Research Article

Certain Conditions for Starlikeness of Analytic Functions of Koebe Type

Saibah Siregar\(^1\) and Maslina Darus\(^2\)

\(^1\) Faculty of Science and Biotechnology, Universiti Selangor, Bestari Jaya, 45600 Selangor Darul Ehsan, Malaysia
\(^2\) School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor Darul Ehsan, Malaysia

Correspondence should be addressed to Maslina Darus, maslina@ukm.my

Received 1 May 2011; Revised 29 June 2011; Accepted 5 July 2011

Academic Editor: A. Zayed

Copyright © 2011 S. Siregar and M. Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For \(a \geq 0, \lambda > 0\), we consider the \(M(\alpha, \lambda)\) of normalized analytic \(\alpha - \lambda\) convex functions defined in the open unit disc \(U\). In this paper, we investigate the class \(M(\alpha, \lambda)\), that is, \(\text{Re}\left\{\frac{zf'(z)}{f(z)} \left[1 - \alpha \left(1 - \lambda(zf''(z)/f'(z)) + a(1 - \alpha(1 - \lambda(zf''(z)/f'(z)))\right)\right]\right\} > 0\), with \(f_b\) is Koebe type, that is, \(f_b(z) = z/(1 - zn)\). The subordination result for the aforementioned class will be given. Further, by making use of Jack’s Lemma as well as several differential and other inequalities, the authors derived sufficient conditions for starlikeness of the class \(M(\alpha, \lambda)\) of \(n\)-fold symmetric analytic functions of Koebe type. Relevant connections of the results presented here with those given in the earlier works are also indicated.

1. Introduction

Let \(\mathcal{A}\) denote the class of normalized analytic functions of the form
\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k,
\]
which are analytic in the open unit disk \(U = \{z : |z| < 1\}\). Also, as usual, let
\[
S^* = \left\{ f : f \in \mathcal{A}, \, \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \, (z \in U) \right\},
\]
\[
K = \left\{ f : f \in \mathcal{A}, \, \text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \, (z \in U) \right\},
\]
be the familiar classes of starlike functions in \(U\) and convex functions in \(U\), respectively.
If the functions f and g are analytic in \mathbb{U}, then we say that the function f is \textit{subordinate} to g, or g is \textit{superordinate} to f (written as $f \prec g$) if there exist a function $w(z)$ analytic \mathbb{U}, such that $|w(z)| < 1$ and $z \in \mathbb{U}$, and $w(0) = 0$ with $f(z) = g(w(z))$ in \mathbb{U}. If g is univalent in \mathbb{U}, then $f \prec g$ is equivalent to $f(0) = g(0)$ and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

Next, we let the $M(\alpha)$, that is,

$$M(\alpha) = \left\{ f(z) \in A : \text{Re}\left\{ (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > 0, \; (z \in \mathbb{U}) \right\}. \quad (1.3)$$

The class $M(\alpha)$ was first introduced by Mocanu [1], which was then known as the class of α convex (or α-starlike) functions. Later, Miller et al. [2] studied this class and showed that $M(\alpha)$ is a subclass of S^* for any real number α and also that $M(\alpha)$ is a subclass of K for $\alpha \geq 1$. We note that $M(0) = S^*$ and $M(1) = K$. Note also that Mocanu introduced $M(\alpha)$ with $f(z) \cdot f'(z) / 0$. But Sakaguchi and Fukui [3] later showed that this condition was not needed.

Motivated essentially by the aforementioned earlier works, we aim here at deriving sufficient conditions for starlikeness of n-fold symmetric function f_b of the Koebe type, defined by

$$f_b(z) := \frac{z}{(1 - z^n)^b} \quad (b \geq 0; \; n \in \mathbb{N} : = \{1, 2, 3, \ldots\}), \quad (1.4)$$

which obviously corresponds to the familiar Koebe function when $n = 1$ and $b = 2$.

\textit{Definition 1.1.} A function $f(z)$ given by (1.1) is said to be in the class $M(\alpha, \lambda)_b$, for $\alpha \geq 0$, $\lambda > 0$, if the following conditions are satisfied:

$$\text{Re}\left\{ \frac{zf_b''(z)}{f_b(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{zf_b'(z)}{f_b(z)} + \lambda \left(1 + \frac{zf_b''(z)}{f_b'(z)} \right) \right] \right\} > 0, \quad (z \in \mathbb{U}). \quad (1.5)$$

In this paper, we consider the class of functions $M(\alpha, \lambda)_b$.

In addition, in this paper, authors investigate the subordination of the class denoted by $M(\alpha, \lambda)_b$.

We have the following inclusion relationships:

(i) $M(0, \lambda)_1 \subset S^*$

(ii) $M(\alpha, 1)_1 \subset H(\alpha) \subset S^*$, which $H(\alpha)$ has studied by [4].

The work of Siregar et al. [5] and Bansal and Raina [6] have also motivated us to come to these problems. Look also at [7, 8] for different studies.

The following result (popularly known as Jack’s Lemma) will also be required in the derivation of our result (Theorem 4.1 below).
2. Preliminaries

Lemma 2.1 (see [9]). Let \(q(z) \) be univalent in \(\mathbb{U} \) and let the function \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(\mathbb{U}) \), with \(\phi(w) \neq 0 \) when \(w \in q(\mathbb{U}) \). Set
\[
Q(z) = \gamma z q'(z) \phi(q(z)), \quad \gamma > 0,
\]
\[
h(z) = \theta(q(z)) + Q(z),
\]
and suppose that
(i) \(Q(z) \) is univalent and starlike in \(\mathbb{U} \);
(ii) \(\text{Re}(zh'(z)/Q(z)) = \text{Re}(\theta'(q(z))/\phi(q(z)) + zQ'(z)/Q(z)) > 0, \ z \in \mathbb{U} \).

If \(p(z) \) is analytic in \(\mathbb{U} \) with \(p(0) = q(0) = 1, p(\mathbb{U}) \subset D \), and
\[
\theta(p(z)) + \gamma z p'(z) \phi(p(z)) < \theta(q(z)) + \gamma z q'(z) \phi(q(z)) = h(z),
\]
then
\[
p(z) < q(z),
\]
and \(q \) is the best dominant.

Lemma 2.2 (see [10]). Let the (nonconstant) function \(w(z) \) be analytic in \(\mathbb{U} \) such that \(w(0) = 0 \). If \(|w(z)| \) attains its maximum value on circle \(|z| = r < 1 \) at a point \(z_0 \in \mathbb{U} \), we have
\[
z_0 w'(z_0) = kw(z_0),
\]
where \(k \geq 1 \) is a real number.

3. The Subordination Result

Theorem 3.1. Let \(f(z) \in A \) satisfy \(f(z) \neq 0 \ (z \in \mathbb{U}) \). Also, let the function \(q(z) \) be univalent in \(\mathbb{U} \), with \(q(0) = 1 \) and \(q(z) \neq 0 \), for \(\lambda > 0 \) and \(\alpha \geq 0 \), such that
\[
\text{Re}\left(1 + \frac{zq''(z)}{q'(z)}\right) > 0 \ (z \in \mathbb{U}),
\]
\[
\text{Re}\left(\lambda + 2q(z) + \frac{zq''(z)}{q'(z)}\right) > 0 \ (z \in \mathbb{U}).
\]

If
\[
\frac{zf''_b(z)}{f_b(z)} \left[1 - \alpha + \alpha(1-\lambda) \frac{zf''_b(z)}{f_b(z)} + \alpha \lambda \left(1 + \frac{zf''_b(z)}{f_b(z)}\right)\right] < h(z) \ (z \in \mathbb{U}),
\]
(3.2)
then

\[h(z) = \alpha [q(z)]^2 + (1 - \alpha)(q(z)) + \alpha \lambda zq'(z), \quad (3.3) \]

then

\[\frac{zf_b'(z)}{f_b(z)} < q(z) \quad (z \in \mathbb{U}), \quad (3.4) \]

and \(q(z) \) is the best dominant of (3.2).

Proof. We first choose

\[p(z) = \frac{zf_b'(z)}{f_b(z)}, \quad \theta(w) = \omega(1 - \alpha + \alpha w), \quad \phi(w) = 1, \quad (3.5) \]

then \(\theta(w) \) and \(\phi(w) \) are analytic inside the domain \(\mathbb{D}^* \), which contains \(q(\mathbb{U}), q(0) = 1, \) and \(\phi(w) \neq 0 \) when \(w \in q(\mathbb{U}) \).

Now, if we define the functions \(Q(z) \) and \(h(z) \) by

\[Q(z) = \alpha \lambda zq'(z)\phi(q(z)) = \alpha \lambda zq'(z), \quad (3.6) \]

\[h(z) = \theta(q(z)) + Q(z) = \alpha [q(z)]^2 + (1 - \alpha)(q(z)) + \alpha \lambda zq'(z), \]

then it follows from (3.1) that \(Q(z) \) is starlike in \(\mathbb{U} \) and

\[\text{Re} \left(\frac{zh'(z)}{Q(z)} \right) > 0 \quad (z \in \mathbb{U}). \quad (3.7) \]

We also note that the function \(p(z) \) is analytic in \(\mathbb{U} \), with \(p(0) = q(0) = 1 \). Since \(0 \notin p(\mathbb{U}) \), therefore, \(p(\mathbb{U}) \subset \mathbb{D}^*, \gamma = \alpha \lambda > 0 \) and hence, the hypothesis of Lemma 2.1 are satisfied.

Applying Lemma 2.1, we find that

\[\frac{zf_b'(z)}{f_b(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{zf_b'(z)}{f_b(z)} + \alpha \lambda \left(1 + \frac{zf_b''(z)}{f_b'(z)} \right) \right] \]

\[= \alpha [p(z)]^2 + (1 - \alpha)(p(z)) + \alpha \lambda zp'(z) = \theta(p(z)) + \alpha \lambda zp'(z) < h(z) \]

\[= \alpha [q(z)]^2 + (1 - \alpha)(q(z)) + \alpha \lambda zq'(z) = \theta(q(z)) + \alpha \lambda zq'(z), \quad (z \in \mathbb{U}), \]

which implies that

\[\frac{zf_b'(z)}{f_b(z)} < q(z) \quad (z \in \mathbb{U}), \quad (3.8) \]

and \(q(z) \) is the best dominant of (3.2). \(\square \)
4. The Properties of the Class $M(\alpha, \lambda)_b$

We begin by proving a stronger result than what we indicated in the preceding section.

Theorem 4.1. Let the n-fold symmetric function $f_b(z)$, defined by (1.4), be analytic in U, with

$$\frac{f_b(z)}{z} \neq 0 \quad (z \in U).$$ \hspace{1cm} (4.1)

If $f_b(z)$ satisfies the inequality:

$$\text{Re} \left\{ \frac{zf_b'(z)}{f_b(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{zf_b'(z)}{f_b(z)} + \alpha \left(1 + \frac{zf_b''(z)}{f_b(z)} \right) \right] \right\} > \left(1 - \frac{nb}{2} \right) \left(1 - \frac{anb}{2} \right) - \frac{a\lambda nb}{4},$$ \hspace{1cm} (4.2)

$(z \in U)$, then $f_b(z)$ is starlike in U for

$$\alpha > 0, \lambda > 0, \quad \left(\frac{\alpha + 2\alpha + 2 - \sqrt{\Delta}}{2\alpha} \leq nb \leq \frac{\alpha + 2\alpha + 2 + \sqrt{\Delta}}{2\alpha} \right), \quad (\Delta := \alpha^2(\lambda + 2)^2 + 4\alpha(\lambda - 2) + 4).$$ \hspace{1cm} (4.3)

If $f_b(z)$ satisfies the inequality (4.2) with $\lambda = 1$, that is, if

$$\text{Re} \left\{ \frac{\alpha z^2 f_b''(z)}{f_b(z)} + \frac{zf_b'(z)}{f_b(z)} \right\} > -\frac{anb}{4} + \left(1 - \frac{nb}{2} \right) \left(1 - \frac{anb}{2} \right), \quad (z \in U)$$ \hspace{1cm} (4.4)

then $f_b(z)$ is starlike in U for

$$\alpha > 0, \quad \frac{3\alpha + 2 - \sqrt{\Delta^*}}{2\alpha} \leq nb \leq \frac{3\alpha + 2\sqrt{\Delta^*}}{2\alpha}, \quad (\Delta^* := 9\alpha^2 - 4\alpha + 4).$$ \hspace{1cm} (4.5)

Proof. Let $\alpha > 0, \lambda > 0$ and $f_b(z)$ satisfy the hypothesis of Theorem 4.1. We put

$$\frac{zf_b'(z)}{f_b(z)} = \frac{1 + (nb - 1)w(z)}{1 - w(z)},$$ \hspace{1cm} (4.6)

where $w(z)$ is analytic in U, with

$$w(0) = 0, \quad w(z) \neq 1, \quad (z \in U),$$ \hspace{1cm} (4.7)

such that, we can write

$$1 + \frac{zf_b''(z)}{f_b(z)} = \frac{nbzw'(z)}{[1 - w(z)][1 + (nb - 1)w(z)]} + \frac{1 + (nb - 1)w(z)}{1 - w(z)},$$ \hspace{1cm} (4.8)
which, in turn, implies that

\[
\frac{zf''_k(z)}{f'_k(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{zf'_k(z)}{f'_k(z)} + \alpha \lambda \left(1 + \frac{zf''_k(z)}{f'_k(z)} \right) \right] = \left(\frac{1 + (nb - 1)w(z)}{1 - w(z)} \right) \\
\times \left[1 - \alpha + \alpha(1 - \lambda) \left(\frac{1 + (nb - 1)w(z)}{1 - w(z)} \right) + \alpha \lambda \left(\frac{nbzw'(z)}{(1 - w(z))[1 + (nb - 1)w(z)]} + \frac{1 + (nb - 1)w(z)}{1 - w(z)} \right) \right] \\
= (1 - \alpha) \left(\frac{1 + (nb - 1)w(z)}{1 - w(z)} \right) + \alpha \left(\frac{1 + (nb - 1)w(z)}{(1 - w(z))^2} + \lambda nbzw'(z) \right).
\]

(4.9)

Now, we claim that \(|w(z)| < 1 \) (\(z \in \mathbb{U} \)). If there exists a \(z_0 \) in \(\mathbb{U} \) such that \(|w(z_0)| = 1 \), then (by Jack’s Lemma) Lemma 2.2, we have

\[
z_0 w'(z_0) = kw(z_0),
\]

(4.10)

where \(k \geq 1 \) is a real number.

By setting \(w(z_0) = e^{\theta} \) (\(0 \leq \theta \leq 2\pi \)), thus, we find that

\[
\text{Re} \left\{ \frac{z_0f'_k(z_0)}{f_k(z_0)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{z_0f'_k(z_0)}{f'_k(z_0)} + \alpha \lambda \left(1 + \frac{z_0f''_k(z_0)}{f'_k(z_0)} \right) \right] \right\} \\
= \text{Re} \left\{ (1 - \alpha) \left(\frac{1 + (nb - 1)w(z_0)}{1 - w(z_0)} \right) + \alpha \left(\frac{\lambda nbzw'(z_0) + [1 + (nb - 1)w(z_0)]^2}{(1 - w(z_0))^2} \right) \right\} \\
= \text{Re} \left\{ (1 - \alpha) \left(\frac{1 + (nb - 1)e^{i\theta}}{1 - e^{i\theta}} \right) + \alpha \left(\frac{\lambda nbke^{i\theta} + [1 + (nb - 1)e^{i\theta}]^2}{(1 - e^{i\theta})^2} \right) \right\} \\
= \text{Re} \left\{ \frac{1 + (\alpha\lambda nbk + anb + nb - 2)e^{i\theta} + (nb - 1)(\alpha(nb - 1) - (1 - \alpha))e^{2i\theta}}{(1 - e^{i\theta})^2} \right\} \\
= \frac{[2anb(\lambda k + 2 - nb) + 4nb - 8]\cos \theta + [(nb - 1)(anb - 1) + 1]\cos 2\theta - anb(\lambda k + 3 - 2nb) - 3nb + 6}{2(3 - 4 \cos \theta) + 2 \cos 2\theta} \\
\leq \left(1 - \frac{nb}{2} \right) \left(1 - \frac{anb}{2} \right) - \frac{\alpha \lambda nb}{4}, \quad (z \in \mathbb{U}),
\]

(4.11)

since \(k \geq 1 \).
If we let
\[
\text{Re} \left\{ \frac{z_0 f'_b(z_0)}{f_b(z_0)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{z_0 f'_b(z_0)}{f_b(z_0)} + \alpha \lambda \left(1 + \frac{z_0 f''_b(z_0)}{f'_b(z_0)} \right) \right] \right\} \\
\leq \left(1 - \frac{nb}{2} \right) \left(1 - \frac{anb}{2} \right) - \frac{\alpha \lambda nb}{4} \\
= \tau(nb),
\]
then
\[
\tau(nb) \leq 0, \quad \left(\frac{\alpha \lambda + 2\alpha + 2\sqrt{\Delta}}{2\alpha} \leq nb \leq \frac{\alpha \lambda + 2\alpha + 2\sqrt{\Delta}; \Delta}{2\alpha} := \alpha^2(\lambda + 2)^2 + 4\alpha(\lambda - 2) + 4 \right).
\]

Thus, we have
\[
\text{Re} \left\{ \frac{z f'_b(z)}{f_b(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{z f'_b(z)}{f_b(z)} + \alpha \lambda \left(1 + \frac{z f''_b(z)}{f'_b(z)} \right) \right] \right\} \leq 0 \quad (z \in \mathbb{U}),
\]
\[
\left(\frac{\alpha \lambda + 2\alpha + 2\sqrt{\Delta}}{2\alpha} \leq nb \leq \frac{\alpha \lambda + 2\alpha + 2\sqrt{\Delta}; \Delta := \alpha^2(\lambda + 2)^2 + 4\alpha(\lambda - 2) + 4 \right).
\]

which is a contradiction to the hypotheses of (4.2).

Therefore, \(|w(z)| < 1\) for all \(z\) in \(\mathbb{U}\). Hence \(f_b\) is starlike in \(\mathbb{U}\), then by proving the assertion (i) of Theorem 4.1, this completes the proof of our theorem. \(\square\)

Next, we arrive to the following remark which was given by Fukui et al. [11], and so we omit the detail here.

Remark 4.2. Let the \(n\)-fold symmetric function \(f_b(z)\), defined by (1.4), be analytic in \(\mathbb{U}\), with
\[
\frac{f_b(z)}{z} \neq 0 \quad (z \in \mathbb{U}).
\]
If \(f_b(z)\) satisfies the inequality (4.2) with \(\alpha = 0\), that is, if
\[
\text{Re} \left(\frac{z f'_b(z)}{f_b(z)} \right) > 1 - \frac{nb}{2} \quad (z \in \mathbb{U}),
\]
then \(f_b(z)\) is starlike in \(\mathbb{U}\) for \(0 \leq nb < 2\).

The following remark was obtained by Kamali and Srivastava [12].
Remark 4.3. Let the \(n \)-fold symmetric function \(f_b(z) \), defined by (1.4), be analytic in \(U \), with

\[
\frac{f_b(z)}{z} \neq 0 \quad (z \in U).
\] (4.18)

If \(f_b(z) \) satisfies the inequality (4.2) with \(\lambda = 1 \), that is, if

\[
\Re\left(az^2 \frac{f''_b(z)}{f_b(z)} + z f'_b(z) \frac{f(z)}{f(z)} \right) > -\frac{\alpha nb}{4} + \left(1 - \frac{nb}{2} \right) \left(1 - \frac{\alpha nb}{2} \right) \quad (z \in U),
\] (4.19)

then \(f_b(z) \) is starlike in \(U \) for

\[
\alpha > 0, \quad \frac{3\alpha + 2 - \sqrt{\Delta^*}}{2\alpha} \leq nb \leq \frac{3\alpha + 2\sqrt{\Delta^*}}{2\alpha}, \quad \left(\Delta^* := 9\alpha^2 - 4\alpha + 4 \right).
\] (4.20)

5. Applications of Differential Inequalities

We apply the following result involving differential inequalities with a view to deriving several further sufficient conditions for starlikeness of the \(n \)-fold symmetric function \(f_b \) defined by (1.4).

Lemma 5.1 (Miller and Mocanu [13]). Let \(\Theta(u, v) \) be a complex-valued function such that

\[
\Theta : \mathbb{D} \rightarrow \mathbb{C}, \quad (\mathbb{D} \subset \mathbb{C} \times \mathbb{C}),
\] (5.1)

\(\mathbb{C} \) being (as usual) the complex plane, and let

\[
\begin{align*}
 u &= u_1 + iu_2, \\
 v &= v_1 + iv_2.
\end{align*}
\] (5.2)

Suppose that the functions \(\Theta(u, v) \) satisfies each of the following conditions.

(i) \(\Theta(u, v) \) is continuous in \(\mathbb{D} \).

(ii) \((1, 0) \in \mathbb{D} \) and \(\Re(\Theta(1, 0)) > 0 \).

(iii) \(\Re(\Theta(iu_2, v_1)) \leq 0 \) for all \((iu_2, v_1) \in \mathbb{D} \) such that

\[
v_1 \leq -\frac{1}{2} \left(1 + u_2^2 \right).
\] (5.3)

Let

\[
p(z) = 1 + p_1 z + p_2 z^2 + \cdots
\] (5.4)

be analytic (regular) in \(U \) such that

\[
(p(z), zp'(z)) \in \mathbb{D} \quad (z \in U).
\] (5.5)
If
\[
\text{Re}(\Theta(p(z), zp'(z))) \in \mathbb{D} \quad (z \in U),
\] (5.6)
then
\[
\text{Re}(p(z)) > 0 \quad (z \in \mathbb{U}).
\] (5.7)

Let us now consider the following implication.

Theorem 5.2. Let \(n \)-fold symmetric function \(f_b \), defined by (1.4) and analytic in \(U \) with \((f_b(z))/z \neq 0 \), \((z \in \mathbb{U}) \), satisfy the following inequality:

\[
\text{Re}\left\{ \frac{zf_b'(z)}{f_b(z)} \left[1 - \alpha + \alpha(1-\lambda) \frac{zf_b''(z)}{f_b(z)} + \alpha\lambda \left(1 + \frac{zf_b''(z)}{f_b(z)} \right) \right] \right\} > \left(1 - \frac{nb}{2}\right)\left(1 - \frac{anb}{2}\right) - \frac{\alpha \lambda nb}{4},
\] (5.8)
then
\[
\text{Re}\left\{ \left(\frac{zf_b'(z)}{f_b(z)} \right)^\mu \right\} > 0,
\] (5.9)
\[
\left(z \in U; \left(1 - \frac{nb}{2}\right)\left(1 - \frac{anb}{2}\right) - \frac{\alpha \lambda nb}{4} < 1; \alpha \geq 0, \lambda > 0; \mu \geq 1 \right).
\]

Proof. If we put
\[
p(z) = \left\{ \frac{zf_b'(z)}{f_b(z)} \right\}^\mu,
\] (5.10)
then (5.8) is equivalent to

\[
\text{Re}\left\{ \frac{\alpha \lambda}{\mu} (p(z))^{(1-\rho)/\mu} zp'(z) + \alpha (p(z))^{2/\mu} + (1-\alpha)p(z)^{1/\mu} - \left(1 - \frac{nb}{2}\right)\left(1 - \frac{anb}{2}\right) + \frac{\lambda nb}{4} \right\} > 0
\] (5.11)
\[
\Rightarrow \text{Re}(p(z)) > 0 \quad (z \in \mathbb{U}).
\]

By setting \(p(z) = u \) and \(zp'(z) = v \) and letting
\[
\Theta(z) = \frac{\alpha \lambda}{\mu} u^{(1-\rho)/\mu} v + au^{2/\mu} + (1-\alpha)u^{1/\mu} - \left(1 - \frac{nb}{2}\right)\left(1 - \frac{anb}{2}\right) + \frac{\lambda nb}{4},
\] (5.12)
for \(a \geq 0 \) and \(\mu \geq 1 \), we have the following.

(i) \(\Theta(u, v) \) is continuous in \(\mathcal{D} = (\mathbb{C} \setminus \{0\} \times \mathbb{C}) \).

(ii) \((1, 0) \in \mathcal{D} \) and

\[
\text{Re}(\Theta(1, 0)) = \frac{a\lambda nb}{4} + \frac{anb}{2} + \frac{nb}{2} - \frac{an^2b^2}{4} > 0, \tag{5.13}
\]

since

\[
\left(1 - \frac{nb}{2}\right)
\left(1 - \frac{anb}{2}\right) - \frac{\lambda anb}{4} < 1. \tag{5.14}
\]

Thus, the conditions (i) and (ii) of Lemma 5.1 are satisfied. Moreover, for \((iu_2, v_1) \in \mathcal{D} \) and \(v_1 \leq (-1/2)(1 + u_2^2)\), we obtain

\[
\text{Re}(\Theta(iu_2, v_1)) = \frac{a\lambda}{\mu}|u_2|^{(1-\mu)/\mu}v_1 \cos\left(\frac{(1-\mu)\pi}{2\mu}\right) + a|u_2|^{2/\mu} \cos\left(\frac{\pi}{\mu}\right)
\]

\[
+ (1 - \alpha)|u_2|^{1/\mu} \cos\left(\frac{\pi}{2\mu}\right) - \left(1 - \frac{nb}{2}\right)
\left(1 - \frac{anb}{2}\right) + \frac{\lambda anb}{4}
\]

\[
\leq -\frac{a\lambda}{2\mu}(1 + u_2^2)|u_2|^{(1-\mu)/\mu} \sin\left(\frac{\pi}{2\mu}\right) + a|u_2|^{2/\mu} \cos\left(\frac{\pi}{\mu}\right)
\]

\[
+ (1 - \alpha)|u_2|^{1/\mu} \cos\left(\frac{\pi}{2\mu}\right) - \left(1 - \frac{nb}{2}\right)
\left(1 - \frac{anb}{2}\right) + \frac{\lambda anb}{4}, \tag{5.15}
\]

which, upon putting \(|u_2| = \zeta \quad (\zeta > 0)\), yields

\[
\text{Re}(\Theta(iu_2, v_1)) \leq \Phi(\zeta), \tag{5.16}
\]

where

\[
\Phi(\zeta) := -\frac{a\lambda}{2\mu}(1 + \zeta^2)\zeta^{(1-\mu)/\mu} \sin\left(\frac{\pi}{2\mu}\right) + a\zeta^{2/\mu} \cos\left(\frac{\pi}{\mu}\right) + (1 - \alpha)\zeta^{1/\mu} \cos\left(\frac{\pi}{2\mu}\right)
\]

\[
- \left(1 - \frac{nb}{2}\right)
\left(1 - \frac{anb}{2}\right) + \frac{\lambda anb}{4}. \tag{5.17}
\]

Remark 5.3. If, for some choices of the parameters \(a, \lambda, \mu, \) and \(nb \), we find that

\[
\Phi(\zeta) \leq 0 \quad (\zeta > 0), \tag{5.18}
\]
then we can conclude from (5.16) and Lemma 5.1 that the corresponding implication (5.8) holds true.

First of all, for the choice: \(\mu = 1 \) and \(nb = 2 \), we have the following.

Theorem 5.4. If \(n \)-fold symmetric function \(f_b \), defined by (1.4) and analytic in \(U \) with

\[
\frac{f_b(z)}{z} \neq 0, \quad (z \in U), \tag{5.19}
\]

satisfies the following inequality:

\[
\text{Re} \left\{ \frac{z f''_b(z)}{f_b(z)} \left[1 - \alpha + \alpha(1 - \lambda) \frac{z f'_b(z)}{f_b(z)} + \alpha \lambda \left(1 + \frac{z f''_b(z)}{f'_b(z)} \right) \right] \right\} \geq -\frac{\alpha \lambda}{2}, \tag{5.20}
\]

then \(f_b \in S^* \) for any real \(\alpha \geq 0 \) and \(\lambda > 0 \).

Proof. For \(\mu = 1 \), \(nb = 2 \), we find from (5.17) that

\[
\Phi(\xi) := -\alpha \lambda \left(\frac{1}{2} + s^2 \right) - \alpha s^2 \leq 0, \quad (\xi \in \mathbb{R}), \tag{5.21}
\]

which implies Theorem 5.4 in view of the remark.

\(\square \)

Remark 5.5. For \(\lambda = 1 \), we will obtain the results by Kamali and Srivastava [12].

Acknowledgment

The work presented here was supported by UKM-ST-06-FRGS0244-2010.

References

Submit your manuscripts at http://www.hindawi.com