Research Article

$W_\theta g$-Closed and $W_\delta g$-Closed in $[0,1]$-Topological Spaces

M. E. El-Shafei1 and A. H. Zakari2

1 Department of Mathematics, Mansoura University, P.O. Box 35516, Mansoura 35516, Egypt
2 Department of Mathematics, Jazan University, P.O. Box 100, Jaza, Damad, Saudi Arabia

Correspondence should be addressed to A. H. Zakari, d_ahz@hotmail.com

Received 8 June 2010; Accepted 14 September 2010

Copyright © 2011 M. E. El-Shafei and A. H. Zakari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate various classes of generalized closed fuzzy sets in $[0,1]$-topological spaces, namely, $W_\theta g$-closed fuzzy sets and $W_\delta g$-closed fuzzy sets. Also, we introduce a new separation axiom $FT_{3/4}$ of the $[0,1]$-topological spaces, and we prove that every $FT_{3/4}$-space is a $FT_{3/4}$-space. Furthermore, we use the new generalized closed fuzzy sets to construct new types of fuzzy mappings.

1. Introduction

In 1970, Levine [1] introduced the notion of generalized closed sets in topological spaces as a generalization of closed sets. Since then, many concepts related to generalized closed sets were defined and investigated. In 1997, Balasubramanian and Sundaram [2] introduced the concepts of generalized closed sets in fuzzy setting. Also, they studied various generalizations fuzzy continuous mappings.

Recently, El-Shafei and Zakari [3–5] introduced new types of generalized closed fuzzy sets in $[0,1]$-topological spaces and studied many of their properties. Also, they studied various generalizations fuzzy continuous mappings.

In the present paper, we introduce the concepts of $W_\theta g$-closed fuzzy sets and $W_\delta g$-closed fuzzy sets and study some of their properties. Also, we introduce the concept of $FT_{3/4}$-space. Moreover, we introduce and study the concepts of two new classes of fuzzy mappings, namely, fuzzy $W_\theta g$-continuous mappings and fuzzy $W_\delta g$-irresolute mappings.

2. Preliminaries

Let X be a set and I the unit interval. A fuzzy set in X is an element of the set of all functions from X into I. The family of all fuzzy sets in X is denoted by I^X. A fuzzy singleton x_i is a
fuzzy set in X defined by $x_t(x) = t$, $x_t(y) = 0$ for all $y \neq x$, $t \in (0,1]$. The set of all fuzzy singletons in X is denoted by $S(X)$. For every $x_t \in S(X)$ and $\mu \in I^X$, we define $x_t \in \mu$ if and only if $t \leq \mu(x)$. A fuzzy set μ is called quasicoincident with a fuzzy set ρ, denoted by $\mu \ q \ \rho$, if and only if there exists $x \in X$ such that $\mu(x) + \rho(x) > 1$. If μ is not quasicoincident with ρ, then we write $\mu \neq \rho$. By $\text{cl}(\mu)$, $\text{int}(\mu)$, μ^ϵ, $N(x_t, \tau)$, and $N_Q(x_t, \tau)$, we mean the fuzzy closure of μ, the fuzzy interior of μ, the complement of μ, the class of all open neighborhoods of x_t, and the class of all open Q-neighborhoods of x_t, respectively.

Definition 2.1 (see [6, 7]). A fuzzy subset μ of a $[0,1]$-topological space (X, τ) is called

(i) regular open if and only if $\mu = \text{int(cl}(\mu))$,

(ii) preopen if and only if $\mu \leq \text{int(cl}(\mu))$.

The complement of a regular open (resp. preopen) fuzzy set is called a regular closed (resp. preclosed).

Definition 2.2 (see [8, 9]). Let (X, τ) be a $[0,1]$-topological space, $x_t \in S(X)$, and $\mu \in I^X$. Then,

(i) the δ-closure of μ, denoted by $\text{cl}_\delta(\mu)$, is defined by

$$x_t \in \text{cl}_\delta(\mu) \text{ if and only if } \text{cl}(\eta)q\mu \text{ for each } \eta \in N_Q(x_t, \tau),$$

(ii) the δ-closure of μ denoted by $\text{cl}_\delta(\mu)$, is defined by

$$x_t \in \text{cl}_\delta(\mu) \text{ if and only if } \text{int(cl}(\eta))q\mu \text{ for each } \eta \in N_Q(x_t, \tau),$$

(iii) μ is called θ-closed (resp. δ-closed) if and only if $\mu = \text{cl}_\theta(\mu)$ (resp. $\mu = \text{cl}_\delta(\mu)$).

Definition 2.3 (see [9]). Let (X, τ) be a $[0,1]$-topological space and $\mu \in I^X$. Then,

(i) the family $\gamma = \{\eta_j : j \in J\} \subseteq \tau$ is called an open P-cover of μ if and only if for every $x_t \in \mu$, there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$,

(ii) μ is called a C-set if and only if every open P-cover of μ has a finite subcover.

Definition 2.4 (see [2–4]). Let (X, τ) be a $[0,1]$-topological space. A fuzzy set $\mu \in I^X$ is called

(i) a generalized closed (g-closed, for short) if and only if $\text{cl}(\mu) \leq \eta$ whenever $\mu \leq \eta$ and η is open fuzzy set,

(ii) a θ-generalized closed (θg-closed, for short) if and only if $\text{cl}_\theta(\mu) \leq \eta$ whenever $\mu \leq \eta$ and η is open fuzzy set,

(iii) a δ-generalized closed (δg-closed, for short) if and only if $\text{cl}_\delta(\mu) \leq \eta$ whenever $\mu \leq \eta$ and η is open fuzzy set.

Definition 2.5 (see [2, 4, 6, 10]). A $[0,1]$-topological space (X, τ) is called

(i) FR_1 if and only if $x_t \eta \| \text{cl}(y_r)$ implies that there exist $\eta \in N(x_t, \tau)$ and $v \in N(y_r, \tau)$ such that $\eta \| \nu$,

(ii) FR_2 or F-regular if and only if $x_t \| \lambda$ is closed fuzzy set implies that there exist $\eta \in N(x_t, \tau)$ and $v \in \tau$, $\lambda \leq v$ such that $\eta \| \nu$,

(iii) $FT_{1/2}$ if and only if every g-closed fuzzy set in X is closed,

(iv) $FT_{3/4}$ if and only if every δg-closed fuzzy set in X is δ-closed,
(v) fuzzy weakly Hausdorff (FWT₂, for short) if \(x_i \tilde{\in} y_r \) implies that there exists regular open fuzzy set \(\eta \in N(x_i, \tau) \) such that \(y_r \tilde{\in} \eta \),

(vi) fuzzy semiregular if and only if the collection of all regular open fuzzy sets in \(X \) forms a base for the \([0,1]\)-topology \(\tau \),

(vii) a fuzzy partition space if and only if every open fuzzy subset is closed.

Definition 2.6 (see [2-4, 11]). A fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is called

(i) fuzzy generalized continuous (fuzzy \(g \)-continuous, for short) if and only if \(f^{-1}(\eta) \) is \(g \)-closed in \(X \) for any closed fuzzy set \(\eta \) in \(Y \),

(ii) fuzzy \(\theta \)-generalized continuous (fuzzy \(\theta g \)-continuous, for short) if and only if \(f^{-1}(\eta) \) is \(\theta g \)-closed in \(X \) for any closed fuzzy set \(\eta \) in \(Y \),

(iii) fuzzy \(\delta \)-generalized continuous (fuzzy \(\delta g \)-continuous, for short) if and only if \(f^{-1}(\eta) \) is \(\delta g \)-closed in \(X \) for any closed fuzzy set \(\eta \) in \(Y \),

(iv) fuzzy \(\delta \)-continuous if the inverse image of every \(\delta \)-open fuzzy set in \(Y \) is \(\delta \)-open in \(X \),

(v) fuzzy \(\delta \)-open (fuzzy \(\delta \)-open, for short) if and only if \(f(\eta) \) is \(\delta \)-open in \(Y \) for any \(\delta \)-open fuzzy set \(\eta \) in \(X \),

(vi) fuzzy \(\delta \)-closed (fuzzy \(\delta \)-closed, for short) if and only if \(f(\eta) \) is \(\delta \)-closed in \(Y \) for any \(\delta \)-closed fuzzy set \(\eta \) in \(X \).

Theorem 2.7 (see [3]). A fuzzy subset \(\mu \) of an \(FR_2 \)-fts \((X, \tau) \) is \(\theta g \)-closed if and only if it is \(g \)-closed.

Theorem 2.8 (see [3]). Let \((X, \tau) \) be a \([0,1]\)-topological space. Then, the following conditions are equivalent:

(i) \((X, \tau) \) is \(FR_1 \)-space,

(ii) for each \(C \)-set \(\mu \in I^X \), \(cl(\mu) = cl_\theta(\mu) \),

(iii) for each \(x_i \in S(X) \), \(cl(x_i) = cl_\theta(x_i) \).

Theorem 2.9 (see [3, 4]). Let \((X, \tau) \) be a \([0,1]\)-topological space and \(\mu \in I^X \) be a preopen. Then, \(\mu \) is \(\theta g \)-closed (resp. \(\delta g \)-closed) if and only if it is \(g \)-closed.

Theorem 2.10 (see [3]). Let \((X, \tau) \) be a \([0,1]\)-topological space and \(\mu, \eta \in I^X \). Then,

(i) \(cl_\theta(\mu \lor \eta) = cl_\theta(\mu) \lor cl_\theta(\eta) \),

(ii) \(cl_\theta(\mu \land \eta) \leq cl_\theta(\mu) \land cl_\theta(\eta) \).

Theorem 2.11 (see [4]). Let \((X, \tau) \) be a fuzzy semiregular space and \(\mu \in I^X \). Then,

(i) \(\mu \) is \(\delta g \)-closed if and only if \(\mu \) is \(g \)-closed,

(ii) If, in addition, \((X, \tau) \) is \(FIT_{1/2} \), then \(\mu \) is \(\delta g \)-closed if and only if \(\mu \) is closed.

Theorem 2.12 (see [4]). Let \((X, \tau) \) be an \(FR_1 \)-space and \(\mu \in I^X \) be a \(C \)-set. Then, \(\mu \) is \(\delta g \)-closed if and only if it is \(g \)-closed.
Theorem 2.13 (see [4]). Let \((X, \tau)\) be a fuzzy partition space and \(\mu \in I^X\). Then, \(\mu\) is \(\delta g\)-closed if and only if it is \(g\)-closed.

Theorem 2.14 (see [4]). Let \((X, \tau)\) be a \([0,1]\)-topological space and \(\mu, \eta \in I^X\). Then,

(i) \(\text{cl}_\delta(\mu \lor \eta) = \text{cl}_\delta(\mu) \lor \text{cl}_\delta(\eta)\),

(ii) \(\text{cl}_\delta(\mu \land \eta) \leq \text{cl}_\delta(\mu) \land \text{cl}_\delta(\eta)\).

Theorem 2.15 (see [4]). A \([0,1]\)-topological space \((X, \tau)\) is \(FT_{3/4}\)-space if for every \(x_i \in S(X)\) either \(x_i\) is \(\delta\)-open or \(x_i\) is closed.

Theorem 2.16 (see [4]). Let \((X, \tau)\) be a \([0,1]\)-topological space. Then, the following conditions are equivalent:

(i) \(X\) is an \(FWT_2\)-space,

(ii) \(x_i = \text{cl}_\delta(x_i)\) for each \(x_i \in S(X)\).

3. \(W\theta g\)-Closed Fuzzy Sets

In this section, we introduce the concept of weakly \(\theta\)-generalized closed fuzzy sets, and we study some of their properties.

Definition 3.1. A fuzzy subset \(\mu\) of a \([0,1]\)-topological space \((X, \tau)\) is said to be weakly \(\theta\)-generalized closed (\(W\theta g\)-closed, for short) if and only if \(\text{cl}_\delta(\mu) \land \eta \leq \eta\) whenever \(\mu \leq \eta\) and \(\eta\) is \(\theta\)-open fuzzy set.

The complement of a \(W\theta g\)-closed fuzzy set is called \(W\theta g\)-open.

Theorem 3.2. Let \((X, \tau)\) be a \([0,1]\)-topological space. Then,

(i) Every \(\theta\)-closed fuzzy set is \(W\theta g\)-closed,

(ii) Every \(\theta g\)-closed fuzzy set is \(W\theta g\)-closed.

Proof. Obvious. \(\square\)

From the above discussion, we introduce the following diagram.

\[
\begin{array}{ccc}
W\theta g\text{-closed} & \longrightarrow & \theta g\text{-closed} \\
\text{\(\theta\)-closed} & \longrightarrow & \\
\end{array}
\]

(3.1)

None of these implications is reversible as the following examples show.

Example 3.3. Let \(X = \{x, y\}\) and \(\tau = \{0_X, y_{0,7}, 1_X\}\). If \(\mu = x_{0,5} \lor y_{0,6}\), then \(\mu\) is \(W\theta g\)-closed fuzzy set but not \(\theta\)-closed.

Example 3.4. Let \(X = \{x\}\) and \(\tau = \{0_X, x_{0,6}, 1_X\}\). If \(\mu = x_{0,5}\), then \(\mu\) is \(W\theta g\)-closed, since the only \(\theta\)-open superset of \(\mu\) is \(1_X\). But \(\mu\) is not \(\theta g\)-closed, since \(\mu \leq x_{0,6}\) and \(\text{cl}_\delta(\mu) = 1_X \nsubseteq x_{0,6}\).
Theorem 3.5. A fuzzy subset \(\mu \) of a \([0,1]\)-topological space \((X, \tau)\) is \(W\theta g\)-closed if for every \(x_i \in S(X) \) such that \(x_i \text{cl}_\theta(\mu) \), one has \(\text{cl}_\theta(x_i) \mu \).

Proof. Let \(\eta \) be \(\theta \)-open and \(\mu \leq \eta \). If \(x_i \text{cl}_\theta(\mu) \), then by assumption, \(\text{cl}_\theta(x_i) \mu \). Hence, there exists \(y \in X \) such that \(\text{cl}_\theta(x_i)(y) + \mu(y) > 1 \). Put \(\text{cl}_\theta(x_i)(y) = \varepsilon \). Then, \(y_x \in \text{cl}_\theta(x_i) \) and \(y_x \mu \). Thus, \(\rho q x_i \) for each \(\rho \in \mathcal{N}(\varepsilon, \tau_0) \). Since \(y_x \mu \), then \(\eta q x_i \) and so \(\text{cl}_\theta(\mu) \leq \eta \). Thus, \(\mu \) is \(W\theta g \)-closed.

Theorem 3.6. Let \((X, \tau)\) be a \([0,1]\)-topological space and \(\mu \in I^X \). Then, \(\mu \) is \(W\theta g \)-closed if there is not any \(\theta \)-closed fuzzy set \(\lambda \) such that \(\lambda \not\subseteq \mu \) and \(\lambda q \text{cl}_\theta(\mu) \).

Proof. Suppose that \(\mu \) is not \(W\theta g \)-closed. Then, there exists \(\theta \)-open fuzzy set \(\eta \) such that \(\mu \leq \eta \) and \(\text{cl}_\theta(\mu) \notin \eta \). Put \(\lambda = \eta' \). Then, there exists \(\theta \)-closed fuzzy set \(\lambda \) such that \(\lambda \not\subseteq \mu \) and \(\lambda q \text{cl}_\theta(\mu) \). This is a contradiction.

Theorem 3.7. Let \((X, \tau)\) be an \(FR_1 \)-space and \(\mu \in I^X \) be a \(C \)-set and \(g \)-closed. Then, \(\mu \) is \(W\theta g \)-closed.

Proof. Suppose that \((X, \tau)\) is an \(FR_1 \)-space and \(\mu \) is a \(C \)-set in \(X \). If \(\mu \) is \(g \)-closed, then by Theorem 2.8 \(\mu \) is \(\theta g \)-closed and hence \(W\theta g \)-closed.

Theorem 3.8. Let \((X, \tau)\) be a \([0,1]\)-topological space and \(\mu \in I^X \) be a \(\text{preopen} \) and \(g \)-closed. Then, \(\mu \) is \(W\theta g \)-closed.

Proof. It is an immediate consequence of Theorems 2.9 and 3.2.

Theorem 3.9. Let \((X, \tau)\) be an \(FR_2 \)-space and \(\mu \in I^X \) be a \(g \)-closed. Then, \(\mu \) is \(W\theta g \)-closed.

Proof. It is an immediate consequence of Theorems 2.7 and 3.2.

Theorem 3.10. A finite union of \(W\theta g \)-closed fuzzy sets, is always \(W\theta g \)-closed fuzzy set.

Proof. Suppose that \(\mu, \eta \in I^X \) are \(W\theta g \)-closed fuzzy sets and let \(v \in \tau_0 \) such that \(\mu \vee \eta \leq v \). Since \(\mu \) and \(\eta \) are \(W\theta g \)-closed, then we have \(\text{cl}_\theta(\mu) \vee \text{cl}_\theta(\eta) \leq v \) and by Theorem 2.10(i) \(\text{cl}_\theta(\mu \vee \eta) \leq v \). Hence, \(\mu \vee \eta \) is \(W\theta g \)-closed.

4. \(W\delta g \)-Closed Fuzzy Sets

In this section, we introduce the concept of weakly \(\delta \)-generalized closed fuzzy sets, and we study some of their properties. Also, we introduce the notion of \(FT^*_{3/4} \)-space, and we prove that every \(FT^*_{3/4} \)-space is a \(FT^*_{3/4} \)-space.

Definition 4.1. A fuzzy subset \(\mu \) of \([0,1]\)-topological space \((X, \tau)\) is said to be weakly \(\delta \)-generalized closed (\(W\delta g \)-closed, for short) if and only if \(\text{cl}_\delta(\mu) \leq \eta \) whenever \(\mu \leq \eta \) and \(\eta \) is \(\delta \)-open fuzzy set.

The complement of a \(W\delta g \)-closed fuzzy set is called \(W\delta g \)-open.

Theorem 4.2. Let \((X, \tau)\) be a \([0,1]\)-topological space. Then,

(i) Every \(\delta \)-closed fuzzy set is \(W\delta g \)-closed,

(ii) Every \(\delta g \)-closed fuzzy set is \(W\delta g \)-closed.
Proof. Obvious.

From the above discussion, we introduce the following diagram.

```
\[\text{W}δg\text{-closed} \quad \delta\text{-closed} \quad \delta g\text{-closed}\]
```

None of these implications is reversible as the following examples show.

Example 4.3. Let \(X = \{x\}\) and \(\tau = \{0_X, x_{0.8}, 1_X\}\). If \(\mu = x_{0.7}\), then \(\mu\) is \(Wδg\)-closed, since the only \(δ\)-open superset of \(\mu\) is \(1_X\). But \(\mu\) is not \(δg\)-closed, since \(\mu \leq x_{0.8}\) and \(\text{cl}_g(\mu) = 1_X \neq x_{0.8}\).

Example 4.4. Let \(X = \{x, y\}\) and \(\tau = \{0_X, y_{0.8}, 1_X\}\). A fuzzy subset \(\mu = x_{0.2} \lor y_{0.3}\) is \(δg\)-closed and hence \(Wδg\)-closed, but it is not \(δ\)-closed.

Theorem 4.5. A fuzzy subset \(\mu\) of a \([0,1]\)-topological space \((X, \tau)\) is \(Wδg\)-closed if and only if for every \(x_i \in S(X)\) such that \(x_i q\text{cl}_g(\mu)\) one has \(\text{cl}_g(x_i)q\mu\).

Proof. Let \(x_i q\text{cl}_g(\mu)\) and suppose that \(\text{cl}_g(x_i)q\mu\). Since \(\mu\) is \(Wδg\)-closed, then it is easy to observe that \(\text{cl}_g(x_i)q\text{cl}_g(\mu)\) which implies that \(x_i q\text{cl}_g(\mu)\). This is a contradiction.

The converse is similar to the proof of Theorem 3.5.

Theorem 4.6. Let \((X, \tau)\) be a \([0,1]\)-topological space and \(\mu \in I^X\). Then, \(\mu\) is \(Wδg\)-closed if and only if there is not any \(δ\)-closed fuzzy set \(\lambda\) such that \(\lambda q\mu\) and \(\lambda q\text{cl}_g(\mu)\).

Proof. Suppose that there is a \(δ\)-closed fuzzy set \(\lambda\) such that \(\lambda q\mu\) and \(\lambda q\text{cl}_g(\mu)\). Then, there exists some \(x_i \in \lambda\) such that \(x_i q\text{cl}_g(\mu)\). Since \(\mu\) is \(Wδg\)-closed, then by using Theorem 4.5, \(\text{cl}_g(x_i)q\mu\) and hence \(\text{cl}_g(\lambda)q\mu\). Since \(\lambda\) is \(δ\)-closed, then we have \(\lambda q\mu\). This is a contradiction.

The converse is similar to the proof of Theorem 3.6.

Theorem 4.7. Let \((X, \tau)\) be a fuzzy semiregular space and \(\mu \in I^X\). Then,

(i) \(\mu\) is \(Wδg\)-closed if and only if it is \(δg\)-closed,

(ii) If, in addition, \((X, \tau)\) is \(FT_{1/2}\)-space, then \(\mu\) is \(Wδg\)-closed if and only if it is closed.

Proof. (i) Since \((X, \tau)\) is semiregular space, then \(\tau = \tau_δ\), and so \(\mu\) is \(Wδg\)-closed if and only if it is \(δg\)-closed.

(ii) From (i), Theorem 2.11, and by \(FT_{1/2}\)-ness, the result is given.

Theorem 4.8. Let \((X, \tau)\) be an \(FR_1\)-space and \(\mu \in I^X\) be a \(C\)-set and \(g\)-closed. Then, \(\mu\) is \(Wδg\)-closed.

Proof. Suppose that \((X, \tau)\) is an \(FR_1\)-space and \(\mu\) is a \(C\)-set in \(X\). If \(\mu\) is \(g\)-closed, then by Theorem 2.12 \(\mu\) is \(δg\)-closed and hence \(Wδg\)-closed.

Theorem 4.9. Let \((X, \tau)\) be a \([0,1]\)-topological space and \(\mu \in I^X\) be a preopen and \(g\)-closed. Then, \(\mu\) is \(Wδg\)-closed.

Proof. It is an immediate consequence of Theorems 2.9 and 4.2.
Theorem 4.10. Every fuzzy subset of a fuzzy partition space \((X, \tau)\) is \(W\delta g\)-closed.

Proof. Let \((X, \tau)\) be a fuzzy partition space, and let \(\mu\) be a fuzzy subset of \(X\). Then, by Theorem 2.13, \(\mu\) is \(\delta g\)-closed and hence, by Theorem 4.2, \(\mu\) is \(W\delta g\)-closed. \(\Box\)

Theorem 4.11. A finite union of \(W\delta g\)-closed fuzzy sets is always \(W\delta g\)-closed fuzzy set.

Proof. Similar to the proof of Theorem 3.10. \(\Box\)

The following example shows that the finite intersection of \(W\delta g\)-closed fuzzy set may fail to be \(W\delta g\)-closed fuzzy set.

Example 4.12. Let \(X = \{a, b, c, d, e\}\). Define \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 : X \to [0, 1]\) as follows:

\[
\begin{align*}
\lambda_1(a) &= 1, & \lambda_1(b) &= 1, & \lambda_1(c) &= 0, & \lambda_1(d) &= 0, & \lambda_1(e) &= 0, \\
\lambda_2(a) &= 0, & \lambda_2(b) &= 0, & \lambda_2(c) &= 1, & \lambda_2(d) &= 0, & \lambda_2(e) &= 0, \\
\lambda_3(a) &= 1, & \lambda_3(b) &= 1, & \lambda_3(c) &= 1, & \lambda_3(d) &= 0, & \lambda_3(e) &= 0, \\
\lambda_4(a) &= 1, & \lambda_4(b) &= 0, & \lambda_4(c) &= 1, & \lambda_4(d) &= 1, & \lambda_4(e) &= 0, \\
\lambda_5(a) &= 0, & \lambda_5(b) &= 1, & \lambda_5(c) &= 1, & \lambda_5(d) &= 0, & \lambda_5(e) &= 1.
\end{align*}
\]

Consider the \([0, 1]\)-topology \(\tau = \{0_X, \lambda_1, \lambda_2, \lambda_3, 1_X\}\). It is clear that \(\lambda_4\) and \(\lambda_5\) are \(W\delta g\)-closed fuzzy sets. But \(\lambda_4 \land \lambda_5 = \lambda_2\) is not \(W\delta g\)-closed.

Definition 4.13. A \([0, 1]\)-topological space \((X, \tau)\) is called \(FT^*_3/4\)-space if and only if every \(W\delta g\)-closed fuzzy set is \(\delta\)-closed.

Theorem 4.14. Every \(FT^*_3/4\)-space is \(FT_3/4\)-space.

Proof. It is an immediate consequence of Theorem 4.2(ii). \(\Box\)

Theorem 4.15. A \([0, 1]\)-topological space \((X, \tau)\) is \(FT^*_3/4\)-space if for every \(x_i \in S(X)\) either \(x_i\) is \(\delta\)-open or \(\delta\)-closed.

Proof. Let \(\mu \in F^X\) be \(W\delta g\)-closed, and let \(x_i \bar{\nu} \mu\). We consider the following two cases.

Case 1. \(x_i\) is \(\delta\)-open. Then, \(x_i^c\) is \(\delta\)-closed. Since \(x_i \bar{\nu} \mu\), then \(\mu \leq x_i^c\). But \(x_i^c\) is \(\delta\)-closed. Then, \(cl_\delta(\mu) \leq x_i^c\). This shows that \(x_i \bar{\nu} cl_\delta(\mu)\).

Case 2. \(x_i\) is \(\delta\)-closed. Then, \(x_i^c\) is \(\delta\)-open. Since \(x_i \bar{\nu} \mu\), then \(\mu \leq x_i^c\). But \(\mu\) is \(W\delta g\)-closed. Then, \(cl_\delta(\mu) \leq x_i^c\) and hence \(x_i \bar{\nu} cl_\delta(\mu)\). \(\Box\)

Corollary 4.16. Every \(FWT_2\)-space is \(FT^*_3/4\)-space.

Proof. This is an immediate consequence of Theorems 2.16 and 4.15.

The converse of Corollary 4.16 need not be true, in general, and as a sample, we give the following example.
Example 4.17. Let $X = \{a, b, c\}$. Define $\lambda_1, \lambda_2, \lambda_3 : X \to [0, 1]$ as follows:

\[
\begin{align*}
\lambda_1(a) &= 1, & \lambda_1(b) &= 0, & \lambda_1(0) &= 0, \\
\lambda_2(a) &= 0, & \lambda_2(b) &= 1, & \lambda_2(0) &= 0, \\
\lambda_3(a) &= 1, & \lambda_3(b) &= 1, & \lambda_3(0) &= 0.
\end{align*}
\]

Consider the $[0, 1]$-topology $\tau = \{0_X, \lambda_1, \lambda_2, \lambda_3, 1_X\}$. Then, X is $FT_{3/4}$-space but not FWT_2-space.

Theorem 4.18. Let (X, τ) be a $[0, 1]$-topological space. Then, the following conditions are equivalent:

(i) X is FWT_2-space,

(ii) X is $FT_{3/4}^*$ and each $x_i \in S(X)$ is $W\delta g$-closed.

Proof. Obvious. □

5. $W\theta g$-Continuous and $W\delta g$-Continuous Mappings

Definition 5.1. A fuzzy mapping $f : (X, \tau) \to (Y, \Delta)$ is called

(i) fuzzy $W\theta g$-continuous if the inverse image of every closed fuzzy set in Y is $W\theta g$-closed fuzzy set in X,

(ii) fuzzy $W\delta g$-continuous if the inverse image of every closed fuzzy set in Y is $W\delta g$-closed fuzzy set in X.

Theorem 5.2. Every fuzzy θg-continuous (resp. δg-continuous) mapping is fuzzy $W\theta g$-continuous (resp. $W\delta g$-continuous).

Proof. Obvious. □

The converse of the above Theorem may not be true, in general, by the following example.

Example 5.3. Let $X = Y = \{x\}$ and consider a $[0, 1]$-topology τ of Example 4.3, $\Delta = \{0_Y, x_{0.3}, 1_Y\}$. If $f : (X, \tau) \to (Y, \Delta)$ is the identity fuzzy mapping, then f is fuzzy $W\theta g$-continuous but not fuzzy θg-continuous, since $x_{0.7} \in \Delta'$ and $f^{-1}(x_{0.7}) = x_{0.7} \leq x_{0.8} \in \tau$ but $cl_\theta(x_{0.7}) = 1X \not\in x_{0.8}$. Also, f is fuzzy $W\theta g$-continuous but not fuzzy δg-continuous.

Theorem 5.4. Let $f : (X, \tau) \to (Y, \Delta)$ be fuzzy mapping and (X, τ) be fuzzy semiregular space. Then, the following conditions are equivalent:

(i) f is fuzzy $W\delta g$-continuous,

(ii) f is fuzzy δg-continuous,

(iii) f is fuzzy g-continuous.

Proof. It follows directly from Theorems 2.11 and 4.7(i). □
Definition 5.5. A fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is called

(i) fuzzy \(W{\theta}g \)-irresolute if the inverse image of every \(W{\theta}g \)-closed fuzzy set in \(Y \) is
\(W{\theta}g \)-closed fuzzy set in \(X \),

(ii) fuzzy \(W{\delta}g \)-irresolute if the inverse image of every \(W{\delta}g \)-closed fuzzy set in \(Y \) is
\(W{\delta}g \)-closed fuzzy set in \(X \).

Theorem 5.6. Let \(f : (X, \tau) \rightarrow (Y, \Delta) \) and \(g : (Y, \Delta) \rightarrow (Z, \Omega) \) be two fuzzy mappings. Then,

(i) \(g \circ f \) is fuzzy \(W{\theta}g \)-continuous if \(g \) is fuzzy continuous and \(f \) is fuzzy \(W{\theta}g \)-continuous,

(ii) \(g \circ f \) is fuzzy \(W{\delta}g \)-irresolute if \(g \) is fuzzy \(W{\delta}g \)-irresolute and \(f \) is fuzzy \(W{\delta}g \)-irresolute,

(iii) \(g \circ f \) is fuzzy \(W{\theta}g \)-continuous if \(g \) is fuzzy \(W{\theta}g \)-continuous and \(f \) is fuzzy \(W{\delta}g \)-irresolute.

Proof. Obvious.

Theorem 5.7. Let \(f : (X, \tau) \rightarrow (Y, \Delta) \) and \(g : (Y, \Delta) \rightarrow (Z, \Omega) \) be two fuzzy mappings. Then,

(i) \(g \circ f \) is fuzzy \(W{\delta}g \)-continuous if \(g \) is fuzzy continuous and \(f \) is fuzzy \(W{\delta}g \)-continuous,

(ii) \(g \circ f \) is fuzzy \(W{\delta}g \)-irresolute if \(g \) is fuzzy \(W{\delta}g \)-irresolute and \(f \) is fuzzy \(W{\delta}g \)-irresolute,

(iii) \(g \circ f \) is fuzzy \(W{\delta}g \)-continuous if \(g \) is fuzzy \(W{\delta}g \)-continuous and \(f \) is fuzzy \(W{\delta}g \)-irresolute,

(iv) Let \((Y, \Delta)\) be \(FT_{3/4}^*\) space. Then, \(g \circ f \) is fuzzy \(W{\delta}g \)-continuous if \(g \) is fuzzy \(W{\delta}g \)-continuous and \(f \) is fuzzy \(W{\delta}g \)-continuous,

(v) Let \((Y, \Delta)\) be a fuzzy semiregular space. Then, \(g \circ f \) is fuzzy \(W{\delta}g \)-continuous if \(g \) is fuzzy \(g \)-continuous and \(f \) is fuzzy \(W{\delta}g \)-irresolute.

Proof. Obvious.

Definition 5.8. A fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is called fuzzy \(\theta \)-open if and only if \(f(\eta) \) is \(\theta \)-open in \(Y \) for any \(\theta \)-open fuzzy set \(\eta \) in \(X \).

Theorem 5.9. If a fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is bijective, fuzzy \(\theta \)-open, and fuzzy \(W{\theta}g \)-continuous, then \(f \) is fuzzy \(W{\theta}g \)-irresolute.

Proof. Let \(\lambda \) be \(W{\theta}g \)-closed fuzzy set in \(Y \), and let \(f^{-1}(\lambda) \leq \eta \), where \(\eta \in \tau_{\theta} \). Clearly, \(\lambda \leq f(\eta) \). Since \(f(\eta) \in \Delta_{\theta} \) and \(\lambda \) is \(W{\theta}g \)-closed in \(Y \), then \(cl_{\theta}(\lambda) \leq f(\eta) \) and thus \(f^{-1}(cl_{\theta}(\lambda)) \leq \eta \). Since \(f \) is fuzzy \(W{\theta}g \)-continuous and \(cl_{\theta}(\lambda) \) is closed in \(Y \), then \(f^{-1}(cl_{\theta}(\lambda)) \) is \(W{\theta}g \)-closed in \(X \) and hence \(cl_{\theta}(f^{-1}(cl_{\theta}(\lambda))) \leq \eta \). Thus, \(cl_{\theta}(f^{-1}(\lambda)) \leq \eta \) and so \(f^{-1}(\lambda) \) is \(W{\theta}g \)-closed in \(X \). This shows that \(f \) is fuzzy \(W{\theta}g \)-irresolute.

Theorem 5.10. If a fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is bijective, fuzzy \(\delta \)-open, and fuzzy \(W{\delta}g \)-continuous, then \(f \) is fuzzy \(W{\delta}g \)-irresolute.

Proof. Similar to the proof of Theorem 5.9.

Theorem 5.11. If a fuzzy mapping \(f : (X, \tau) \rightarrow (Y, \Delta) \) is fuzzy \(W{\delta}g \)-irresolute and \((X, \tau) \) is \(FT_{3/4}^* \) space, then \(f \) is fuzzy \(\delta \)-continuous.
Proof. Let μ be a δ-closed fuzzy set in Y. By using Theorem 4.2, μ is $W\delta g$-closed. Since f is fuzzy $W\delta g$- irresolute, then $f^{-1}(\mu)$ is $W\delta g$-closed in X. Since X is $FT^{*}_{3/4}$-space, then $f^{-1}(\mu)$ is δ-closed in X. Thus, f is fuzzy δ-continuous.

Theorem 5.12. If a mapping $f : (X, \tau) \rightarrow (Y, \Delta)$ is fuzzy δ-continuous and fuzzy δ-closed, and μ is $W\delta g$-closed fuzzy set in X, then $f(\mu)$ is $W\delta g$-closed in X.

Proof. Let μ be $W\delta g$-closed in X, and let $f(\mu) \leq \eta$, where η is δ-open fuzzy set in Y. Since $\mu \leq f^{-1}(\eta)$, μ is $W\delta g$-closed fuzzy set in X and since $f^{-1}(\eta)$ is δ-open in X, then $cl_\delta(\mu) \leq f^{-1}(\eta)$. Thus $f(cl_\delta(\mu)) \leq \eta$. Hence, $cl_\delta(f(\mu)) \leq cl_\delta(f(cl_\delta(\mu))) = f(cl_\delta(\mu)) \leq \eta$, since f is fuzzy δ-closed. Hence, $f(\mu)$ is $W\delta g$-closed in Y.

Theorem 5.13. Let (X, τ) be an $FT^{*}_{3/4}$-space. If a fuzzy mapping $f : (X, \tau) \rightarrow (Y, \Delta)$ be surjective, fuzzy $W\delta g$- irresolute, and fuzzy δ-closed, then (Y, Δ) is also $FT^{*}_{3/4}$-space.

Proof. Let μ be $W\delta g$-closed fuzzy set in Y. Since f is fuzzy $W\delta g$- irresolute, then $f^{-1}(\mu)$ is $W\delta g$-closed in X. Since X is $FT^{*}_{3/4}$-space, then $f^{-1}(\mu)$ is δ-closed in X. Thus, μ is δ-closed in Y, since f is surjective and fuzzy δ-closed. Hence, (Y, Δ) is $FT^{*}_{3/4}$-space.

References

Submit your manuscripts at
http://www.hindawi.com