Research Article

Results for Twin Singular Nonlinear Problems with Damping Term

Youwei Zhang

Department of Mathematics, Hexi University, Gansu 734000, China

Correspondence should be addressed to Youwei Zhang, ywzhang0288@163.com

Received 6 December 2010; Accepted 7 March 2011

Academic Editor: Wolfgang Castell

Copyright © 2011 Youwei Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By using the functional type cone expansion and compression fixed-point theorem in cones, some new and general results on the existence of positive solution for twin singular boundary value problems with damping term are obtained. An example is given to illustrate our results.

1. Introduction

The study of multipoint boundary value problem for linear second-order ordinary differential equation was initiated by II’in and Moiseev [1] motivated by the work of Bitsadze and Samarskit [2–4] on nonlocal linear elliptic boundary value problem, which is a new area of still fairly theoretical exploration in mathematics. Several authors have expounded on various aspects of this theory; see the survey paper by Gupta et al. [5–7] and the references cited therein. Thereamong, the study of singular boundary value problem for ordinary differential equation has led to several important applications in applied mathematics and physical science, such as the Thomas-Fermi problem

\[x''(t) - t^{-1/2}x^{3/2} = 0, \quad 0 < t < 1, \]

\[x(0) = 0 = x(1), \]

which appears in determining the electrical potential in an atom. For other application results, we refer to [8–10]. With regards to this, increasing attention is paid to question of singular boundary value problem and has obtained many excellent results of the existence of the positive solution for two multiple points nonlinear singular boundary value problem [11–15]. The main techniques are the upper and lower solutions method [16], the Leray-Schauder continuation theory [17], and the fixed-point theory in cones [18] et al. We would
like to mention some results of Ma and O’Regan [13] and Yao [15], which motivated us to consider the singular boundary value problems. In [13], the authors have studied a multipoint boundary value problem

$$x''(t) = f(t, x(t), x'(t)) + e(t), \quad 0 < t < 1,$$

$$x'(0) = 0, \quad x(1) = \sum_{i=1}^{m-2} a_i x(\xi_i), \quad (1.2)$$

where $\xi_i \in]0,1[, a_i \in \mathbb{R}, i = 1, 2, \ldots, m-2, 0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1, f : [0,1] \times \mathbb{R}^2 \rightarrow \mathbb{R}$ is a function satisfying Carathéodory’s conditions and $(1-t)e(t) \in L^1[0,1]$; the Leray-Schauder continuation theorem leads to the existence of single $C^1[0,1]$ solution. The literature [15] has discussed a second-order boundary value problem

$$x''(t) + h(t)f(x(t)) = 0, \quad 0 < t < 1,$$

$$ax(0) - bx'(0) = 0, \quad ax(1) + bx'(1) = 0, \quad (1.3)$$

where $h(t)$ is symmetric on $]0,1[$ and may be singular at both end points $t = 0$ and $t = 1$. The author has proved the existence of n symmetric positive solutions and established a corresponding iterative scheme, the main tool being the monotone iterative technique.

A powerful tool for proving existence of solution to boundary value problem is the fixed-point theory. In many cases, it is possible to find single, double, or multiple solutions for boundary value problem, and for the same problem, using the various methods, one can obtain different results under some appropriate conditions. To my best knowledge, very little work has been done on the existence of positive solution for boundary value problem by using the functional type cone expansion and compression fixed-point theorem. The aim of this paper is to establish some new and general results on the existence of positive solution to singular boundary value problems with damping term

$$u''(t) - \lambda u'(t) + h(t)f(u(t)) = 0, \quad a < t < b, \quad (1.4)$$

$$u'(a) - \lambda u(a) = 0, \quad \gamma u(b) + \delta u'(b) = \sum_{i=1}^{n} a_i u(t_i), \quad (1.5)$$

$$\gamma u(a) + \delta u'(a) = \sum_{i=1}^{n} a_i u(t_i), \quad u'(b) - \lambda u(b) = 0, \quad (1.6)$$

where $\lambda, \gamma, \delta, a_i, t_i$ $(i = 1, 2, \ldots, n)$, h, and f satisfy

(H1) $-\infty < a < t_1 < \cdots < t_n < b < \infty, \lambda, \gamma, \delta \in]0, \infty[, a_i \in]0, \infty[, (i = 1, 2, \ldots, n),$

(H2) $d_1 = (\gamma + \lambda \delta) \exp(\lambda b) - \sum_{i=1}^{n} a_i \exp(\lambda t_i) > 0, d_2 = \sum_{i=1}^{n} a_i \exp(\lambda t_i) - (\gamma + \lambda \delta) \exp(\lambda b) > 0,$

(H3) $h :]a,b[\rightarrow [0, \infty[\text{ is continuous function, } h(t) \text{ may be singular at } t = a \text{ and/or } t = b, \text{ and } 0 < \int_{a}^{b} h(s) ds < \infty,$

(H4) $f : [a,b] \times [0, \infty[\rightarrow [0, \infty[\text{ satisfies the Carathéodory condition, that is, for each } x \in [0, \infty[, \text{ the mapping } t \rightarrow f(t, x) \text{ is Lebesgue measurable on } [a,b] \text{ and for a.e. } t \in [a,b], \text{ the mapping } x \rightarrow f(t, x) \text{ is continuous on } [0, \infty[, \text{ and for each } r > 0, \text{ there exists } \phi_r \in L^1[a,b] \text{ such that } f(t, x) \leq \phi_r(t) \text{ for all } u \in [0, r] \text{ and for a.e. } t \in [a,b].$
We state the functional type cone expansion and compression fixed-point theorem for $P \in y$.

Let B_2. Main Results

International Journal of Mathematics and Mathematical Sciences 3

the existence of at least one positive solution for the twin singular problems. Applying the functional type cone expansion and compression fixed-point theorem to the operator and functionals, we obtain some new and general results on functionals on cones. Construct special operator which is the base for further discussion and provide two crucial of at least one positive solution for the above problems. In order to obtain our results, we

Lemma 1.1. Let P be a cone in a real Banach space B. For positive numbers r and L, we define the sets

$$P(\alpha, r) = \{x \in P : r < \alpha(x)\},$$

$$P(\beta, L) = \{x \in P : \beta(x) < L\},$$

(1.7)

$$P(\beta, \alpha, r, L) = \{x \in P : r < \alpha(x), \beta(x) < L\}.$$

We state the functional type cone expansion and compression fixed-point theorem [20].

Let P be a cone in a real Banach space B, and let α and β be nonnegative continuous functionals on P. Let $P(\beta, \alpha, r, L)$ be a nonempty bounded subset of P,

$$\mathcal{T} : P(\beta, \alpha, r, L) \rightarrow P$$

is a completely continuous operator with

$$\inf_{x \in \partial P(\alpha, r, L)} \|\mathcal{T}x\| > 0, \quad P(\alpha, r) \subseteq P(\beta, L),$$

(1.9)

for $P(\beta, L)$. If $\alpha(Tx) \geq r$ for all $x \in \partial P(\alpha, r)$, $\beta(Tx) \leq L$ for each $x \in \partial P(\beta, L)$, and for each $y \in \partial P(\alpha, r)$, $z \in \partial P(\beta, L)$, $\theta \in [0, 1]$, and $\mu \in [1, \infty]$, the functionals satisfy the properties

$$\alpha(\theta y) \leq \theta \alpha(y), \quad \beta(\mu z) \geq \mu \beta(z), \quad \beta(0) = 0,$$

(1.10)

then \mathcal{T} has at least one positive fixed-point x such that

$$r \leq \alpha(x), \quad \beta(x) \leq L.$$

(1.11)

2. Main Results

Let B be the Banach space $C^1[a,b]$ with the norm $\|u\| = \max\{\|u\|_0, \|u\|_1\}$, where $\|u\|_0 = \sup_{t \in [a,b]} |u(t)|$ and $\|u\|_1 = \sup_{t \in [a,b]} |u'(t)|$, and let a cone in B

$$P_1 = \{v \in B : v \text{ is nondecreasing on } [a,b], v(a) = 0\}.$$
For \(v \in \mathcal{P}_1 \), define the operator \(\mathcal{T}_1 \) by
\[
\mathcal{T}_1 v(t) = \int_a^t h(s) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b v(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds, \quad t \in [a,b], \tag{2.2}
\]
where \(c_1(v) = (1/d_1) (v(b) + \sum_{i=1}^n a_i \exp(\lambda t_i) \int_{t_i}^b v(\omega) \exp(-\lambda \omega) d\omega) \).

Lemma 2.1. If \(v \in \mathcal{P}_1 \) is a fixed-point \(\mathcal{T}_1 \), then
\[
u(t) := \exp(\lambda t) \left(c_1(v) + \int_t^b v(\omega) \exp(-\lambda \omega) d\omega \right)
\]
is one solution of the problem (1.4), (1.5).

Proof. Suppose that \(v \in \mathcal{P}_1 \) is a fixed-point \(\mathcal{T}_1 \) and \(u(t) = \exp(\lambda t) \left(c_1(v) + \int_t^b v(\omega) \exp(-\lambda \omega) d\omega \right) \), thus we have
\[
u'(t) - \lambda \nu(t) = -\nu(t) = -\mathcal{T}_1 v(t) = -\int_a^t h(s) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b v(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds.
\]
Further,
\[
u''(t) - \lambda \nu'(t) = -h(t) f \left(t, \exp(\lambda t) \left(c_1(v) + \int_t^b v(\omega) \exp(-\lambda \omega) d\omega \right) \right) = -h(t) f(t, u(t)).
\]
The boundary condition (1.5) is satisfied due to the relation between \(u, v, \) and \(c_1(v) \). \qed

For \(v \in \mathcal{P}_1 \), we define the nonnegative continuous functionals \(\alpha \) and \(\beta \) on \(\mathcal{P}_1 \) by
\[
\alpha(v) = \int_{t_1}^b v(\omega) \exp(-\lambda \omega) d\omega, \quad \beta(v) = v(t_1).
\]

Lemma 2.2. Let \(r_1 > 0 \). If \(v \in \partial \mathcal{P}_1(\alpha, r_1) \), then
\[
v(t_1) \leq \frac{\exp(\lambda b)}{b - t_1} r_1,
\]
\[
\int_a^b v(\omega) \exp(-\lambda \omega) d\omega \geq r_1.
\]
Proof. For \(v \in \partial \mathcal{P}_1(\alpha, r_1) \), that is, \(\alpha(v) = r_1 \). Since \(\nu(t) \) nondecreasing on \([a, t_1]\), we have

\[
 r_1 = \alpha(v) = \int_{t_1}^{b} v(\omega) \exp(-\lambda \omega) d\omega \leq \int_{t_1}^{b} v(b) \exp(-\lambda \omega) d\omega \leq v(b) \exp(-\lambda t_1)(b - t_1),
\]

so we get (2.7). Furthermore,

\[
 \int_{a}^{b} v(\omega) \exp(-\lambda \omega) d\omega = \int_{a}^{t_1} v(\omega) \exp(-\lambda \omega) d\omega + \int_{t_1}^{b} v(\omega) \exp(-\lambda \omega) d\omega \geq r_1. \tag{2.9}
\]

Lemma 2.3. Let \(L_1 > 0 \). If \(v \in \partial \mathcal{P}_1(\beta, L_1) \), then

\[
 \int_{t_1}^{b} v(\omega) \exp(-\lambda \omega) d\omega \geq L_1 \exp(-\lambda b)(b - t_1). \tag{2.10}
\]

Proof. For \(v \in \partial \mathcal{P}_1(\beta, L_1) \), that is to say, \(\beta(v) = L_1 \). In view of \(\nu(t) \) is nondecreasing on \([a, b]\), for \(\omega \in [t_1, b] \), we have

\[
 v(\omega) \geq v(t_1) = \beta(v) = L_1. \tag{2.11}
\]

Hence,

\[
 \int_{t_1}^{b} v(\omega) \exp(-\lambda \omega) d\omega \geq L_1 \int_{t_1}^{b} \exp(-\lambda \omega) d\omega \geq L_1 \exp(-\lambda b)(b - t_1). \tag{2.12}
\]

Lemma 2.4. Let (\(H_1 \))–(\(H_4 \)) hold, then \(\mathcal{T}_1 : \mathcal{P}_1 \to \mathcal{P}_1 \) is completely continuous.

Proof. By (\(H_1 \))–(\(H_4 \)), we observe that \(\mathcal{T}_1 v \in C^1[a, b] \), \((\mathcal{T}_1 v)(t) \) is nondecreasing on \([a, b]\), and \((\mathcal{T}_1 v)(a) = 0 \), so \(\mathcal{T}_1 : \mathcal{P}_1 \to \mathcal{P}_1 \). Since \(h(t) \) may be singular at \(t = a \) and/or \(t = b \), we take the arguments to show that \(\mathcal{T}_1 \) is completely continuous.

Assume that \(v_n, v_0 \in \mathcal{P}_1 \). In view of \(f \) satisfying the Carathéodory condition, it is easy to see that

\[
 \|v_n - v_0\|_0 \to 0 \text{ implies that}
\]

\[
 \sup_{t \in [a, b]} \left| f \left(s, \exp(\lambda s) \left(c_1(v_n) + \int_{s}^{b} v_n(\omega) \exp(-\lambda \omega) d\omega \right) \right) - f \left(s, \exp(\lambda s) \left(c_1(v_0) + \int_{s}^{b} v_0(\omega) \exp(-\lambda \omega) d\omega \right) \right) \right| ds \to 0 \tag{2.13}
\]
as \(n \to \infty \), where \(\Omega = [a,b] \) or \(\]a,b[\). Thus, we have

\[
\|T_1 v_n - T_1 v_0\|_0 = \sup_{t \in [a,b]} |(T_1 v_n)(t) - (T_1 v_0)(t)|
\]

\[
\leq \int_a^b h(s) \left| f \left(s, \exp(\lambda s) \left(c_1(v_n) + \int_s^b v_n(\omega) \exp(-\lambda \omega) d\omega \right) \right) \right| ds,
\]

\[
\|T_1 v_n' - T_1 v_0'\|_1 = \sup_{t \in [a,b]} |(T_1 v_n)'(t) - (T_1 v_0)'(t)|
\]

\[
\leq \sup_{t \in [a,b]} \left(h(t) \left| f \left(t, \exp(\lambda t) \left(c_1(v_n) + \int_s^b v_n(\omega) \exp(-\lambda \omega) d\omega \right) \right) \right| ds.\]

(2.14)

Therefore,

\[
\|T_1 v_n - T_1 v_0\| \rightarrow 0 \quad (n \rightarrow \infty). \tag{2.15}
\]

This means that the operator \(T_1 : D_1 \rightarrow D_1 \) is continuous.

Choose two sequences \(\{\varphi_n\}_{n=1}^\infty, \{\varphi_n\}_{n=1}^\infty \subseteq \]a,b[\) satisfying \(\varphi_n \leq \varphi_n \) for any \(n \geq 1 \), such that \(\varphi_n \to a \) and \(\varphi_n \to b \) as \(n \to \infty \), respectively. Define

\[
h_n(t) = \begin{cases}
\inf_{a \leq s \leq \varphi_n} h(t), \\
h(t), \quad \varphi_n < t < \varphi_n \\
\inf_{\varphi_n \leq s \leq b} h(t),
\end{cases} \tag{2.16}
\]

and an operator sequence \(\{T_{1n}\}_{n=1}^\infty \) by

\[
T_{1n} v = \int_a^b h_n(s) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b v(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds. \tag{2.17}
\]

Clearly, \(h_n : [a,b] \to [0, \infty) \) is a piecewise continuous function, and the operator \(T_{1n} : D_1 \rightarrow D_1 \) is well defined. Further, we can see that \(T_{1n} : D_1 \rightarrow D_1 \) is completely continuous.

Let \(R > 0, B_R := \{v \in D_1 : \|v\| \leq R\} \), and \(M_R = \sup \{f(t,u) : (t,u) \in [a,b] \times [0,R]\} \), where \(R = (R \exp(\lambda b)/d_1)(\delta + 1/\lambda) \sum_{i=1}^n a_i(1 - \exp(-\lambda(b-t_i)))(R/\lambda)(\exp(\lambda(b-a) - 1)>0. \)
We will prove that \(\mathcal{T}_{I^n} \) approach \(\mathcal{T}_1 \) uniformly on \(B_R \). From the absolute continuity of integral, we obtain

\[
\lim_{n \to \infty} \int_{l(n)} h(s) ds = 0,
\]

where \(l(n) = [a, \varphi_n] \cup [\varphi_n, b] \). For each \(v \in B_R, t \in [a, \varphi_n] \), we have

\[
\| \mathcal{T}_{I^n} v - \mathcal{T}_1 v \|_0 = \sup_{t \in [a, \varphi_n]} \left| \int_a^t (h_n(s) - h(s)) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b \psi(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds \right|
\]

\[
\leq M_R \int_a^b |h_n(s) - h(s)| ds \to 0 \quad (n \to \infty).
\]

(2.19)

For each \(v \in B_R, t \in [\varphi_n, b] \), we have

\[
\| \mathcal{T}_{I^n} v - \mathcal{T}_1 v \|_0 = \sup_{t \in [\varphi_n, b]} \left| \int_a^t (h_n(s) - h(s)) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b \psi(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds \right|
\]

\[
\leq M_R \int_a^b |h_n(s) - h(s)| ds \to 0 \quad (n \to \infty).
\]

(2.20)

It is easy to see that, for each \(v \in B_R \) and \(\varphi_n < t < \varphi_n \), there is \(\| \mathcal{T}_{I^n} v - \mathcal{T}_1 v \|_0 \to 0 \) as \(n \to \infty \). Similarly, for any \(v \in B_R \), and \(t \in [a, \varphi_n], [\varphi_n, \varphi_n[, [\varphi_n, b] \), respectively, we can obtain that

\[
\| (\mathcal{T}_{I^n} v)' - (\mathcal{T}_1 v)' \|_1 \leq M_R |h_n(t) - h(t)| \to 0 \quad (n \to \infty).
\]

(2.21)

From the above argument, we obtain

\[
\| \mathcal{T}_{I^n} v - \mathcal{T}_1 v \| = \max \left\{ \| \mathcal{T}_{I^n} v - \mathcal{T}_1 v \|_0, \| (\mathcal{T}_{I^n} v)' - (\mathcal{T}_1 v)' \|_1 \right\} \to 0 \quad (n \to \infty).
\]

(2.22)

That is to say, the sequence \(\mathcal{T}_{I^n} \) is uniformly approximate \(\mathcal{T}_1 \) on any bounded subset of \(P_1 \). Therefore, \(\mathcal{T}_1 : P_1 \to P_1 \) is completely continuous. \(\square \)
For convenience, we set
\[
m_1 = \int_{t_1}^{b} \exp(-\lambda t) \left(\int_{a}^{t} h(s) ds \right) dt, \quad M_1 = \int_{a}^{b} h(s) ds,
\]
\[
u_1 = r_1 \exp(\lambda a) \left(\frac{\delta \exp(\lambda a)}{d_1 (b - a)} + 1 \right), \quad \nu_2 = L_1 \exp(\lambda t_1) \frac{\delta + \Sigma_{i=1}^{n} a_i (b - t_i) \exp(\lambda (t_i - b))}{d_1}.
\]
(2.23)

We are now ready to apply a functional type cone expansion and compression fixed-point theorem to the operator \(T_1 \) to give the sufficient conditions for the existence of at least one positive solution to the problem (1.4), (1.5).

Theorem 2.5. Suppose that \((H_1)-(H_4)\) hold. Assume that there exist positive numbers \(k_1, r_1, \) and \(L_1 \) with \((\exp(\lambda b)) / (b - t_1) r_1 < L_1 \) such that

\[
(A_1) \ f(t, w) \geq k_1, \ (t, w) \in [a, b] \times [r_1, \infty],
\]

\[
(A_2) \ f(t, w) \geq r_1 / m_1, \ (t, w) \in [a, t_1] \times [u_1, \infty],
\]

\[
(A_3) \ f(t, w) \leq L_1 / M_1, \ (t, w) \in [t_1, b] \times [u_2, \infty],
\]

then the operator \(T_1 \) has at least one fixed-point \(v \) such that \(r_1 \leq \alpha(v) \) and \(\beta(v) \leq L_1 \), and the problem (1.4), (1.5) has at least one positive solution \(u \) such that

\[
u(t) = \exp(\lambda t) \left(c_1(v) + \int_{t}^{b} v(\omega) \exp(-\lambda \omega) d\omega \right).
\]
(2.24)

Proof. The cone \(P_1 \) and operator \(T_1 \) are defined by (2.1) and (2.2), respectively. By the properties of operator \(T_1 \), it suffices to show that the conditions of Lemma 1.1 hold with respect to \(T_1 \). In view of Lemma 2.1, it is not difficult to prove that a fixed point of \(T_1 \) is coincident with the solution of the boundary value problem (1.4), (1.5), so we concentrate on the existence of the fixed point of the operator \(T_1 \). Set \(P_1(\beta, \alpha, r_1, L_1) \) is a nonempty bounded subset of \(P_1 \). From Lemma 2.4, it can be shown that

\[
T_1 : P_1(\beta, \alpha, r_1, L_1) \rightarrow P_1
\]
(2.25)

is completely continuous by the Arzela-Ascoli lemma. For \(v \in \partial P_1(\beta, \alpha, r_1, L_1) \), the assumption \((A_1)\) implies that

\[
\left\| T_1 v \right\|_0 = \int_{a}^{b} h(s) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_{s}^{b} v(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds \geq k_1 \int_{a}^{b} h(s) ds,
\]
\[
\left\| (T_1 v)^\prime \right\|_1 = \sup_{t \in [a, b]} h(t) f \left(t, \exp(\lambda t) \left(c_1(v) + \int_{t}^{b} v(\omega) \exp(-\lambda \omega) d\omega \right) \right) \geq k_1 \sup_{t \in [a, b]} h(t).
\]
(2.26)
the hypotheses of (H_3) lead to

$$\inf_{v \in \partial \mathcal{D}_1(\beta, \alpha, r)} \| \mathcal{T}_1 v \| \geq k_1 \min \left\{ \sup_{t \in [0, b]} h(t), \int_a^b h(s) ds \right\} > 0. \tag{2.27}$$

If $v \in \partial \mathcal{D}_1(\alpha, r_1)$, then $\beta(v) = v(t_1) \leq (\exp(\lambda b) / (b - t_1)r_1 < L_1$, and so $v \in \partial \mathcal{D}_1(\beta, L_1)$, that is, $\partial \mathcal{D}_1(\alpha, r_1) \subseteq \partial \mathcal{D}_1(\beta, L_1)$. It follows that the conditions of Lemma 1.1 hold with respect to \mathcal{T}_1. By the definition of functionals α and β, we can check that the functionals satisfy the properties $a(\theta y) = \int_t^b \theta y(\omega) \exp(-\lambda \omega) d\omega = \theta \int_t^b y(\omega) \exp(-\lambda \omega) d\omega = \theta a(y)$ for $y \in \partial \mathcal{D}_1(\alpha, r_1)$ and $\theta \in [0, 1]$, $\beta(z) = \mu z(t_1) = \mu \beta(z)$ for $z \in \partial \mathcal{D}_1(\beta, L_1)$ and $\mu \in [1, \infty[$, $\beta(0) = 0$.

We now prove that $\alpha(\mathcal{T}_1 v) \geq r_1$, in Lemma 1.1, holds. In fact, if $v \in \partial \mathcal{D}_1(\alpha, r_1)$, by the properties of $c_1(v)$ and Lemma 2.2, for each $t \in [a, t_1]$,

$$u(t) = \exp(\lambda t) \left(c_1(v) + \int_t^b v(\omega) \exp(-\lambda \omega) d\omega \right) \geq \exp(\lambda a) (c_1(v) + r_1) \geq r_1 \exp(\lambda a) \left(\frac{\delta \exp(\lambda a)}{d_1(b - a)} + 1 \right). \tag{2.28}$$

Hence, by the assumption (A_2) and (2.28), there is

$$\alpha(\mathcal{T}_1 v) = \int_t^b (\mathcal{T}_1 v)(t) \exp(-\lambda t) dt$$

$$= \int_t^b \exp(-\lambda t) \left(\int_a^b h(s) f \left(s, \exp(\lambda s) \left(c_1(v) + \int_s^b v(\omega) \exp(-\lambda \omega) d\omega \right) \right) ds \right) dt$$

$$\geq r_1 \int_t^b \exp(-\lambda t) \left(\int_a^b h(s) ds \right) dt = r_1. \tag{2.29}$$

Finally, we assert that $\beta(\mathcal{T}_1 v) \leq L_1$, in Lemma 1.1, also holds. If $v \in \partial \mathcal{D}_1(\beta, L_1)$, by Lemma 2.3, for $t \in [t_1, b]$,

$$u(t) = \exp(\lambda t) \left(c_1(v) + \int_t^b v(\omega) \exp(-\lambda \omega) d\omega \right) \geq v(t_1) \exp(\lambda t_1) \frac{\delta + \sum_{i=1}^n a_i(b - t_i) \exp(\lambda(t_i - b))}{d_1} \tag{2.30}$$

$$= L_1 \exp(\lambda t_1) \frac{\delta + \sum_{i=1}^n a_i(b - t_i) \exp(\lambda(t_i - b))}{d_1}.$$
The assumption (A_3) and \eqref{2.30} imply that

\[
\beta(T_1v) = (T_1v)(b) = \int_a^b h(s)f\left(s, \exp(\lambda s)\left(c_1(v) + \int_s^b v(\omega) \exp(-\lambda \omega) d\omega\right)\right) ds \leq \frac{L_1}{M_1} \int_a^b h(s) ds = L_1.
\]

To sum up, the hypotheses of Lemma 1.1 are satisfied. Hence, the operator T_1 has at least one fixed point, that is, the problem \eqref{1.4}, \eqref{1.5} has at least one positive solution. \hfill \Box

Let the cone

\[
P_2 = \{v \in B : v \text{ is nonincreasing on } [a, b], \ v(b) = 0\}.
\]

Evidently, $P_2 \subset B$. For $v \in P_2$, define the operator T_2 by

\[
T_2v(t) = \int_t^b h(s)f\left(s, \exp(\lambda s)\left(c_2(v) + \int_s^t v(\omega) \exp(-\lambda \omega) d\omega\right)\right) ds, \quad t \in [a, b],
\]

where $c_2(v) = (1/d_2)(\delta v(a) - \sum_{i=1}^n a_i \exp(\lambda t_i) \int_a^{t_i} v(\omega) \exp(-\lambda \omega) d\omega)$.

We only give the preliminary lemmas and result of the problem \eqref{1.4}, \eqref{1.6}, the proofs are similar to the above argument.

Lemma 2.6. If $v \in P_2$ is a fixed-point T_2, then

\[
u(t) = \exp(\lambda t)\left(c_2(v) + \int_a^t v(\omega) \exp(-\lambda \omega) d\omega\right)
\]

is one solution of the problem \eqref{1.4}, \eqref{1.6}.

For $v \in P_2$, the nonnegative continuous functionals α and β on P_2 are defined by

\[
\alpha(v) = \int_a^{t_n} v(\omega) \exp(-\lambda \omega) d\omega, \quad \beta(v) = v(t_n).
\]

Lemma 2.7. Let $r_2 > 0$. If $v \in \partial P_2(\alpha, r_2)$, then

\[
v(t_n) \leq \frac{\exp(\lambda t_n)}{t_n - a} r_2, \quad \int_a^b v(\omega) \exp(-\lambda \omega) d\omega \geq r_2.
\]
Lemma 2.8. Let $L_2 > 0$. If $v \in \partial P_2(\beta, L_2)$, then
\[
\int_a^{t_n} v(\omega) \exp(-\lambda \omega) d\omega \geq L_2 \exp(-\lambda t_n)(t_n - a).
\] (2.37)

Lemma 2.9. Let (H_1)–(H_4) hold, then $\mathcal{T}_2 : P_2 \to P_2$ is completely continuous.

For convenience, we set
\[
m_2 = \int_a^{t_n} \exp(-\lambda t) \left(\int_t^{b_n} h(s) ds \right) dt > 0, \quad M_2 = \int_a^{b_n} h(s) ds > 0,
\]
\[
u_3 = r_2 \exp(\lambda b), \quad \nu_4 = L_2 \exp(\lambda a) \frac{\delta - \sum_{i=1}^n a_i(t_i - a) \exp(\lambda(t_i - a))}{d_2}.
\] (2.38)

Theorem 2.10. Suppose that (H_1)–(H_4) hold. Assume that $\delta - \sum_{i=1}^n a_i(t_i - a) > 0$, then there exist positive numbers k_2, r_2 and L_2 such that

(B) $f(t, w) \geq k_2, (t, w) \in [a, b] \times [r_2, \infty[$,
(B) $f(t, w) \geq (r_2/m_2), (t, w) \in [t_n, b] \times [u_3, \infty[,$
(B) $f(t, w) \leq (L_2/M_2), (t, w) \in [a, t_n] \times [u_4, \infty[.$

Then the operator \mathcal{T}_2 has at least one fixed-point v such that $r_2 \leq \alpha(v)$ and $\beta(v) \leq L_2$, and the problem (1.4), (1.6) has at least one positive solution u such that
\[
u(t) = \exp(\lambda t) \left(c_2(v) + \int_a^{t_n} v(\omega) \exp(-\lambda \omega) d\omega \right).
\] (2.39)

3. Examples

Consider the problems
\[
u''(t) - u'(t) + h(t) f(t, u(t)) = 0, \quad 0 < t < 1,
\] (3.1)
\[
u'(0) - u(0) = 0, \quad u(1) + 2u'(1) = 2u \left(\frac{1}{2} \right),
\] (3.2)
\[
u(0) + 2u'(0) = 2u \left(\frac{1}{2} \right), \quad u'(1) - u(1) = 0.
\] (3.3)

Let
\[
h(t) = \frac{1}{\sqrt{t(1-t)}}, \quad f(t, w) = \begin{cases}
10^{-3}t + \frac{2}{\sqrt{w} + 2}, & w < 2, \\
10^{-3}t + 2 - \sqrt{2}, & w \geq 2.
\end{cases}
\] (3.4)
It is easy to check that hypotheses (H₁)–(H₄) hold. For the problem (3.1), (3.2), by some calculations, we have \(d_1 \approx 4.858\), \(m_1 \approx 0.348\), and \(M_1 \approx 3.142\). Taking \(k_1 = 0.001\), \(r_1 = 0.2\), and \(L_1 = 2\), satisfying the following conditions: \(f(t, w) \geq 0.001\), \((t, w) \in [0, 1] \times [0, 0.2, \infty], f(t, w) \geq r_1 / m_1 = 0.575\), \((t, w) \in [0, 1/2] \times [0.141, \infty], f(t, w) \leq L_1 / M_1 \approx 0.637\), and \((t, w) \in [1/2, 1] \times [2.242, \infty]\). Thus, the hypotheses of Lemma 1.1 are fulfilled, and so the operator \(T_1\) has at least one fixed point, that is to say, the problem (3.1), (3.2) has at least one positive solution. For the problem (3.1), (3.3), by some calculations, we obtain \(d_2 \approx 0.297\), \(m_2 \approx 0.348\), and \(M_2 \approx 3.142\). Taking \(k_2 = 0.001\), \(r_2 = 0.1\), and \(L_2 = 2\), combining with the following conditions: \(f(t, w) \geq 0.001\), \((t, w) \in [0, 1] \times [0, 1, \infty], f(t, w) \geq r_2 / m_2 \approx 0.287\), \((t, w) \in [1/2, 1] \times [0.272, \infty], f(t, w) \leq L_2 / M_2 \approx 0.637\), and \((t, w) \in [0, 1/2] \times [2.364, \infty]\). So the problem (3.1), (3.3) has at least one positive solution.

References

