R. \]

Hence \(\mu_araaraxa = \mu_aaraxa \), immediately \(\mu_ara = \mu_a \).

Lemma C. If \(a^2 = 0 \), then \(a = 0 \).

Proof. Let \(S = \{ r \in R \mid D(ara, *) = \mu_araI_{ara}, \mu_ara \neq 0 \} \) and \(T = \{ r \in R \mid D(ara, *) = 0 \} \).

By Lemma A and B, \(R = S \cup T \) and \(S \) and \(T \) are additive subgroups of \(R \). We conclude that either \(S = R \) or \(T = R \).

Suppose that \(S = R \). Lemma A gives, either \(D(a, *) = 0 \) or \(D(a, *) = \mu_aI_{a} \). If \(D(a, *) = 0 \), then \(D(ara, x) = aD(r, x)a \), for all \(r, x \in R \), and \(D(ara, x)a = 0 \). It follows that \(\mu_aaraxa = 0 \). Since \(\mu_a = \mu_ara \neq 0 \), we have \(a = 0 \). If \(D(a, *) = \mu_aI_{a} \), then the equation
\[D(ara, ya) = D(a, ya)ra + aD(r, ya)a + arD(a, ya) \]
gives \(\mu_aaraya = 2\mu_ayaaraxa + \mu_araaraya \). Hence we get \(aaraya = 0 \), and \(a = 0 \) again.

We suppose henceforth that \(T = R \). If \(D(a, *) = 0 \), then \(D(axa, yz) = aD(xa, yz) = 0 \), and \(ayD(xa, z) = 0 \). Thus \(D(xa, z) = D(x, za) = 0 \), and \(D(x, y)za = D(x, yz) = 0 \). Since \(D \neq 0 \), we then get \(a = 0 \). If \(D(a, *) = \mu_aI_{a} \), then, right-multiplying the equation \(D(axa, y) = 0 \) by \(a \), we obtain \(\mu_azaaxa = axD(a, y)a = 0 \), and \(a = 0 \) again. The proof of the theorem is complete.

In order to prove Vukman's conjecture, we need the following proposition.

Proposition. Let \(n \) be a positive integer; let \(R \) be a prime ring with char \(R = 0 \) or char \(R > n \), and let \(g \) be a derivation of \(R \) and \(f \) the trace of a symmetric bi-derivation \(D \). For \(i = 1, 2, \ldots, n \), let \(F_i(x, y, z) \) be a generalized polynomial such that \(F_i(kx, f(kz), g(kz)) = k^iF_i(x, f(x), g(x)) \) for all \(x \in R \) for \(k = 1, 2, \ldots, n \). Let \(a \in R \), and (a) the additive subgroup generated by \(a \) if for all \(x \in (a), \)
\[F_n(x, f(x), g(x)) + F_{n-1}(x, f(x), g(x)) + \cdots + F(x, f(x), g(x)) \in Z(R), \quad (2.2) \]

then \(F_i(a, f(a), g(a)) \in Z(R) \) for \(i = 1, 2, \ldots, n \).

This proposition can be proved by replacing \(x \) by \(a, 2a, \ldots, na \) in (2.2) and applying a standard "Van der Monde argument."

THEOREM 2. Let \(n \) be a fixed positive integer and \(R \) be a prime ring with \(\text{char} \ R = 0 \) or \(\text{char} \ R > n + 2 \). Let \(f_{k+1}(x) = [f_k(x), x] \) for \(k > 1 \), and \(f_1(x) = f(x) \) the trace of a symmetric bi-derivaiton \(D \) of \(R \). If \(f_n(x) \in Z(R) \) for all \(x \in R \), then either \(D = 0 \) or \(R \) is commutative.

PROOF. Linearizing \(f_n(x) \in Z(R) \), we obtain

\[
[[\ldots[[f(x) + f(y) + 2D(x,y), x - y], x + y], x + y] \in Z(R);\]

and using the Proposition, we get

\[
[[\ldots[[f(x), y], x], x] + \cdots + [[\ldots[[f(x), x], y], \ldots x], x + y], x + y] \in Z(R),
\]

equivalently,

\[
(-1)^{n-2}I^{-2}_x([f_1(x), x^2]) + (-1)^{n-3}I^{-3}_x([f_2(x), y]) + \cdots + [f_{n-1}(x), y] + 2(-1)^{n-1}I^{-1}_x(D(x,y)) \in Z(R). \quad (2.3)
\]

Noting that

\[
(-1)^{n-2}I^{-2}_x([f_1(x), x^2]) = (1)^n([f_2(x), x^2]) = \ldots = [f_{n-1}(x), x^2] = (-1)^{n-1}I^{-1}_x(D(x, x^2)) = 2f_n(x),
\]
and replacing \(y \) by \(x^2 \) in (2.3), we then get \(2(n + 1)f_n(x) \in Z(R) \). Since \(f_n(x) \in z(R) \), it follows that \(f_n(x) = 0 \).

The linearization of \(f_n(x) = 0 \) gives

\[
(-1)^{n-2}I^{-2}_x([f_1(x), y]) + (-1)^{n-3}I^{-3}_x([f_2(x), y]) + \cdots + [f_{n-1}(x), y] + 2(-1)^{n-1}I^{-1}_x(D(x,y)) = 0. \quad (2.4)
\]

Since \(I^{-k}_x([f_{k-1}(x), xy]) = xI^{-1}_x([f_{k-1}(x), y]) + I^{-k}_x(f_k(x)) \) for \(k = 2, 3, \ldots, n \), and \(I^{-1}_x(D(x, xy)) = xI^{-1}_x(D(x,y)) + I^{-1}_x(f_1(x)) \). Substituting \(xy \) for \(y \) in (2.4), we have

\[
(-1)^{n-2}I^{-2}_x(f_2(x) + \cdots + (-1)^{n-1}I^{-1}_x(f_n(x)y) + 2(-1)^{n-1}I^{-1}_x(D(x,y)) = 0.
\]

Taking \(y = f_{n-2}(x) \), applying \(I^k_x(ab) = \sum_{j=0}^{k} \binom{k}{j} I^{k-j}(a)I^j_x(b) \) and noting \(I^k_x(f_i(x)) = 0 \) for \(i > n \), we then conclude that

\[
2(-1)^{n-1}
\]

But \((-1)^{k}I^{-1}_x(f_{n-k}(x))I_x(f_{n-2}(x)) = (f_{n-1}(x))^2 \), so \((n + 2)(n - 1)(f_{n-1}(x))^2 = 0 \), and by the hypotheses on the characteristic, we get \((f_{n-1}(x))^2 = 0 \). Suppose that \(D \neq 0 \). By Theorem 1, \(f_{n-1}(x) = 0 \), and by induction, \(f_2(x) = [f(x), x] = 0 \) Using Vukman [3, Theorem 1], \(R \) is commutative, we complete the proof of Theorem 2.

THEOREM 3. Let \(n > 1 \) be an integer and \(R \) be a prime ring with \(\text{char} \ R = 0 \) or \(\text{char} \ R > n + 1 \), and let \(f(x) \) be the trace of a symmetric bi-derivaiton \(D \) of \(R \). Suppose that \([x^2, f(x)] \in Z(R) \) for all \(x \in R \). In this case either \(D = 0 \) or \(R \) is commutative.
PROOF. Using the condition \([x^n, f(x)] \in Z(R)\), we get \([x^{2n}, f(x^2)] \in Z(R)\), and
\[
[x^{2n}, f(x)] x^2 + x^2 [x^{2n}, f(x)] + 2x [x^{2n}, f(x)] x \in Z(R).
\] (2.5)
Noting that \([x^{2n}, f(x)] = 2[x^n, f(x)] x^n\), we now have from (2.5) that \(8[x^n, f(x)] x^{n+2} \in Z(R)\) Thus either \([x^n, f(x)] = 0\) or \(x^{n+2} \in Z(R)\).

But linearizing \([x^n, f(x)] \in Z(R)\) and applying the Proposition gives
\[
[x^{n-1} y + x^{n-2} y x + \ldots + y x^{n-1}, f(x)] + 2[x^n, D(x, y)] \in Z(R)
\]
for all \(x, y \in R\), and taking \(y = x^3\), yields
\[
n [x^{n+2}, f(x)] + 6[x^n, f(x)] x^2 \in Z(R).
\]
Suppose that \([x^n, f(x)] \neq 0\), then \(x^{n+2} \in Z(R)\) and \([x^n, f(x)] x^2 \in Z(R)\), hence \(x^2 \in Z(R)\) Now this condition, together with \(x^{n+2} \in Z(R)\), implies either \(x^2 = 0\) or \(x^n \in Z(R)\), so that in each event, \([x^n, f(x)] = 0\)

Linearizing \([x^n, f(x)] = 0\) and using the Proposition, we have
\[
[x^{n-1} y + x^{n-2} y x + \ldots + y x^{n-1}, f(x)] + 2[x^n, D(x, y)] = 0
\]
Replacing \(y\) by \(x^2\) yields \(n [x^{n+1}, f(x)] = 0\), hence \([x, f(x)] x^n = 0\) If \(D \neq 0\), then by Theorem 1, \([x, f(x)] = 0\), and by Vukman [3, Theorem 1], \(R\) is commutative This completes the proof

ACKNOWLEDGMENT. I am indebted to Prof. M. N. Daif for his help. I would also like to thank the referee for his valuable suggestions.

REFERENCES

