Lightlike Hypersurfaces of a Semi-Riemannian Product Manifold and Quarter-Symmetric Nonmetric Connections

Erol Kılıç1 and Oğuzhan Bahadır2

1 Department of Mathematics, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkey
2 Department of Mathematics, Faculty of Arts and Sciences, Hitit University, 19030 Corum, Turkey

Correspondence should be addressed to Erol Kılıç, erol.kilic@inonu.edu.tr

Received 28 March 2012; Revised 2 July 2012; Accepted 16 July 2012

Academic Editor: Jianya Liu

We study lightlike hypersurfaces of a semi-Riemannian product manifold. We introduce a class of lightlike hypersurfaces called screen semi-invariant lightlike hypersurfaces and radical anti-invariant lightlike hypersurfaces. We consider lightlike hypersurfaces with respect to a quarter-symmetric nonmetric connection which is determined by the product structure. We give some equivalent conditions for integrability of distributions with respect to the Levi-Civita connection of semi-Riemannian manifolds and the quarter-symmetric nonmetric connection, and we obtain some results.

1. Introduction

The theory of degenerate submanifolds of semi-Riemannian manifolds is one of important topics of differential geometry. The geometry of lightlike submanifolds of a semi-Riemannian manifold, was presented in [1] (see also [2, 3]) by Duggal and Bejancu. In [4], Atçeken and Kılıç introduced semi-invariant lightlike submanifolds of a semi-Riemannian product manifold. In [5], Kılıç and Şahin introduced radical anti-invariant lightlike submanifolds of a semi-Riemannian product manifold and gave some examples and results for lightlike submanifolds. The lightlike hypersurfaces have been studied by many authors in various spaces (for example [6, 7]).

In [8], Hayden introduced a metric connection with nonzero torsion on a Riemannian manifold. The properties of Riemannian manifolds with semisymmetric (symmetric) and nonmetric connection have been studied by many authors [9–14]. In [15], Yaşar et al. have studied lightlike hypersurfaces in semi-Riemannian manifolds with semisymmetric nonmetric connection. The idea of quarter-symmetric linear connections in a differential
A linear connection is said to be a quarter-symmetric connection if its torsion tensor T is of the form:

$$T(X,Y) = u(Y)\varphi X - u(X)\varphi Y, \quad (1.1)$$

for any vector fields X, Y on a manifold, where u is a 1-form and φ is a tensor of type $(1,1)$. In this paper, we study lightlike hypersurfaces of a semi-Riemannian product manifold. As a first step, in Section 3, we introduce screen semi-invariant lightlike hypersurfaces and radical anti-invariant lightlike hypersurfaces of a semi-Riemannian product manifold. We give some examples and study their geometric properties. In Section 4, we consider lightlike hypersurfaces of a semi-Riemannian product manifold with quarter-symmetric nonmetric connection determined by the product structure. We compute the Riemannian curvature tensor with respect to the quarter-symmetric nonmetric connection and give some results.

2. Lightlike Hypersurfaces

Let $(\overline{M}, \overline{g})$ be an $(m+2)$-dimensional semi-Riemannian manifold with index $(\overline{g}) = q \geq 1$ and let (M, g) be a hypersurface of \overline{M}, with $g = \overline{g}|_M$. If the induced metric g on M is degenerate, then M is called a lightlike (null or degenerate) hypersurface [1] (see also [2, 3]). Then there exists a null vector field $\xi \neq 0$ on M such that

$$g(\xi, X) = 0, \quad \forall X \in \Gamma(TM). \quad (2.1)$$

The radical or the null space of T_xM, at each point $x \in M$, is a subspace $\text{Rad} T_xM$ defined by

$$\text{Rad} T_xM = \{ \xi \in T_xM | g_x(\xi, X) = 0, \forall X \in \Gamma(TM) \}, \quad (2.2)$$

whose dimension is called the nullity degree of g. We recall that the nullity degree of g for a lightlike hypersurface of \overline{M} is 1. Since g is degenerate and any null vector being perpendicular to itself, T_xM is also null and

$$\text{Rad} T_xM = T_xM \cap T_xM^\perp. \quad (2.3)$$

Since $\dim T_xM^\perp = 1$ and $\dim \text{Rad} T_xM = 1$, we have $\text{Rad} T_xM = T_xM^\perp$. We call $\text{Rad} TM$ a radical distribution and it is spanned by the null vector field ξ. The complementary vector bundle $S(TM)$ of $\text{Rad} TM$ in TM is called the screen bundle of M. We note that any screen bundle is nondegenerate. This means that

$$TM = \text{Rad} TM \perp S(TM). \quad (2.4)$$
Here \perp denotes the orthogonal-direct sum. The complementary vector bundle $S(TM)\perp$ of $S(TM)$ in $T\overline{M}$ is called screen transversal bundle and it has rank 2. Since $\text{Rad} \ TM$ is a lightlike subbundle of $S(TM)\perp$ there exists a unique local section N of $S(TM)\perp$ such that

$$\overline{g}(N, N) = 0, \quad \overline{g}(\xi, N) = 1.$$ \hfill (2.5)

Note that N is transversal to M and $\{\xi, N\}$ is a local frame field of $S(TM)\perp$ and there exists a line subbundle $\text{ltr}(TM)$ of $T\overline{M}$, and it is called the lightlike transversal bundle, locally spanned by N. Hence we have the following decomposition:

$$T\overline{M} = TM \oplus \text{ltr}(TM) = S(TM) \perp \text{Rad} \ TM \oplus \text{ltr}(TM),$$ \hfill (2.6)

where \oplus is the direct sum but not orthogonal [1, 3]. From the above decomposition of a semi-Riemannian manifold \overline{M} along a lightlike hypersurface M, we can consider the following local quasiothronormal field of frames of \overline{M} along M:

$$\{X_1, \ldots, X_m, \xi, N\},$$ \hfill (2.7)

where $\{X_1, \ldots, X_m\}$ is an orthonormal basis of $\Gamma(S(TM))$. According to the splitting (2.6), we have the following Gauss and Weingarten formulas, respectively:

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$\overline{\nabla}_X N = -A_N X + \nabla^t_X N,$$ \hfill (2.8)

for any $X, Y \in \Gamma(TM)$, where $\nabla_X Y, A_N X \in \Gamma(TM)$ and $h(X, Y), \nabla^t_X N \in \Gamma(\text{ltr}(TM))$. If we set $B(X, Y) = \overline{g}(h(X, Y), \xi)$ and $\tau(X) = \overline{g}(\nabla^t_X N, \xi)$, then (2.8) become

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y) N,$$ \hfill (2.9)

$$\overline{\nabla}_X N = -A_N X + \tau(X) N.$$ \hfill (2.10)

B and A are called the second fundamental form and the shape operator of the lightlike hypersurface M, respectively [1]. Let P be the projection of $S(TM)$ on M. Then, for any $X \in \Gamma(TM)$, we can write

$$X = PX + \eta(X)\xi,$$ \hfill (2.11)

where η is a 1-form given by

$$\eta(X) = \overline{g}(X, N).$$ \hfill (2.12)

From (2.9), we get

$$(\nabla_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y), \quad \forall X, Y, Z \in \Gamma(TM),$$ \hfill (2.13)
and the induced connection ∇ is a nonmetric connection on M. From (2.4), we have

$$\nabla_X W = \nabla^*_X W + h^*(X, W)$$

$$= \nabla^*_X W + C(X, W)\xi, \quad X \in \Gamma(TM), W \in \Gamma(S(TM)), \quad (2.14)$$

$$\nabla_X \xi = - A^*_X X - \tau(X) \xi,$$

where $\nabla^*_X W$ and $A^*_X X$ belong to $\Gamma(S(TM))$. C, $A^*_X X$ and ∇^* are called the local second fundamental form, the local shape operator and the induced connection on $S(TM)$, respectively. Also, we have the following identities:

$$g\left(A^*_X X, W\right) = B(X, W), \quad g\left(A^*_X X, N\right) = 0,$$

$$B(X, \xi) = 0, \quad g(A_N X, N) = 0. \quad (2.15)$$

Moreover, from the first and third equations of (2.15) we have

$$A^*_X \xi = 0. \quad (2.16)$$

Now, we will denote \overline{R} and R the curvature tensors of the Levi-Civita connection ∇ on \overline{M} and the induced connection ∇ on M. Then the Gauss equation of M is given by

$$\overline{R}(X, Y) Z = R(X, Y) Z + A_{h(X,Z)} Y - A_{h(Y,Z)} X$$

$$+ (\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z), \quad \forall X, Y, Z \in \Gamma(TM), \quad (2.17)$$

where $(\nabla_X h)(Y, Z) = \nabla^*_X (h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$. Then the Gauss-Codazzi equations of a lightlike hypersurface are given by

$$\overline{g}\left(\overline{R}(X, Y) Z, PW\right) = g(R(X, Y) Z, PW)$$

$$+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW),$$

$$\overline{g}\left(\overline{R}(X, Y) Z, \xi\right) = (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)$$

$$+ B(Y, Z)\tau(X) - B(X, Z)\tau(Y), \quad (2.18)$$

$$\overline{g}\left(\overline{R}(X, Y) Z, N\right) = g(R(X, Y) Z, N),$$

$$\overline{g}\left(\overline{R}(X, Y) \xi, N\right) = g(R(X, Y) \xi, N)$$

$$= C\left(Y, A^*_X X\right) - C\left(X, A^*_Y Y\right) - 2d\tau(X, Y),$$

for any $X, Y, Z, W \in \Gamma(TM), \xi \in \Gamma(Rad TM)$.

For geometries of lightlike submanifolds, hypersurfaces and curves, we refer to [1–3].
2.1. Product Manifolds

Let \bar{M} be an n-dimensional differentiable manifold with a tensor field F of type (1,1) on \bar{M} such that

$$F^2 = I.$$ \hfill (2.19)

Then \bar{M} is called an almost product manifold with almost product structure F. If we put

$$\pi = \frac{1}{2}(I + F), \quad \sigma = \frac{1}{2}(I - F),$$ \hfill (2.20)

then we have

$$\pi + \sigma = I, \quad \pi^2 = \pi, \quad \sigma^2 = \sigma, \quad \sigma \pi = \pi \sigma = 0, \quad F = \pi - \sigma.$$ \hfill (2.21)

Thus π and σ define two complementary distributions and F has the eigenvalue of $+1$ or -1. If an almost product manifold \bar{M} admits a semi-Riemannian metric \bar{g} such that

$$\bar{g}(FX, FY) = \bar{g}(X, Y),$$ \hfill (2.22)

for any vector fields X, Y on \bar{M}, then \bar{M} is called a semi-Riemannian almost product manifold. From (2.19) and (2.22), we have

$$\bar{g}(FX, Y) = \bar{g}(X, FY).$$ \hfill (2.23)

If, for any vector fields X, Y on \bar{M},

$$\nabla F = 0,$$ \hfill (2.24)

that is $\nabla_X FY = F\nabla_X Y$,

then \bar{M} is called a semi-Riemannian product manifold, where ∇ is the Levi-Civita connection on \bar{M}.

3. Lightlike Hypersurfaces of Semi-Riemannian Product Manifolds

Let M be a lightlike hypersurface of a semi-Riemannian product manifold (\bar{M}, \bar{g}). For any $X \in \Gamma(TM)$ we can write

$$FX = fX + w(X)N,$$ \hfill (3.1)

where f is a (1,1) tensor field and w is a 1-form on M given by $w(X) = \bar{g}(FX, \xi) = \bar{g}(X, F\xi)$.
Definition 3.1. Let M be a lightlike hypersurface of a semi-Riemannian product manifold $(\overline{M}, \overline{g})$:

(i) if $F \text{Rad} \ TM \subset S(\text{TM})$ and $F \text{litr} \ TM \subset S(\text{TM})$ then we say that M is a screen semi-invariant lightlike hypersurface;

(ii) if $FS(\text{TM}) = S(\text{TM})$ then we say that M is a screen invariant lightlike hypersurface;

(iii) if $F \text{Rad} \ TM = \text{litr} \ (\text{TM})$ then we say that M is a radical anti-invariant lightlike hypersurface.

We note that a radical anti-invariant lightlike hypersurface is a screen invariant lightlike hypersurface.

Remark 3.2. We recall that there are some lightlike hypersurfaces of a semi-Riemannian product manifold which differ from the above definition, that is, this definition does not cover all lightlike hypersurfaces of a semi-Riemannian product manifold $(\overline{M}, \overline{g})$. In this paper we will study the hypersurfaces determined above.

Now, let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold. If we set $D_1 = F \text{Rad} \ TM, D_2 = F \text{litr} \ TM$ then we can write

$$S(\text{TM}) = D \perp \{D_1 \oplus D_2\},$$

(3.2)

where D is a $(m-2)$-dimensional distribution. Hence we have the following decomposition:

$$T \text{M} = D \perp \{D_1 \oplus D_2\} \perp \text{Rad} \ TM,$$

$$T \overline{\text{M}} = D \perp \{D_1 \oplus D_2\} \perp \{\text{Rad} \ TM \oplus \text{litr}(TM)\}.$$

(3.3)

Proposition 3.3. The distribution D is an invariant distribution with respect to F.

Proof. For any $X \in \Gamma(D)$ and $U \in \Gamma(D_1), V \in \Gamma(D_2)$ we obtain

$$g(FX, U) = g(X, FU) = 0,$$

$$g(FX, V) = g(X, FV) = 0.$$

(3.4)

Thus there are no components of FX in D_1 and D_2. Furthermore, we have

$$g(FX, \xi) = g(X, F\xi) = 0,$$

$$g(FX, N) = g(X, FN) = 0.$$

(3.5)

Proof is completed. \square
If we set $D = D \perp \text{Rad } TM \perp F \text{ Rad } TM$, we can write

$$TM = \overline{D} \oplus D_2. \quad (3.6)$$

From the above proposition we have the following corollary.

Corollary 3.4. The distribution \overline{D} is invariant with respect to F.

Example 3.5. Let $(\overline{M} = R^5_2, \overline{g})$ be a 5-dimensional semi-Euclidean space with signature $(-,+,−,+,+)$ and (x, y, z, s, t) be the standard coordinate system of R^5_2. If we set $F(x, y, z, s, t) = (x, y, z, -s, -t)$, then $F^2 = I$ and F is a product structure on R^5_2. Consider a hypersurface M in \overline{M} by the equation:

$$t = x + y + z. \quad (3.7)$$

Then $TM = \text{Span}\{U_1, U_2, U_3, U_4\}$, where

$$U_1 = \frac{\partial}{\partial x} + \frac{\partial}{\partial t}, \quad U_2 = \frac{\partial}{\partial y} + \frac{\partial}{\partial t}, \quad U_3 = \frac{\partial}{\partial z} + \frac{\partial}{\partial t}, \quad U_4 = \frac{\partial}{\partial s}. \quad (3.8)$$

It is easy to check that M is a lightlike hypersurface and

$$TM^\perp = \text{Span}\{\xi = U_1 - U_2 + U_3\}. \quad (3.9)$$

Then take a lightlike transversal vector bundle as follow:

$$\text{ltr}(TM) = \text{Span}\left\{ N = -\frac{1}{4} \left\{ \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} - \frac{\partial}{\partial t} \right\} \right\}. \quad (3.10)$$

It follows that the corresponding screen distribution $S(TM)$ is spanned by

$$\{W_1 = U_4, W_2 = U_1 - U_2 - U_3, W_3 = U_1 + U_2 - U_3\}. \quad (3.11)$$

If we set $\mathbb{D} = \text{Span}\{W_1\}$, $\mathbb{D}_1 = \text{Span}\{W_2\}$ and $\mathbb{D}_2 = \text{Span}\{W_3\}$, then it can be easily checked that M is a screen semi-invariant lightlike hypersurface of \overline{M}.

Example 3.6. Let (x, y, z, t) be the standard coordinate system of R^4 and $ds^2 = -dx^2 - dy^2 + dz^2 + dt^2$ be a semi-Riemannian metric on R^4 with 2-index. Let F be a product structure on R^4 given
by \(F(x, y, z, t) = (z, t, x, y) \). We consider the hypersurface \(M \) given by \(t = x + (1/2)(y + z)^2 \) [1]. One can easily see that \(M \) is a lightlike hypersurface and

\[
\text{Rad } TM = \text{Span} \left\{ \xi = \frac{\partial}{\partial x} + (y + z) \frac{\partial}{\partial y} - (y + z) \frac{\partial}{\partial z} + \frac{\partial}{\partial t} \right\},
\]

\[
\text{litr}(TM) = \text{Span} \left\{ N = -\frac{1}{2(1 + (y + z)^2)} \left(\frac{\partial}{\partial x} + (y + z) \frac{\partial}{\partial y} + (y + z) \frac{\partial}{\partial z} - \frac{\partial}{\partial t} \right) \right\},
\]

\[
S(TM) = \text{Span} \left\{ W_1 = -(y + z) \frac{\partial}{\partial x} + \frac{\partial}{\partial y}, W_2 = \frac{\partial}{\partial z} + (y + z) \frac{\partial}{\partial t} \right\}.
\]

We can easily check that

\[
F_\xi = W_1 + W_2, \quad FN = \frac{1}{2(1 + (y + z)^2)} [W_1 - W_2].
\]

Thus \(M \) is a screen semi-invariant lightlike hypersurface with \(\mathbb{D} = \{0\} \), \(\mathbb{D}_1 = \text{Span}\{F_\xi\} \) and \(\mathbb{D}_2 = \text{Span}\{FN\} \).

Example 3.7. Let \((R^4_2, g) \) be a 4-dimensional semi-Euclidean space with signature \((-,-,+,+)\) and \((x_1, x_2, x_3, x_4)\) be the standard coordinate system of \(R^4_2 \). Consider a Monge hypersurface \(M \) of \(R^4_2 \) given by

\[
x_4 = Ax_1 + Bx_2 + Cx_3, \quad A^2 + B^2 - C^2 = 1, \quad A, B, C \in R.
\]

Then the tangent bundle \(TM \) of the hypersurface \(M \) is spanned by

\[
\left\{ U_1 = \frac{\partial}{\partial x_1} + A \frac{\partial}{\partial x_4}, U_2 = \frac{\partial}{\partial x_2} + B \frac{\partial}{\partial x_4}, U_3 = \frac{\partial}{\partial x_3} + C \frac{\partial}{\partial x_4} \right\}.
\]

It is easy to check that \(M \) is a lightlike hypersurface (p.196, Ex.1, [3]) whose radical distribution \(\text{Rad } TM \) is spanned by

\[
\xi = AU_1 + BU_2 - CU_3 = A \frac{\partial}{\partial x_1} + B \frac{\partial}{\partial x_2} - C \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_4}.
\]

Furthermore, the lightlike transversal vector bundle is given by

\[
\text{litr}(TM) = \text{Span} \left\{ N = -\frac{1}{2(C^2 + 1)} \left(A \frac{\partial}{\partial x_1} + B \frac{\partial}{\partial x_2} + C \frac{\partial}{\partial x_3} - \frac{\partial}{\partial x_4} \right) \right\}.
\]

It follows that the corresponding screen distribution \(S(TM) \) is spanned by

\[
\left\{ W_1 = \frac{1}{A^2 + B^2} \left(B \frac{\partial}{\partial x_1} - A \frac{\partial}{\partial x_2} \right), W_2 = \frac{1}{A^2 + B^2} \left(\frac{\partial}{\partial x_3} + C \frac{\partial}{\partial x_4} \right) \right\}.
\]
If we define a mapping F by $F(x_1, x_2, x_3, x_4) = (x_1, x_2, -x_3, -x_4)$ then $F^2 = I$ and F is a product structure on R^4. One can easily check that $F\mathcal{S}(TM) = \mathcal{S}(TM)$ and $F\text{ Rad } TM = \text{ ltr}(TM)$. Thus M is a radical anti-invariant lightlike hypersurface of R^4. Furthermore, this lightlike hypersurface is a screen invariant lightlike hypersurface.

Theorem 3.8. Let $(\overline{M}, \overline{g})$ be a semi-Riemannian product manifold and M be a screen semi-invariant lightlike hypersurface of \overline{M}. Then the following assertions are equivalent.

(i) The distribution \overline{D} is integrable with respect to the induced connection $\overline{\nabla}$ of M.

(ii) $g(A_x^* P, Y) = g(A_y^* P, X)$, for any $X, Y \in \Gamma(\overline{D})$.

(iii) $g(A_x^* X, P Y) = g(A_y^* Y, P X)$, for any $X, Y \in \Gamma(\overline{D})$.

Proof. For any $X, Y \in \Gamma(\overline{D})$, from (2.9), (2.24), and (3.1), we obtain

$$f \nabla_X Y + w(\nabla_X Y) N + B(X, Y)FN = \nabla_X f Y + B(X, f Y)N.$$ \hspace{1cm} (3.19)

Interchanging role of X and Y we have

$$f \nabla_Y X + w(\nabla_Y X) N + B(Y, X)FN = \nabla_Y f X + B(Y, f X)N.$$ \hspace{1cm} (3.20)

From (3.19), (3.20) we get

$$w(\{X, Y\}) = B(X, f Y) - B(Y, f X)$$ \hspace{1cm} (3.21)

and this is (i) \iff (ii). From the first equation of (2.15), we conclude (ii) \iff (iii). Thus we have our assertion. \hfill \square

From the decomposition (3.6), we can give the following definition.

Definition 3.9. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. If $B(X, Y) = 0$, for any $X \in \Gamma(\overline{D}), Y \in \Gamma(\overline{D}_2)$, then we say that M is a mixed geodesic lightlike hypersurface.

Theorem 3.10. Let $(\overline{M}, \overline{g})$ be a semi-Riemannian product manifold and M be a screen semi-invariant lightlike hypersurface of \overline{M}. Then the following assertions are equivalent.

(i) M is mixed geodesic.

(ii) There is no \mathcal{D}_2-component of A_N.

(iii) There is no \mathcal{D}_1-component of A_x^*.

Proof. Suppose that M is mixed geodesic screen semi-invariant lightlike hypersurface of \overline{M} with respect to the Levi-Civita connection $\overline{\nabla}$. From (2.24), (2.9), (2.10), and (3.1), we obtain

$$\nabla_X FN + B(X, FN)N = -f A_N X + \tau(X) FN - w(A_N X) N,$$ \hspace{1cm} (3.22)
for any $X \in \Gamma(\overline{\mathbb{D}})$. If we take tangential and transversal parts of this last equation we have

\[
\nabla_X FN = -f A_N X + \tau(X) FN, \\
B(X, FN) = -w(A_N X).
\]

Furthermore, since $w(A_N X) = g(A_N X, F\xi)$, we get (i) \Leftrightarrow (ii). Since $\overline{g}(FN, \xi) = \overline{g}(N, F\xi) = 0$, we obtain

\[
g(A_N X, F\xi) = -g\left(A_\xi^* X, FN\right).
\] (3.24)

This is (ii) \Leftrightarrow (iii).

From the decomposition (3.6), we have the following theorem.

Theorem 3.11. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. Then M is a locally product manifold according to the decomposition (3.6) if and only if f is parallel with respect to induced connection ∇, that is $\nabla f = 0$.

Proof. Let M be a locally product manifold. Then the leaves of distributions $\overline{\mathbb{D}}$ and \mathbb{D}_2 are both totally geodesic in M. Since the distribution $\overline{\mathbb{D}}$ is invariant with respect to F then, for any $Y \in \Gamma(\overline{\mathbb{D}})$, $FY \in \Gamma(\overline{\mathbb{D}})$. Thus $\nabla_X Y$ and $\nabla_X fY$ belong to $\Gamma(\overline{\mathbb{D}})$, for any $X \in \Gamma(TM)$. From the Gauss formula, we obtain

\[
\nabla_X fY + B(X, fY) N = f \nabla_X Y + w(\nabla_X Y) N + B(X, Y) FN.
\] (3.25)

Comparing the tangential and normal parts with respect to $\overline{\mathbb{D}}$ of (3.25), we have

\[
\nabla_X fY = f \nabla_X Y, \quad \text{that is } (\nabla_X f) Y = 0,
\] (3.26)

\[
B(X, Y) = 0.
\] (3.27)

Since $fZ = 0$, for any $Z \in \Gamma(\mathbb{D}_2)$, we get $\nabla_X fZ = 0$ and $f \nabla_X Z = 0$, that is $(\nabla_X f)Z = 0$. Thus we have $\nabla f = 0$ on M.

Conversely, we assume that $\nabla f = 0$ on M. Then we have $\nabla_X fY = f \nabla_X Y$, for any $X, Y \in \Gamma(\overline{\mathbb{D}})$ and $\nabla_U fW = f \nabla_U W = 0$, for any $U, W \in \Gamma(\mathbb{D}_2)$. Thus it follows that $\nabla_X fY \in \Gamma(\overline{\mathbb{D}})$ and $\nabla_U W \in \Gamma(\mathbb{D}_2)$. Hence, the leaves of the distributions $\overline{\mathbb{D}}$ and \mathbb{D}_2 are totally geodesic in M. \hfill \Box

From Theorem 3.11 and (3.27) we have the following corollary.

Corollary 3.12. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. If M has a local product structure, then it is a mixed geodesic lightlike hypersurface.
Let M be a radical anti-invariant lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. Then we have the following decomposition:

$$T\overline{M} = S(TM) \perp \{\text{Rad } TM \oplus F \text{ Rad } TM\}. \quad (3.28)$$

Theorem 3.13. Let M be a radical anti-invariant lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. Then the screen distribution $S(TM)$ of M is an integrable distribution if and only if $B(X, FY) = B(Y, FX)$.

Proof. If a vector field X on M belongs to $S(TM)$ if and only if $\eta(X) = 0$. Since M is a radical anti-invariant lightlike hypersurface, for any $X \in \Gamma(S(TM))$, $FX \in \Gamma(S(TM))$. For any $X,Y \in \Gamma(S(TM))$, we can write

$$\nabla_X FY = \nabla_X FY + B(X, FY)N. \quad (3.29)$$

In this last equation interchanging role of X and Y, we obtain

$$F[X, Y] = \nabla_X FY - \nabla_Y FX + (B(X, FY) - B(Y, FX))N. \quad (3.30)$$

Since $\eta([X, Y]) = \overline{g}([X, Y], N) = \overline{g}(F[X, Y], FN)$, we get

$$\eta([X, Y]) = (B(X, FY) - B(Y, FX))\overline{g}(N, FN). \quad (3.31)$$

Since $\overline{g}(N, FN) \neq 0$, $\eta([X, Y]) = 0$ if and only if $B(X, FY) = B(Y, FX)$. This is our assertion. \qed

4. Quarter-Symmetric Nonmetric Connections

Let $(\overline{M}, \overline{g}, F)$ be a semi-Riemannian product manifold and ∇ be the Levi-Civita connection on \overline{M}. If we set

$$\overline{D}_X Y = \nabla_X Y + u(Y)FX, \quad (4.1)$$

for any $X, Y \in \Gamma(T\overline{M})$, then \overline{D} is a linear connection on \overline{M}, where u is a 1-form on \overline{M} with U as associated vector field, that is

$$u(X) = \overline{g}(X, U). \quad (4.2)$$

The torsion tensor of \overline{D} on \overline{M} denoted by \overline{T}. Then we obtain

$$\overline{T}(X, Y) = u(Y)FX - u(X)FY, \quad (4.3)$$

$$\left(\overline{D}_X \overline{g}\right)(Y, Z) = -u(Y)\overline{g}(FX, Z) - u(Z)\overline{g}(FX, Y), \quad (4.4)$$
for any \(X, Y \in \Gamma(T\overline{M}) \). Thus \(\overline{D} \) is a quarter-symmetric nonmetric connection on \(\overline{M} \). From (2.24) and (4.1) we have
\[
\left(\overline{D}_X F \right)Y = u(FY)FX - u(Y)X. \tag{4.5}
\]
Replacing \(X \) by \(FX \) and \(Y \) by \(FY \) in (4.5) and using (2.19) we obtain
\[
\left(\overline{D}_{FX} F \right)FY = u(Y)X - u(FY)FX. \tag{4.6}
\]
Thus we have
\[
\left(\overline{D}_X F \right)Y + \left(\overline{D}_{FX} F \right)FY = 0. \tag{4.7}
\]
If we set
\[
'F(X, Y) = \overline{g}(FX, Y), \tag{4.8}
\]
for any \(X, Y \in \Gamma(T\overline{M}) \), from (4.1) we get
\[
\left(\overline{D}_X 'F \right)(Y, Z) = \left(\overline{\nabla}_X 'F \right)(Y, Z) - u(Y)\overline{g}(X, Z) - u(Z)\overline{g}(X, Y). \tag{4.9}
\]
From (4.1) the curvature tensor \(\overline{R}^\overline{D} \) of the quarter-symmetric nonmetric connection \(\overline{D} \) is given by
\[
\overline{R}^\overline{D}(X, Y)Z = \overline{R}(X, Y)Z + \overline{\lambda}(X, Z)FY - \overline{\lambda}(Y, Z)FX, \tag{4.10}
\]
for any \(X, Y, Z \in \Gamma(T\overline{M}) \), where \(\overline{\lambda} \) is a \((0, 2) \)-tensor given by \(\overline{\lambda}(X, Z) = \left(\overline{\nabla}_X u \right)(Z) - u(Z)u(FX) \).
If we set \(\overline{R}^\overline{D}(X, Y, Z, W) = \overline{g}(\overline{R}^\overline{D}(X, Y)Z, W) \), then, from (4.10), we obtain
\[
\overline{R}^\overline{D}(X, Y, Z, W) = -\overline{R}^\overline{D}(Y, X, Z, W). \tag{4.11}
\]
We note that the Riemannian curvature tensor \(\overline{R}^\overline{D} \) of \(\overline{D} \) does not satisfy the other curvature-like properties. But, from (4.10), we have
\[
\overline{R}^\overline{D}(X, Y)Z + \overline{R}^\overline{D}(Y, Z)X + \overline{R}^\overline{D}(Z, X)Y = \left(\overline{\lambda}(Z, Y) - \overline{\lambda}(Y, Z) \right)FX
+ \left(\overline{\lambda}(X, Z) - \overline{\lambda}(Z, X) \right)FY
+ \left(\overline{\lambda}(Y, X) - \overline{\lambda}(X, Y) \right)FZ. \tag{4.12}
\]
Thus we have the following proposition.
Proposition 4.1. Let M be a lightlike hypersurface of a semi-Riemannian product manifold \overline{M}. Then the first Bianchi identity of the quarter-symmetric nonmetric connection \overline{D} on M is provided if and only if $\overline{\lambda}$ is symmetric.

Let M be a lightlike hypersurface of a semi-Riemannian product manifold $(\overline{M}, \overline{g})$ with quarter-symmetric nonmetric connection \overline{D}. Then the Gauss and Weingarten formulas with respect to \overline{D} are given by, respectively,

$$\overline{D}_X Y = D_X Y + \overline{B}(X, Y) N$$

(4.13)

$$\overline{D}_X N = -\overline{A}_N X + \overline{\tau}(X) N$$

(4.14)

for any $X, Y \in \Gamma(TM)$, where $D_X Y, \overline{A}_N X \in \Gamma(TM)$, $\overline{B}(X, Y) = \overline{g}(\overline{D}_X Y, \xi)$, $\overline{\tau}(X) = \overline{g}(\overline{D}_X N, \xi)$. Here, D, B and \overline{A}_N are called the induced connection on M, the second fundamental form, and the Weingarten mapping with respect to \overline{D}. From (2.9), (2.10), (3.1), (4.1), (4.13), and (4.14) we obtain

$$D_X Y = \nabla_X Y + u(Y)fX,$$

(4.15)

$$\overline{B}(X, Y) = B(X, Y) + u(Y)\omega(X),$$

(4.16)

$$\overline{A}_N X = A_N X - u(N)fX,$$

(4.17)

$$\overline{\tau}(X) = \tau(X) + u(N)\omega(X),$$

for any $X, Y \in \Gamma(TM)$. From (4.1), (4.4), (4.13), and (4.16) we get

$$(D_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y)$$

$$- u(Y)g(fX, Z) - u(Z)g(fX, Y).$$

(4.18)

On the other hand, the torsion tensor of the induced connection D is

$$T^D(X, Y) = u(Y)fX - u(X)fY.$$ (4.19)

From last two equations we have the following proposition.

Proposition 4.2. Let M be a lightlike hypersurface of a semi-Riemannian product manifold $(\overline{M}, \overline{g})$ with quarter-symmetric nonmetric connection \overline{D}. Then the induced connection D is a quarter-symmetric nonmetric connection on the lightlike hypersurface M.

For any $X, Y \in \Gamma(TM)$, we can write

$$D_X PY = D_X^\overline{P} PY + \overline{C}(X, PY)\xi,$$

(4.20)

$$D_X \xi = -\overline{A}_\xi^\ast X + \epsilon(X)\xi,$$
where \(D^*_1 \) is the distribution given by (4.1). Since \(\omega(X) = g(FX, \xi) \), for any \(X \in \Gamma(D) \), \(\omega(X) = 0 \). Thus we have the following propositions.

Proposition 4.3. Let \(M \) be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product manifold \(\overline{M} \) with respect to the quarter symmetric connection \(\overline{D} \) given by (4.1). Since \(\omega(X) = g(FX, \xi) \), for any \(X \in \Gamma(D) \), \(\omega(X) = 0 \). Thus we have the following propositions.

Proposition 4.4. Let \((\overline{M}, \overline{g}) \) be a semi-Riemannian product manifold and \(M \) be a screen semi-invariant lightlike hypersurfaces of \(\overline{M} \). If \(M \) is \(\mathbb{D} \) totally geodesic with respect to \(\overline{\nabla} \), then \(M \) is \(\mathbb{D} \) totally geodesic with respect to quarter symmetric nonmetric connection \(\overline{D} \) is degenerate.

Theorem 4.5. Let \((\overline{M}, \overline{g}) \) be a semi-Riemannian product manifold and \(M \) be a screen semi-invariant lightlike hypersurfaces of \(\overline{M} \). Then the following assertions are equivalent.

(i) The distribution \(\overline{\mathbb{D}} \) is integrable with respect to the quarter symmetric nonmetric connection \(\overline{D} \).

(ii) \(\overline{B}(X, fY) = \overline{B}(Y, fX) \), for any \(X, Y \in \Gamma(\overline{\mathbb{D}}) \).

(iii) \(g(\overline{A}_2^*X, PfY) = g(\overline{A}_2^*Y, PfX) \), for any \(X, Y \in \Gamma(\overline{\mathbb{D}}) \).

The proof of this theorem is similar to the proof of the Theorem 3.8.

From (4.23), for any \(X \in \Gamma(\mathbb{D}) \) and \(Y \in \Gamma(\mathbb{D}_2) \), we have \(\overline{B}(X, PY) = g(\overline{A}_2^*X, PY) \). If we set \(\mathbb{D}' = \mathbb{D} \perp \mathbb{D}_2 \), then, from Theorem 3.10, we have the following corollary.

Corollary 4.6. Let \((\overline{M}, \overline{g}) \) be a semi-Riemannian product manifold and \(M \) be a screen semi-invariant lightlike hypersurface of \(\overline{M} \). Then the distribution \(\mathbb{D}' \) is a mixed geodesic foliation defined with respect to quarter symmetric nonmetric connection if and only if there is no \(\mathbb{D}_1 \) component of \(\overline{A}_2^* \).
From (4.15), we obtain

\[
R^D(X,Y)Z = R(X,Y)Z + u(Z)\left[(\nabla_X f)Y - (\nabla_Y f)X \right] + \lambda(X,Z)fY - \lambda(Y,Z)fX,
\]

(4.24)

where \(\lambda \) is a \((0,2)\) tensor on \(M \) given by \(\lambda(X,Z) = (\nabla_X u)(Z) - u(Z)u(fX) \).

From (4.24), we have the following proposition which is similar to the Proposition 4.1.

Proposition 4.7. Let \(M \) be a lightlike hypersurface of a semi-Riemannian product manifold \(\overline{M} \). One assumes that \(f \) is parallel on \(M \). Then the first Bianchi identity of the quarter-symmetric nonmetric connection \(D \) on \(M \) is provided if and only if \(\lambda \) is symmetric.

Now we will compute Gauss-Codazzi equations of lightlike hypersurfaces with respect to the quarter-symmetric nonmetric connection:

\[
\bar{g}\left(\overline{R}^D(X,Y)Z,PW\right) = g(R(X,Y)Z,PW) + B(X,Z)C(Y,PW) - B(Y,Z)C(X,PW) + \overline{\lambda}(X,Z)g(fY,PW) - \overline{\lambda}(Y,Z)g(fX,PW),
\]

\[
\bar{g}\left(\overline{R}^D(X,Y)Z,\xi\right) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \overline{\lambda}(X,Z)\eta(fY) - \overline{\lambda}(Y,Z)\eta(fX),
\]

(4.25)

\[
\bar{g}\left(\overline{R}^D(X,Y)Z,N\right) = g(R(X,Y)Z,N) + \overline{\lambda}(X,Z)\eta(fY) - \overline{\lambda}(Y,Z)\eta(fX),
\]

for any \(X, Y, Z, W \in \Gamma(TM) \).

Now, let \(M \) be a screen semi-invariant lightlike hypersurface of a \((m + 2)\)-dimensional semi-Riemannian product manifold with the quarter-symmetric nonmetric connection \(D \) such that the tensor field \(f \) is parallel on \(M \). We consider the local quasiorthornormal basis \(\{E_i,F_\xi,FN,\xi,N\} \), \(i = 1, \ldots m - 2 \), of \(\overline{M} \) along \(M \), where \(\{E_1, \ldots, E_{m-2}\} \) is an orthonormal basis of \(\Gamma(D) \). Then, the Ricci tensor of \(M \) with respect to \(D \) is given by

\[
R^{D[0,2]}(X,Y) = \sum_{i=1}^{m-2} e_i g\left(R^D(X,E_i)Y,E_i \right) + g\left(R^D(X,F_\xi)Y,FN \right) + g\left(R^D(X,FN)Y,F_\xi \right) + g\left(R^D(X,\xi)Y,N \right).
\]

(4.26)
From (4.24) we have
\[
R^{D(0,2)}(X, Y) = R^{(0,2)}(X, Y)
\]
\[
+ \sum_{i=1}^{m-2} e_i \{ \lambda(X, Y) g(f E_i, E_i) - \lambda(E_i, Y) g(f X, E_i) \} \quad (4.27)
\]
\[
- \lambda(F \xi, Y) \eta(X) - \lambda(\xi, Y) \eta(f X),
\]

where \(R^{(0,2)}(X, Y) \) is the Ricci tensor of \(M \). Thus we have the following corollary.

Corollary 4.8. Let \(M \) a screen semi-invariant lightlike hypersurface of a \((m + 2) \)-dimensional semi-Riemannian product manifold with the quarter-symmetric nonmetric connection \(\overline{\nabla} \) such that the tensor field \(f \) is parallel on \(M \) and \(R^{(0,2)}(X, Y) \) is symmetric. Then \(R^{D(0,2)} \) is symmetric on the distribution \(\nabla \) if and only if \(\lambda \) is symmetric and \(\lambda(f X, Y) = \lambda(f Y, X) \).

Acknowledgment

The authors have greatly benefited from the referee’s report. So we wish to express our gratitude to the reviewer for his/her valuable suggestions which improved the content and presentation of the paper. This paper is dedicated to Professor Sadik Keleş on his sixtieth birthday.

References

Submit your manuscripts at http://www.hindawi.com