Research Article

End-Point Results for Multivalued Mappings in Partially Ordered Metric Spaces

Ismat Beg\(^1\) and Hemant Kumar Nashine\(^2\)

\(^1\) Department of Mathematics and Statistics, Faculty of Management Studies, University of Central Punjab, Lahore, Pakistan
\(^2\) Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Mandir Hasaud, Raipur 492101, India

Correspondence should be addressed to Ismat Beg, ibeg@lums.edu.pk

Received 27 March 2012; Accepted 7 June 2012

Academic Editor: J. Dydak

Copyright © 2012 I. Beg and H. K. Nashine. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to prove end-point theorems for multivalued mappings satisfying comparatively a more general contractive condition in ordered complete metric spaces. Afterwards, we extend the results of previous sections and prove common end-point results for a pair of \(T\)-weakly isitone increasing multivalued mappings in the underlying spaces. Finally, we present common end point for a pair of \(T\)-weakly isitone increasing multivalued mappings satisfying weakly contractive condition.

1. Introduction and Preliminaries

Fixed-point theory for multivalued mappings was originally initiated by Von Neumann in the study of game theory. Fixed-point theorem for multivalued mappings is quite useful in control theory and has been frequently used in solving the problem of economics and game theory.

The theory of multivalued nonexpansive mappings is comparatively complicated as compare to the corresponding theory of single-valued nonexpansive mappings. It is therefore natural to expect that the theory of noncontinuous nonself-multivalued mappings would be much more complicated.

The study of fixed-points for multivalued contraction mappings was equally an active topic as single-valued mappings. The development of geometric fixed-point theory for multivalued was initiated with the work of Nadler Jr. [1] in the year 1969. He used the concept
of Hausdorff metric to establish the multivalued contraction principle containing the Banach contraction principle as a special case, as following.

Theorem 1.1. Let \((X, d)\) be a complete metric space and \(\mathcal{T}\) is a mapping from \(X\) into \(CB(X)\) such that for all \(x, y \in X\),

\[
\mathcal{A}(\mathcal{T}x, \mathcal{T}y) \leq \lambda d(x, y),
\]

where \(0 \leq \lambda < 1\). Then \(\mathcal{T}\) has a fixed-point.

Since then, this discipline has been further developed, and many profound concepts and results have been established; for example, the work of Border [2], Ćirić [3], Corley [4], Itoh and Takahashi [5], Mizoguchi and Takahashi [6], Petruşel and Luca [7], Rhoades [8], Tarafdar and Yuan [9], and references cited therein.

Let \((X, d)\) be a metric space. We denote the class of nonempty and bounded subsets of \(X\) by \(B(X)\). For \(\mathcal{A}, \mathcal{B} \in B(X)\), functions \(D(\mathcal{A}, \mathcal{B})\), and \(\delta(\mathcal{A}, \mathcal{B})\) are defined as follows:

\[
\begin{align*}
D(\mathcal{A}, \mathcal{B}) &= \inf \{d(a, b) : a \in \mathcal{A}, b \in \mathcal{B}\}, \\
\delta(\mathcal{A}, \mathcal{B}) &= \sup \{d(a, b) : a \in \mathcal{A}, b \in \mathcal{B}\}.
\end{align*}
\]

If \(\mathcal{A} = \{a\}\), then we write \(D(\mathcal{A}, \mathcal{B}) = D(a, \mathcal{B})\) and \(\delta(\mathcal{A}, \mathcal{B}) = \delta(a, \mathcal{B})\). Also in addition, if \(\mathcal{B} = \{b\}\), then \(D(\mathcal{A}, \mathcal{B}) = d(a, b)\) and \(\delta(\mathcal{A}, \mathcal{B}) = d(a, b)\). Obviously, \(D(\mathcal{A}, \mathcal{B}) \leq \delta(\mathcal{A}, \mathcal{B})\).

For all \(\mathcal{A}, \mathcal{B}, \mathcal{C} \in B(X)\), the definition of \(\delta(\mathcal{A}, \mathcal{B})\) yields the following:

\[
\begin{align*}
\delta(\mathcal{A}, \mathcal{B}) &= \delta(\mathcal{B}, \mathcal{A}), \\
\delta(\mathcal{A}, \mathcal{B}) &\leq \delta(\mathcal{A}, \mathcal{C}) + \delta(\mathcal{C}, \mathcal{B}), \\
\delta(\mathcal{A}, \mathcal{B}) &= 0 \text{ iff } \mathcal{A} = \mathcal{B} = \{a\}, \\
\delta(\mathcal{A}, \mathcal{A}) &= \text{diam } \mathcal{A}.
\end{align*}
\]

A point \(x \in X\) is called a fixed-point of a multivalued mapping \(\mathcal{T} : X \to B(X)\) if \(x \in \mathcal{T}x\). If there exists a point \(x \in X\) such that \(\mathcal{T}x = \{x\}\), then \(x\) is called an end-point of \(\mathcal{T}\) [10].

Definition 1.2. Let \(X\) be a nonempty set. Then \((X, d, \leq)\) is called an ordered metric space if and only if:

(i) \((X, d)\) is a metric space,

(ii) \((X, \leq)\) is a partially ordered set.

Definition 1.3. Let \((X, \leq)\) be a partial ordered set. Then \(x, y \in X\) are called comparable if \(x \leq y\) or \(y \leq x\) holds.
Definition 1.4 (see [11]). Let \mathcal{A} and \mathcal{B} be two nonempty subsets of a partially ordered set (\mathcal{X}, \preceq). The relation between \mathcal{A} and \mathcal{B} is denoted and defined as follows:

$$\mathcal{A} \prec_1 \mathcal{B}, \quad \text{if for every } a \in \mathcal{A} \text{ there exists } b \in \mathcal{B} \text{ such that } a \preceq b.$$ \hfill (1.4)

Definition 1.5 (see [12]). A function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the following properties are satisfied:

(i) ψ is monotone increasing and continuous,

(ii) $\psi(t) = 0$ if and only if $t = 0$.

On the other hand, fixed-point theory has developed rapidly in metric spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [13, Theorem 2.1] who presented its applications to matrix equations. Subsequently, Nieto and Rodríguez-López [14] extended the result of Ran and Reurings for nondecreasing mappings and applied it to obtain a unique solution for a first-order ordinary differential equation with periodic boundary conditions. Thereafter, several authors obtained many fixed-point theorems in ordered metric spaces. For detail see [14–28] and references cited therein. Beg and Butt [11, 17, 29] worked on set-valued mappings and proved common fixed-point for mapping satisfying implicit relation in partially ordered metric space. Recently, Choudhury and Metiya [30] proved fixed-point theorems for multivalued mappings in the framework of a partially ordered metric space.

The results of this paper are divided in three sections. In the first section we establish the existence of end-points for a multivalued mapping under a more general contractive condition in partially ordered metric spaces. The consequences of the main theorem are also given. The second section is devoted for common end-point results for a pair of weakly isotone increasing multivalued mappings. In the third section, we present common end-point results for a pair of weakly isotone increasing multivalued mappings satisfying weakly contractive condition.

2. End-Point Theorems for a Multivalued Mapping

In this section, we prove end-point theorems for a multivalued mapping in ordered complete metric space.

Theorem 2.1. Let $(\mathcal{X}, d, \preceq)$ be an ordered complete metric space. Let $\mathcal{T} : \mathcal{X} \to B(\mathcal{X})$ be such that the following conditions are satisfied:

(i) there exists $x_0 \in \mathcal{X}$ such that $\{x_0\} \prec_1 \mathcal{T}x_0$,

(ii) for $x, y \in \mathcal{X}, x \preceq y$ implies $\mathcal{T}x \prec_1 \mathcal{T}y$,

(iii) $\psi(\delta(\mathcal{T}x, \mathcal{T}y)) \leq a\psi(M(x, y)) + L \min\{D(x, \mathcal{T}x), D(y, \mathcal{T}y), D(x, \mathcal{T}y), D(y, \mathcal{T}x)\}$, \hfill (2.1)
for all comparable \(x, y \in \mathcal{X} \), where \(L \geq 0, 0 < \alpha < 1 \) and \(\psi \) is an altering distance function and

\[
M(x, y) = \max \left\{ d(x, y), D(x, \tau x), D(y, \tau y), \frac{D(x, \tau y) + D(y, \tau x)}{2} \right\}. \tag{2.2}
\]

If the property

\[
\{x_n\} \subset \mathcal{X} \text{ is a nondecreasing sequence with } x_n \rightarrow z \text{ in } \mathcal{X}, \quad \text{then } x_n \prec z \forall n \tag{2.3}
\]

holds, then \(\tau \) has an end-point.

Proof. By the assumption (i), there exists \(x_1 \in \tau x_0 \) such that \(x_0 \leq x_1 \). By the assumption (ii), \(\tau x_0 \prec \tau x_1 \). Then there exists \(x_2 \in \tau x_1 \) such that \(x_1 \leq x_2 \). Continuing this process we construct a monotone increasing sequence \(\{x_n\} \) in \(\mathcal{X} \) such that \(x_{n+1} \in \tau x_n \), for all \(n \geq 0 \). Thus we have

\[
x_0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq x_{n+1} \leq \cdots. \tag{2.4}
\]

If \(x_{n_0} \in \tau x_{n_0} \) for some \(n_0 \), then the proof is finished. So assume \(x_n \neq x_{n+1} \) for all \(n \geq 0 \).

Using the monotone property of \(\psi \) and the condition (iii), we have for all \(n \geq 0 \),

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(D(\tau x_n, \tau x_{n+1}))
\]

\[
\leq \alpha \psi \left(\max \left\{ d(x_n, x_{n+1}), D(x_n, \tau x_n), D(x_{n+1}, \tau x_{n+1}), \frac{D(x_n, \tau x_{n+1}) + D(x_{n+1}, \tau x_n)}{2} \right\} \right)
\]

\[
+ L \min \{ D(x_n, \tau x_n), D(x_{n+1}, \tau x_{n+1}), D(x_n, \tau x_{n+1}), D(x_{n+1}, \tau x_n) \} \tag{2.5}
\]

\[
\leq \alpha \psi \left(\max \left\{ d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1})}{2} \right\} \right)
\]

\[
+ L \min \{ d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+2}), d(x_{n+1}, x_{n+1}) \}.
\]

Since \(d(x_n, x_{n+2})/2 \leq \max \{ d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}) \} \), it follows that

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \alpha \psi(\max \{ d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}) \}). \tag{2.6}
\]

Suppose that \(d(x_n, x_{n+1}) \leq d(x_{n+1}, x_{n+2}) \), for some positive integer \(n \).
Then from (2.6), we have

\[\varphi(d(x_{n+1}, x_{n+2})) \leq a \varphi(d(x_{n+1}, x_{n+2})), \quad (2.7) \]

it implies that \(d(x_{n+1}, x_{n+2}) = 0 \), or that \(x_{n+1} = x_{n+2} \), contradicting our assumption that \(x_n \neq x_{n+1} \), for each \(n \).

Therefore, \(d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1}) \), for all \(n \geq 0 \) and \(\{d(x_n, x_{n+1})\} \) is a monotone decreasing sequence of nonnegative real numbers. Hence there exists an \(r \geq 0 \) such that

\[d(x_n, x_{n+1}) \rightarrow r \quad as \quad n \rightarrow \infty. \quad (2.8) \]

Taking the limit as \(n \rightarrow \infty \) in (2.6) and using the continuity of \(\varphi \), we have \(\varphi(r) \leq a \varphi(r) \), which is a contradiction unless \(r = 0 \). Hence

\[\lim_{n \rightarrow \infty} d(x_n, x_{n+1}) = 0. \quad (2.9) \]

Next we show that \(\{x_n\} \) is a Cauchy sequence. If otherwise, there exists an \(\epsilon > 0 \) for which we can find two sequences of positive integers \(\{m(k)\} \) and \(\{n(k)\} \) such that for all positive integers \(k, n(k) > m(k) > k \) and \(d(x_{m(k)}, x_{n(k)}) \geq \epsilon \).

Assuming that \(n(k) \) is the smallest such positive integer, we get \(n(k) > m(k) > k \),

\[d(x_{m(k)}, x_{n(k)}) \geq \epsilon, \quad d(x_{m(k)}, x_{n(k)-1}) < \epsilon. \quad (2.10) \]

Now,

\[\epsilon \leq d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)-1}) + d(x_{n(k)-1}, x_{n(k)}), \quad (2.11) \]

that is,

\[\epsilon \leq d(x_{m(k)}, x_{n(k)}) < \epsilon + d(x_{n(k)-1}, x_{n(k)}). \quad (2.12) \]

Taking the limit as \(k \rightarrow \infty \) in the above inequality and using (2.9), we have

\[\lim_{k \rightarrow \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon. \quad (2.13) \]

Again,

\[d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{m(k)+1}) + d(x_{m(k)+1}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}), \quad (2.14) \]

\[d(x_{m(k)+1}, x_{n(k)+1}) \leq d(x_{m(k)+1}, x_{m(k)}) + d(x_{m(k)}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)+1}). \]

Taking the limit as \(k \rightarrow \infty \) in the above inequalities and using (2.9) and (2.13), we have

\[\lim_{k \rightarrow \infty} d(x_{m(k)+1}, x_{n(k)+1}) = \epsilon. \quad (2.15) \]
Again,

\[
d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}),
\]

\[
d(x_{m(k)}, x_{n(k)+1}) \leq d(x_{m(k)}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)+1}).
\]

(2.16)

Letting \(k \to \infty \) in the above inequalities and using (2.9) and (2.13), we have

\[
\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)+1}) = \epsilon.
\]

(2.17)

Similarly, we have that

\[
\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)+1}) = \epsilon.
\]

(2.18)

For each positive integer \(k \), \(x_{m(k)} \) and \(x_{n(k)} \) are comparable. Then using the monotone property of \(\varphi \) and the condition (iii), we have

\[
\varphi(d(x_{m(k)+1}, x_{n(k)+1})) \leq \varphi(\delta(Tx_{m(k)}, Tx_{n(k)}))
\]

\[
\leq \alpha\varphi\left(\max\left\{ d(x_{m(k)}, x_{n(k)}), D(x_{m(k)}, Tx_{m(k)}), D(x_{n(k)}, Tx_{n(k)}) \right\}
\]

\[
+ L \min\{D(x_{m(k)}, Tx_{m(k)}), D(x_{n(k)}, Tx_{n(k)}), D(x_{m(k)}, Tx_{n(k)}), D(x_{n(k)}, Tx_{m(k)})\}
\]

\[
\leq \alpha\varphi\left(\max\left\{ d(x_{m(k)}, x_{n(k)}), d(x_{m(k)}, x_{m(k)+1}), d(x_{n(k)}, x_{n(k)+1}),
\right\}
\]

\[
+ L \min\{d(x_{m(k)}, x_{m(k)+1}), d(x_{n(k)}, x_{n(k)+1}), d(x_{m(k)}, x_{n(k)+1}), d(x_{n(k)}, x_{m(k)+1})\}.\n\]

(2.19)

Letting \(k \to \infty \) in the above inequality, using (2.9), (2.13), (2.15), (2.17), and (2.18) and the continuity of \(\varphi \), we have

\[
\varphi(\epsilon) \leq \alpha \varphi(\epsilon),
\]

(2.20)

which is a contradiction by virtue of a property of \(\varphi \).
Hence \(\{x_n\} \) is a Cauchy sequence. From the completeness of \(\mathcal{X} \), there exists a \(z \in \mathcal{X} \) such that
\[
x_n \to z \quad \text{as } n \to \infty.
\] (2.21)

By the assumption (2.3), \(x_n \preceq z \), for all \(n \).
Then by the monotone property of \(\psi \) and the condition (iii), we have
\[
\psi(\delta(x_{n+1}, \mathcal{T}z)) \leq \psi(\delta(\mathcal{T}x_n, \mathcal{T}z))
\]
\[
\leq \alpha \psi \left(\max \left\{ d(x_n, z), D(x_n, \mathcal{T}x_n), D(z, \mathcal{T}z), \frac{D(x_n, \mathcal{T}z) + D(z, \mathcal{T}x_n)}{2} \right\} \right)
\]
\[
+ L \min \{D(x_n, \mathcal{T}x_n), D(z, \mathcal{T}z), D(x_n, \mathcal{T}z), D(z, \mathcal{T}x_n)\}
\]
\[
\leq \alpha \psi \left(\max \left\{ d(x_n, z), d(x_n, x_{n+1}), D(z, \mathcal{T}z), \frac{D(x_n, \mathcal{T}z) + d(z, x_{n+1})}{2} \right\} \right)
\]
\[
+ L \min \{d(x_n, x_{n+1}), D(z, \mathcal{T}z), D(x_n, \mathcal{T}z), d(z, x_{n+1})\}.
\] (2.22)

Taking the limit as \(n \to \infty \) in the above inequality, using (2.9) and (2.21) and the continuity of \(\psi \), we have
\[
\psi(\delta(z, \mathcal{T}z)) \leq \alpha \psi(D(z, \mathcal{T}z)) \leq \alpha \psi(\delta(z, \mathcal{T}z)),
\] (2.23)

which implies that \(\delta(z, \mathcal{T}z) = 0 \), or that \(\{z\} = \mathcal{T}z \). Moreover, \(z \) is a end-point of \(\mathcal{T} \).

Taking \(\psi \) an identity function in Theorem 2.1, we have the following result.

Corollary 2.2. Let \((\mathcal{X}, d, \preceq) \) be an ordered complete metric space. Let \(\mathcal{T} : \mathcal{X} \to B(\mathcal{X}) \) be such that the following conditions are satisfied:

(i) there exists \(x_0 \in \mathcal{X} \) such that \(\{x_0\} \prec_1 \mathcal{T}x_0 \),
(ii) for \(x, y \in \mathcal{X} \), \(x \preceq y \) implies \(\mathcal{T}x \prec_1 \mathcal{T}y \),
(iii)
\[
\delta(\mathcal{T}x, \mathcal{T}y) \leq \alpha M(x, y) + L \min \{D(x, \mathcal{T}x), D(y, \mathcal{T}y), D(x, \mathcal{T}y), D(y, \mathcal{T}x)\},
\] (2.24)

for all comparable \(x, y \in \mathcal{X} \), where \(L \geq 0, 0 < \alpha < 1 \) and
\[
M(x, y) = \max \left\{ d(x, y), D(x, \mathcal{T}x), D(y, \mathcal{T}y), \frac{D(x, \mathcal{T}y) + D(y, \mathcal{T}x)}{2} \right\}.
\] (2.25)

If the property
\[
\{x_n\} \subset \mathcal{X} \text{ is a nondecreasing sequence with } x_n \to z \text{ in } \mathcal{X}, \quad \text{then } x_n \preceq z \quad \forall n
\] (2.26)

holds, then \(\mathcal{T} \) has a end-point.
The following corollary is a special case of Theorem 2.1 when T is a single-valued mapping.

Corollary 2.3. Let $(\mathcal{X}, d, \preceq)$ be an ordered complete metric space. Let $T : \mathcal{X} \to \mathcal{X}$ be such that the following conditions are satisfied:

(i) there exists $x_0 \in \mathcal{X}$ such that $x_0 \preceq T x_0$,

(ii) for $x, y \in \mathcal{X}$, $x \preceq y$ implies $Tx \preceq Ty$,

(iii) \[\psi(d(Tx, Ty)) \leq \alpha \psi(M(x, y)) + L \min \{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}, \quad (2.27) \]

for all comparable $x, y \in \mathcal{X}$, where $L \geq 0$, $0 < \alpha < 1$ and ψ is an altering distance function and \[M(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}. \quad (2.28) \]

If the property (2.3) holds, then T has a fixed-point.

In the following theorem we replace condition (2.3) of the above corollary by requiring T to be continuous.

Theorem 2.4. Let $(\mathcal{X}, d, \preceq)$ be an ordered complete metric space. Let $T : \mathcal{X} \to \mathcal{X}$ be a continuous mapping such that the following conditions are satisfied:

(i) there exists $x_0 \in \mathcal{X}$ such that $\{x_0\} \preceq T x_0$,

(ii) for $x, y \in \mathcal{X}$, $x \preceq y$ implies $Tx \preceq Ty$,

(iii) \[\psi(d(Tx, Ty)) \leq \alpha \psi(M(x, y)) + L \min \{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}, \quad (2.29) \]

for all comparable $x, y \in \mathcal{X}$, where $L \geq 0$, $0 < \alpha < 1$ and ψ is an altering distance function and \[M(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\}. \quad (2.30) \]

Then T has an end-point.

Proof. If we assume T as a multivalued mapping in which Tx is a singleton set for every $x \in \mathcal{X}$. Then we consider the same sequence $\{x_n\}$ as in the proof of Theorem 2.1. Follows the line of proof of Theorem 2.1, we have that $\{x_n\}$ is a Cauchy sequence and \[\lim_{n \to \infty} x_n = z. \quad (2.31) \]
Then, the continuity of T implies that
\[z = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \mathcal{T}x_n = \mathcal{T}z \] (2.32)
and this proves that z is a end-point of \mathcal{T}. \hfill \square

3. Common End-Point Theorems for a Pair of Multivalued Mappings

In this section, we prove common end-point theorems for a pair of \mathcal{T}-weakly isotone increasing multivalued mappings.

To complete the result, we need notion of \mathcal{T}-weakly isotone increasing for multivalued mappings given by Vetro [31, Definition 4.2].

Definition 3.1. Let (\mathcal{X}, \preceq) be a partially ordered set and $S, \mathcal{T} : \mathcal{X} \to B(\mathcal{X})$ be two maps. The mapping S is said to be \mathcal{T}-weakly isotone increasing if $Sx \preceq \mathcal{T}y \preceq Sz$ for all any $x \in \mathcal{X}$, $y \in Sx$ and $z \in T y$.

Note that, in particular, for single-valued mappings $\mathcal{T}, S : \mathcal{X} \to \mathcal{X}$, mapping S is said to be \mathcal{T}-weakly isotone increasing if [31, Definition 2.2] if for each $x \in \mathcal{X}$ we have $Sx \preceq \mathcal{T}Sx \preceq Sx$.

Theorem 3.2. Let $(\mathcal{X}, d, \preceq)$ be an ordered complete metric space. Let $\mathcal{T}, S : \mathcal{X} \to B(\mathcal{X})$ be such that
\[\psi(\delta(\mathcal{T}x, Sy)) \leq \alpha \psi(M(x, y)) + L \min\{D(x, \mathcal{T}x), D(y, Sy), D(x, Sy), D(y, T x)\}, \] (3.1)
for all comparable $x, y \in \mathcal{X}$, where $L \geq 0$, $0 < \alpha < 1$ and ψ is an altering distance function and
\[M(x, y) = \max\left\{d(x, y), D(x, \mathcal{T}x), D(y, Sy), \frac{D(x, Sy) + D(y, T x)}{2}\right\}. \] (3.2)
Also suppose that S is \mathcal{T}-weakly isotone increasing and there exists an $x_0 \in \mathcal{X}$ such that $\{x_0\} \preceq Sx_0$.

If the property
\[\{x_n\} \subset \mathcal{X} \text{ is a nondecreasing sequence with } x_n \to z \text{ in } \mathcal{X}, \text{ then } x_n \preceq z \forall n \] (3.3)
holds, then S and \mathcal{T} have a common end-point.

Proof. Define a sequence $\{x_n\} \subset \mathcal{X}$ and prove that the limit point of that sequence is a unique common end-point for \mathcal{T} and S. For a given $x_0 \in \mathcal{X}$ and nonnegative integer n let
\[x_0 = x, \quad x_{2n+1} \in Sx_{2n}, \quad x_{2n+2} \in \mathcal{T}x_{2n+1} \quad \text{for } n \geq 0. \] (3.4)
If $x_{n_0} \in Sx_{n_0}$ or $x_{n_0} \in \mathcal{T}x_{n_0}$ for some n_0, then the proof is finished. So assume $x_n \neq x_{n+1}$ for all n.

Since \(\{x_0\} \preceq_2 Sx_0, x_1 \in Sx_0 \) can be chosen so that \(x_0 \leq x_1 \). Since \(S \) is \(T \)-weakly isotone increasing, it is \(Sx_0 \leq \mathcal{T}_1 \); in particular, \(x_2 \in \mathcal{T}_1 \) can be chosen so that \(x_1 \leq x_2 \). Now, \(\mathcal{T}_1 \preceq_2 Sx_2 \) (since \(x_2 \in \mathcal{T}_1 \)); in particular, \(x_3 \in Sx_2 \) can be chosen so that \(x_2 \leq x_3 \).

Continuing this process we construct a monotone increasing sequence \(\{x_n\} \) in \(\mathcal{X} \) such that

\[
x_0 \preceq x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq x_{n+1} \preceq \cdots. \tag{3.5}
\]

If \(x_{n_0} \in Sx_{n_0} \) or \(x_{n_0} \in \mathcal{T}x_{n_0} \) for some \(n_0 \), then the proof is finished. So assume \(x_n \neq x_{n+1} \) for all \(n \).

Suppose that \(n \) is an odd number. Substituting \(x = x_n \) and \(y = x_{n+1} \) in (3.1) and using properties of function \(\psi \), we have for all \(n \geq 0 \),

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(\delta(\mathcal{T}x_n, Sx_{n+1})) \\
\leq \alpha \psi \left(\max \left\{ d(x_n, x_{n+1}), D(x_n, \mathcal{T}x_n), D(x_{n+1}, Sx_{n+1}), \frac{D(x_n, Sx_{n+1}) + D(x_{n+1}, \mathcal{T}x_n)}{2} \right\} \right) \\
+ L \min \{D(x_n, \mathcal{T}x_n), D(x_{n+1}, Sx_{n+1}), D(x_n, Sx_{n+1}), D(x_{n+1}, \mathcal{T}x_n)\} \tag{3.6}
\]

\[
\leq \alpha \psi \left(\max \left\{ d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1})}{2} \right\} \right) \\
+ L \min \{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), d(x_n, x_{n+2}), d(x_{n+1}, x_{n+1})\}.
\]

Since \(d(x_n, x_{n+2})/2 \leq \max \{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\} \), it follows that

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \alpha \psi(\max \{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}). \tag{3.7}
\]

Suppose that \(d(x_n, x_{n+1}) \leq d(x_{n+1}, x_{n+2}) \), for some positive integer \(n \).

Then from (3.7), we have

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \alpha \psi(d(x_{n+1}, x_{n+2})), \tag{3.8}
\]

it implies that \(d(x_{n+1}, x_{n+2}) = 0 \), or that \(x_{n+1} = x_{n+2} \), contradicting our assumption that \(x_n \neq x_{n+1} \), for each \(n \) and so we have

\[
d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1}). \tag{3.9}
\]
In the similar fashion, we can also show inequalities (3.9) when \(n \) is an even number. Therefore, the sequence \(\{d(x_n, x_{n+1})\} \) is a monotone decreasing sequence of nonnegative real numbers. Hence there exists an \(r \geq 0 \) such that
\[
d(x_n, x_{n+1}) \to r \quad \text{as} \quad n \to \infty.
\] (3.10)

Taking the limit as \(n \to \infty \) in (3.7) and using the continuity of \(\psi \), we have \(\psi(r) \leq a\psi(r) \), which is a contradiction unless \(r = 0 \). Hence
\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.
\] (3.11)

Next we show that \(\{x_n\} \) is a Cauchy sequence. If otherwise, there exists an \(\epsilon > 0 \) for which we can find two sequences of positive integers \(\{m(k)\} \) and \(\{n(k)\} \) such that for all positive integers \(k, n(k) > m(k) > k \) and \(d(x_{m(k)}, x_{n(k)}) \geq \epsilon \).

Assuming that \(n(k) \) is the smallest such positive integer, we get \(n(k) > m(k) > k \),
\[
d(x_{m(k)}, x_{n(k)}) \geq \epsilon, \quad d(x_{m(k)}, x_{n(k)-1}) < \epsilon.
\] (3.12)

Now,
\[
e \leq d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)-1}) + d(x_{n(k)-1}, x_{n(k)}),
\] (3.13)

that is,
\[
e \leq d(x_{m(k)}, x_{n(k)}) < \epsilon + d(x_{n(k)-1}, x_{n(k)}).
\] (3.14)

Taking the limit as \(k \to \infty \) in the above inequality and using (3.11), we have
\[
\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon.
\] (3.15)

Again,
\[
d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{m(k)+1}) + d(x_{m(k)+1}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}),
\] (3.16)

\[
d(x_{m(k)+1}, x_{n(k)+1}) \leq d(x_{m(k)+1}, x_{m(k)}) + d(x_{m(k)}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)+1}).
\] (3.16)

Taking the limit as \(k \to \infty \) in the above inequalities and using (3.11) and (3.15), we have
\[
\lim_{k \to \infty} d(x_{m(k)+1}, x_{n(k)+1}) = \epsilon.
\] (3.17)

Again,
\[
d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)}),
\] (3.18)

\[
d(x_{m(k)}, x_{n(k)+1}) \leq d(x_{m(k)}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)+1}).
\] (3.18)
Letting $k \to \infty$ in the above inequalities and using (2.9) and (3.15), we have
\[
\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)+1}) = \varepsilon. \tag{3.19}
\]

Similarly, we have that
\[
\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)+1}) = \varepsilon. \tag{3.20}
\]

For each positive integer k, $x_{m(k)}$ and $x_{n(k)}$ are comparable. Then using the monotone property of φ and the condition (3.1), we have
\[
\varphi(d(x_{m(k)+1}, x_{n(k)+2})) \leq \varphi(\delta(Tx_{m(k)}, Sx_{n(k)+1}))
\leq \alpha \varphi\left(\max\left\{d(x_{m(k)}, x_{n(k)+1}), D(x_{m(k)}, Tx_{m(k)}), D(x_{n(k)+1}, Sx_{n(k)+1}),\right.
ight.
\left.\left.\frac{D(x_{m(k)}, Sx_{n(k)+1}) + D(x_{n(k)+1}, Tx_{m(k)})}{2}\right\}\right)
+ L \min\{D(x_{m(k)}, Tx_{m(k)}), D(x_{n(k)+1}, Sx_{n(k)+1}), D(x_{m(k)}, Sx_{n(k)+1}),
\left.\frac{D(x_{n(k)+1}, Tx_{m(k)})}{2}\right\}\}
= \alpha \varphi\left(\max\left\{d(x_{m(k)}, x_{n(k)+1}), d(x_{m(k)}, x_{m(k)+1}), d(x_{n(k)+1}, x_{n(k)+1}),\right.\right.
\left.\left.\frac{d(x_{m(k)}, x_{n(k)+2}) + d(x_{n(k)+1}, x_{m(k)+1})}{2}\right\}\right)
+ L \min\{d(x_{m(k)}, x_{m(k)+1}), d(x_{n(k)+1}, x_{n(k)+2}), d(x_{m(k)}, x_{n(k)+2}),
\left.\frac{d(x_{n(k)+1}, x_{m(k)+1})}{2}\right\}\}
\tag{3.21}
\]

Letting $k \to \infty$ in above inequality, using (3.11), (3.15), (3.17), (3.19), and (3.20) and using the continuity of φ, we have
\[
\varphi(\varepsilon) \leq \alpha \varphi(\varepsilon), \tag{3.22}
\]
which is a contradiction by virtue of a property of φ.

Hence $\{x_n\}$ is a Cauchy sequence. From the completeness of \mathcal{K}, there exists a $z \in \mathcal{K}$ such that
\[
x_n \to z \quad \text{as} \quad n \to \infty. \tag{3.23}
\]

By the assumption (3.3), $x_n \leq z$, for all n.
Then by the monotone property of ψ and the condition (3.1), we have

\[\psi(\delta(x_{n+1},Sz)) \leq \psi(\delta(Tx_n,Sz)) \]
\[\leq \alpha \psi \left(\max \left\{ d(x_n,z), D(x_n,Tx_n), D(z,Sz), \frac{D(x_n,Sz) + D(z,Tx_n)}{2} \right\} \right) \]
\[+ L \min \{ D(x_n,Tx_n), D(z,Sz), D(x_n,Sz), D(z,Tx_n) \} \]
\[\leq \alpha \psi \left(\max \left\{ d(x_n,z), d(x_n,x_{n+1}), D(z,Sz), \frac{D(x_n,Sz) + d(z,x_{n+1})}{2} \right\} \right) \]
\[+ L \min \{ d(x_n,x_{n+1}), D(z,Sz), D(x_n,Sz), d(z,x_{n+1}) \}. \]

(3.24)

Taking the limit as \(n \to \infty \) in the above inequality, using (3.11) and (3.23) and the continuity of \(\psi \), we have

\[\psi(\delta(z,Sz)) \leq \alpha \psi(D(z,Sz)) \leq \alpha \psi(\delta(z,Sz)), \]

(3.25)

it implies that \(\delta(z,Sz) = 0 \), or that \(\{ z \} = Sz \). Similarly \(\{ z \} = Sz \). Moreover, \(z \) is a common end-point of \(T \) and \(S \).

Putting \(S = T \) in Theorem 3.2, we immediately obtain the following result.

Corollary 3.3. Let \((\mathcal{X}, d, \preceq) \) be an ordered complete metric space. Let \(T : \mathcal{X} \to B(\mathcal{X}) \) be such that

\[\psi(\delta(Tx,Ty)) \leq \alpha \psi(M(x,y)) + L \min \{ D(x,Tx), D(y,Ty), D(x,Ty), D(y,Tx) \}, \]

(3.26)

for all comparable \(x, y \in \mathcal{X} \), where \(L \geq 0, 0 < \alpha < 1 \) and \(\psi \) is an altering distance function and

\[M(x,y) = \max \left\{ d(x,y), D(x,Tx), D(y,Ty), \frac{D(x,Ty) + D(y,Tx)}{2} \right\}. \]

(3.27)

Also suppose that \(Tx \preceq Ty \) for all \(x \in \mathcal{X} \) and there is \(x_0 \in \mathcal{X} \) such that \(\{ x_0 \} \preceq Ty \). If the property

\[\{ x_n \} \subset \mathcal{X} \text{ is a nondecreasing sequence with } x_n \to z \text{ in } \mathcal{X}, \text{ then } x_n \prec z \forall n \]

(3.28)

holds, then \(T \) has a end-point.

In Theorem 3.2, if \(T, S \) are single valued mappings, then we have the following result.

Theorem 3.4. Let \((\mathcal{X}, d, \preceq) \) be an ordered complete metric space. Let \(T, S : \mathcal{X} \to \mathcal{X} \) be such that

\[\psi(\delta(Tx,Sy)) \leq \alpha \psi(M(x,y)) + L \min \{ d(x,Tx), d(y,Sy), d(x,Sy), d(y,Tx) \}, \]

(3.29)
for all comparable \(x, y \in \mathcal{X} \), where \(L \geq 0, 0 < \alpha < 1 \) and \(\varphi \) is an altering distance function and

\[
M(x, y) = \max \left\{ d(x, y), d(x, \mathcal{T}x), d(y, \mathcal{S}y), \frac{d(x, \mathcal{S}y) + d(y, \mathcal{T}x)}{2} \right\}. \tag{3.30}
\]

Also suppose that \(\mathcal{S} \) and \(\mathcal{T} \) are weakly isotone increasing. If

\[
\mathcal{S} \text{ is continuous} \tag{3.31}
\]

or

\[
\mathcal{T} \text{ is continuous} \tag{3.32}
\]

or

\[
\{x_n\} \subset \mathcal{X} \text{ is a nondecreasing sequence with } x_n \rightarrow z \text{ in } \mathcal{X}, \text{ then } x_n \preceq z \text{ } \forall n \tag{3.33}
\]

holds, then \(\mathcal{S} \) and \(\mathcal{T} \) have a common end-point.

Proof. If we assume \(\mathcal{T} \) and \(\mathcal{S} \) as a multivalued mapping in which \(\mathcal{T}x \) and \(\mathcal{S}x \) are a singleton set for every \(x \in \mathcal{X} \). Then we consider the same sequence \(\{x_n\} \) as in the proof of Theorem 3.4. Follows the line of proof of Theorem 3.4, we have that \(\{x_n\} \) is a Cauchy sequence and

\[
\lim_{n \to \infty} x_n = z. \tag{3.34}
\]

Then, if \(\mathcal{T} \) is continuous, we have

\[
z = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \mathcal{T}x_n = \mathcal{T}z \tag{3.35}
\]

and this proves that \(z \) is a end-point of \(\mathcal{T} \) and so \(z \) is a end-point of \(\mathcal{S} \). Similarly, if \(\mathcal{S} \) is continuous, we have the result. Thus it is immediate to conclude that \(\mathcal{T} \) and \(\mathcal{S} \) have a common end-point. \(\square \)

4. Common End-Point Theorems for a Pair of Multivalued Mappings Satisfying Weakly Contractive Condition

In this section, we prove common end-point theorems for a pair of weakly isotone increasing multivalued mappings under weakly contractive condition.

To complete the result, we need notion of weakly contractive condition given by Rhoades [32].

Definition 4.1 (Weakly Contractive Mapping). Let \(\mathcal{X} \) be a metric space. A mapping \(\mathcal{T} : \mathcal{X} \to \mathcal{X} \) is called weakly contractive if and only if

\[
d(\mathcal{T}x, \mathcal{T}y) \leq d(x, y) - \varphi(d(x, y)), \quad \forall x, y \in \mathcal{X}, \tag{4.1}
\]

where \(\varphi \) is an altering distance function.
Theorem 4.2. Let \((\mathcal{X}, d, \preceq)\) be an ordered complete metric space. Let \(\mathcal{T}, S : \mathcal{X} \to B(\mathcal{X})\) be such that

\[
\psi(d(\mathcal{T}x, Sy)) \leq \psi \left(\max \left\{ d(x, y), D(x, \mathcal{T}x), D(y, Sx), \frac{D(x, Sy) + D(y, \mathcal{T}x)}{2} \right\} \right) - \phi(\max\{d(x, y), \delta(y, Sy)\}),
\]

for all comparable \(x, y \in \mathcal{X}\), where \(\psi, \phi : [0, +\infty) \to [0, +\infty)\) are an altering distance functions.

Also suppose that \(S\) is \(\mathcal{T}\)-weakly isotone increasing and there exists an \(x_0 \in \mathcal{X}\) such that \(\{x_0\} \subset Sx_0\). If the property

\[
\{x_n\} \subset \mathcal{X}\text{ is a nondecreasing sequence with } x_n \to z \text{ in } \mathcal{X}, \quad \text{then } x_n \preceq z \ \forall n
\]

holds, then \(S\) and \(\mathcal{T}\) have a common end-point.

Proof. Define a sequence \(\{x_n\} \subset \mathcal{X}\) and prove that the limit point of that sequence is a unique common end-point for \(\mathcal{T}\) and \(S\). For a given \(x_0 \in \mathcal{X}\) and nonnegative integer \(n\) let

\[
x_0 = x, \quad x_{2n+1} \in Sx_{2n}, x_{2n+2} \in \mathcal{T}x_{2n+1} \quad \text{for } n \geq 0.
\]

Since \(\{x_0\} \subset Sx_0\), \(x_1 \in Sx_0\) can be chosen so that \(x_0 \preceq x_1\). Since \(S\) is \(\mathcal{T}\)-weakly isotone increasing, it is \(Sx_0 \preceq \mathcal{T}x_1\); in particular, \(x_2 \in \mathcal{T}x_1\) can be chosen so that \(x_1 \preceq x_2\). Now, \(\mathcal{T}x_1 \preceq Sx_2\) (since \(x_2 \in \mathcal{T}x_1\)); in particular, \(x_3 \in Sx_2\) can be chosen so that \(x_2 \preceq x_3\).

Continuing this process, we conclude that \(\{x_n\}\) can be an increasing sequence in \(\mathcal{X}\):

\[
x_1 \preceq x_2 \preceq \cdots \preceq x_n \preceq x_{n+1} \preceq \cdots.
\]

If there exists a positive integer \(N\) such that \(x_N = x_{N+1}\), then \(x_N\) is a common end-point of \(\mathcal{T}\) and \(S\). Hence we will assume that \(x_n \neq x_{n+1}\), for all \(n \geq 0\).

Suppose that \(n\) is an odd number. Substituting \(x = x_n\) and \(y = x_{n+1}\) in (2.6) and using properties of functions \(\psi\) and \(\phi\), we have for all \(n \geq 0\),

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(d(\mathcal{T}x_n, Sx_{n+1})) \leq \psi \left(\max \left\{ d(x_n, x_{n+1}), D(x_n, \mathcal{T}x_n), D(x_{n+1}, Sx_{n+1}), \frac{D(x_n, x_{n+1}) + D(x_{n+1}, \mathcal{T}x_n)}{2} \right\} \right)
\]

\[
- \phi(\max\{d(x_n, x_{n+1}), \delta(x_{n+1}, Sx_{n+1})\})
\]

\[
\leq \psi \left(\max \left\{ d(x_n, x_{n+1}), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2}), \frac{d(x_n, x_{n+2}) + d(x_{n+1}, x_{n+1})}{2} \right\} \right) - \phi(\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}).
\]
Since \(d(x_n, x_{n+2})/2 \leq \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\} \), it follows that

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}) - \phi(\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\}).
\]

(4.7)

Suppose that \(d(x_n, x_{n+1}) \leq d(x_{n+1}, x_{n+2}) \), for some positive integer \(n \). Then from (4.7), we have

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(d(x_{n+1}, x_{n+2})) - \phi(d(x_{n+1}, x_{n+2})),
\]

that is, \(\phi(d(x_{n+1}, x_{n+2})) \leq 0 \), which implies that \(d(x_{n+1}, x_{n+2}) = 0 \), or that \(x_{n+1} = x_{n+2} \), contradicting our assumption that \(x_n \neq x_{n+1} \). So we have

\[
d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1}).
\]

(4.9)

In the similar fashion, we can also show inequalities (4.9) when \(n \) is an even number. Therefore, for all \(n \geq 0 \) and \(\{d(x_n, x_{n+1})\} \) is a monotone decreasing sequence of nonnegative real numbers. Hence there exists an \(r \geq 0 \) such that

\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = r.
\]

(4.10)

In view of the above facts, from (4.7) we have for all \(n \geq 0 \),

\[
\psi(d(x_{n+1}, x_{n+2})) \leq \psi(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1})).
\]

(4.11)

Taking the limit as \(n \to \infty \) in the above inequality, using (4.10) and the continuities of \(\phi \) and \(\psi \), we have

\[
\psi(r) \leq \psi(r) - \phi(r),
\]

(4.12)

which is a contradiction unless \(r = 0 \). Hence

\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.
\]

(4.13)

Next we show that \(\{x_n\} \) is a Cauchy sequence. If \(\{x_n\} \) is not a Cauchy sequence, then using an argument similar to that given in Theorem 3.2, we can find two sequences of positive integers \(\{m(k)\} \) and \(\{n(k)\} \) for which

\[
\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon, \quad \lim_{k \to \infty} d(x_{m(k)+1}, x_{n(k)+1}) = \epsilon,
\]

\[
\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)+1}) = \epsilon, \quad \lim_{k \to \infty} d(x_{n(k)}, x_{m(k)+1}) = \epsilon.
\]

(4.14)
For each positive integer k, $x_{m(k)}$ and $x_{n(k)}$ are comparable. Then using the monotone property of ψ and (4.2), we have

\[
\varphi(d(x_{m(k)+1}, x_{n(k)+1})) \leq \varphi(D(x_{m(k)}, Sx_{n(k)+1} + D(x_{n(k)+1}, \mathbb{T}x_{m(k)})) \leq \varphi\left(\max\left\{d(x_{m(k)}, x_{n(k)+1}), D(x_{m(k)}, x_{n(k)+1}), D(x_{n(k)+1}, Sx_{n(k)+1})\right\}\right)
- \varphi\left(\max\{d(x_{m(k)}, x_{n(k)+1}), \delta(x_{n(k)+1}, Sx_{n(k)+1})\}\right),
\]

\[
= \varphi\left(\max\left\{d(x_{m(k)}, x_{n(k)+1}), d(x_{m(k)}, x_{n(k)+1}), d(x_{n(k)+1}, x_{n(k)+2})\right\}\right)
- \varphi\left(\max\{d(x_{m(k)}, x_{n(k)+1}), d(x_{n(k)+1}, x_{n(k)+2})\}\right).
\]

Letting $k \to \infty$ in the above inequality, using (4.14) and the continuities of φ and δ, we have

\[
\varphi(e) \leq \varphi(e) - \delta(e),
\]

which is a contradiction by virtue of a property of δ. Hence $\{x_n\}$ is a Cauchy sequence. From the completeness of \mathcal{K}, there exists a $z \in \mathcal{K}$ such that

\[
x_n \to z \quad \text{as} \quad n \to \infty.
\]

By the condition (4.3), $x_n \leq z$, for all n. Then by the monotone property of ψ and (4.2), we have

\[
\varphi(\delta(x_{n+1}, Sz)) \leq \varphi(\delta(Tx_n, Sz)) \leq \varphi\left(\max\left\{d(x_n, z), D(x_n, \mathbb{T}x_n), D(z, Sz), D(x_n, Sz) + D(z, \mathbb{T}x_n)\right\}\right)
- \varphi\left(\max\{d(x_n, z), \delta(z, Sz)\}\right)
\]

\[
\leq \varphi\left(\max\left\{d(x_n, z), d(x_n, x_{n+1}), D(z, Sz), D(x_n, Sz) + d(z, x_{n+1})\right\}\right)
- \varphi\left(\max\{d(x_n, z), \delta(z, Sz)\}\right).
\]
Taking the limit as $n \to \infty$ in the above inequality, using (4.13), (4.17) and the continuities of φ and ϕ, we have

$$\varphi(\delta(z, Sz)) \leq \varphi(D(z, Sz)) - \phi(\delta(z, Sz)), \quad (4.19)$$

which implies that

$$\varphi(\delta(z, Sz)) \leq \varphi(\delta(z, Sz)) - \phi(\delta(z, Sz)), \quad (4.20)$$

which is a contradiction unless $\delta(z, Sz) = 0$, or that $\{z\} = Sz$; that is, z is an end-point of S. Similarly $\{z\} = Tz$. Moreover, z is a common end-point of T and S.

Similar corollaries can be derived from Theorem 4.2.

Acknowledgment

The present version of the paper owes much to the precise and kind remarks of the learned referees.

References

Submit your manuscripts at
http://www.hindawi.com