Research Article

Group Divisible Designs with Two Associate Classes and $\lambda_2 = 1$

Nittiya Pabhapote1 and Narong Punnim2

1 Department of Mathematics, University of the Thai Chamber of Commerce, Dindaeng, Bangkok 10400, Thailand
2 Department of Mathematics, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand

Correspondence should be addressed to Nittiya Pabhapote, nittiya_pab@utcc.ac.th

Received 28 January 2011; Accepted 19 May 2011

1. Introduction

A pairwise balanced design is an ordered pair (S, \mathcal{B}), denoted PBD(S, \mathcal{B}), where S is a finite set of symbols, and \mathcal{B} is a collection of subsets of S called blocks, such that each pair of distinct elements of S occurs together in exactly one block of \mathcal{B}. Here $|S| = v$ is called the order of the PBD. Note that there is no condition on the size of the blocks in \mathcal{B}. If all blocks are of the same size k, then we have a Steiner system $S(v, k)$. A PBD with index λ can be defined similarly; each pair of distinct elements occurs in λ blocks. If all blocks are same size, say k, then we get a balanced incomplete block design BIBD(v, b, r, k, λ). In other words, a BIBD(v, b, r, k, λ) is a set S of v elements together with a collection of b k-subsets of S, called blocks, where each point occurs in r blocks, and each pair of distinct elements occurs in exactly λ blocks (see [1–3]).

Note that in a BIBD(v, b, r, k, λ), the parameters must satisfy the necessary conditions

1. $vr = bk$
2. $\lambda(v - 1) = r(k - 1)$

With these conditions, a BIBD(v, b, r, k, λ) is usually written as BIBD(v, k, λ).
A group divisible design $GDD(v = v_1 + v_2 + \cdots + v_g, G, k, \lambda_1, \lambda_2)$ is an ordered triple (V, G, B), where V is a v-set of symbols, G is a partition of V into g sets of size v_1, v_2, \ldots, v_g, each set being called group, and B is a collection of k-subsets (called blocks) of V, such that each pair of symbols from the same group occurs in exactly λ_1 blocks, and each pair of symbols from different groups occurs in exactly λ_2 blocks (see [1, 2, 4]). Elements occurring together in the same group are called first associates, and elements occurring in different groups we called second associates. We say that the GDD is defined on the set V. The existence of such GDDs has been of interest over the years, going back to at least the work of Bose and Shimamoto in 1952 who began classifying such designs [5]. More recently, much work has been done on the existence of such designs when $\lambda_1 = 0$ (see [6] for a summary), and the designs here are called partially balanced incomplete block designs (PBIBDs) of group divisible type in [6]. The existence question for $k = 3$ has been solved by Fu and Rodger [1, 2] when all groups are the same size.

In this paper, we continue to focus on blocks of size 3, solving the problem when the required designs having two groups of unequal size, namely, we consider the problem of determining necessary conditions for an existence of $GDD(v = m + n, 2, 3, \lambda_1, \lambda_2)$ and prove that the conditions are sufficient for some infinite families. Since we are dealing on GDDs with two groups and block size 3, we will use $GDD(m, n; \lambda_1, \lambda_2)$ for $GDD(v = m+n, 2, 3, \lambda_1, \lambda_2)$ from now on, and we refer to the blocks as triples. We denote $(X, Y; B)$ for a GDD$(m, n; \lambda_1, \lambda_2)$ if X and Y are m-set and n-set, respectively. Chaiyasena, et al. [7] have written a paper in this direction. In particular, they have completely solved the problem of determining all pairs of integers (n, λ) in which a GDD$(1, n; 1, \lambda)$ exists. We continue to investigate in this paper all triples of integers (m, n, λ) in which a GDD$(m, n; \lambda, 1)$ exists. We will see that necessary conditions on the existence of a GDD$(m, n; \lambda_1, \lambda_2)$ can be easily obtained by describing it graphically as follows.

Let λK_v denote the graph on v vertices in which each pair of vertices is joined by λ edges. Let G_1 and G_2 be graphs. The graph $G_1 \vee G_2$ is formed from the union of G_1 and G_2 by joining each vertex in G_1 to each vertex in G_2 with λ edges. A G-decomposition of a graph H is a partition of the edges of H such that each element of the partition induces a copy of G. Thus the existence of a $GDD(m, n; \lambda_1, \lambda_2)$ is easily seen to be equivalent to the existence of a K_3-decomposition of $\lambda_1 K_m \vee \lambda_2 K_n$. The graph $\lambda_1 K_m \vee \lambda_2 K_n$ is of order $m + n$ and size $\lambda_1 \binom{m}{2} + \lambda_2 \binom{n}{2} + \lambda_2 mn$. It contains m vertices of degree $\lambda_1 (m-1) + \lambda_2 n$ and n vertices of degree $\lambda_1 (n-1) + \lambda_2 m$. Thus the existence of a K_3-decomposition of $\lambda_1 K_m \vee \lambda_2 \lambda_1 K_n$ implies

1. $3 | (\frac{m(m-1)}{2} + \frac{n(n-1)}{2}) + \lambda_2 mn$, and
2. $2 | \lambda_1 (m-1) + \lambda_2 n$ and $2 | \lambda_1 (n-1) + \lambda_2 m$.

2. Preliminary Results

We will review some known results concerning triple designs that will be used in the sequel, most of which are taken from [3].

Theorem 2.1. Let v be a positive integer. Then there exists a BIBD$(v, 3, 1)$ if and only if $v \equiv 1$ or $3 \pmod{6}$.

A BIBD$(v, 3, 1)$ is usually called Steiner triple system and is denoted by STS(v). Let (V, B) be an STS(v). Then the number of triples $b = \|B\| = v(v-1)/6$. A parallel class in an STS(v) is a set of disjoint triples whose union is the set V. A parallel class contains $v/3$ triples,
and, hence, an STS(\(v\)) having a parallel class can exist only when \(v \equiv 3 \pmod{6}\). When the set \(\mathcal{B}\) can be partitioned into parallel classes, such a partition \(\mathcal{R}\) is called a resolution of the STS(\(v\)), and the STS(\(v\)) is called resolvable. If \((V, \mathcal{B})\) is an STS(\(v\)), and \(\mathcal{R}\) is a resolution of it, then \((V, \mathcal{B}, \mathcal{R})\) is called a Kirkman triple system, denoted by KTS(\(v\)), with \((V, \mathcal{B})\) as its underlying STS. It is well known that a KTS(\(v\)) exists if and only if \(v \equiv 3 \pmod{6}\). Thus if \((V, \mathcal{B}, \mathcal{R})\) is a KTS(\(v\)), then \(\mathcal{R}\) contains \((v - 1)/2\) parallel classes.

Theorem 2.2. There exists a PBD(\(6k + 5\)) with one block of size 5 and \(6k^2 + 9k\) blocks of size 3.

Example 2.3. Let \(S = \{1, 2, 3, \ldots, 11\}\). Then PBD(11) is an ordered pair \((S, \mathcal{B})\), where \(\mathcal{B}\) contains the following blocks:

\[
\begin{align*}
\{1, 2, 3, 4, 5\} & \quad \{2, 6, 9\} & \quad \{3, 7, 8\} & \quad \{4, 8, 11\} \\
\{1, 6, 7\} & \quad \{2, 7, 11\} & \quad \{3, 9, 10\} & \quad \{5, 6, 8\} \\
\{1, 8, 9\} & \quad \{2, 8, 10\} & \quad \{4, 6, 10\} & \quad \{5, 7, 10\} \\
\{1, 10, 11\} & \quad \{3, 6, 11\} & \quad \{4, 7, 9\} & \quad \{5, 9, 11\}.
\end{align*}
\]

A factor of a graph \(G\) is a spanning subgraph. An \(r\)-factor of a graph is a spanning \(r\)-regular subgraph, and an \(r\)-factorization is a partition of the edges of the graph into disjoint \(r\)-factors. A graph \(G\) is said to be \(r\)-factorable if it admits an \(r\)-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of an \(r\)-regular graph \(G\) is a set of 1-factors which partition the egde set of \(G\). The following results are well known.

Theorem 2.4. The complete graph \(K_{2n}\) is 1-factorable, \(K_{2n+1}\) is 2-factorable, and \(K_{3n+1}\) is 3-factorable.

The following results on existence of \(\lambda\)-fold triple systems are well known (see, e.g., [3]).

Theorem 2.5. Let \(n\) be a positive integer. Then a BIBD(\(n, 3, \lambda\)) exists if and only if \(\lambda\) and \(n\) are in one of the following cases:

(a) \(\lambda \equiv 0 \pmod{6}\) and \(n \neq 2\),

(b) \(\lambda \equiv 1\ or\ 5 \pmod{6}\) and \(n \equiv 1\ or\ 3 \pmod{6}\),

(c) \(\lambda \equiv 2\ or\ 4 \pmod{6}\) and \(n \equiv 0\ or\ 1 \pmod{3}\), and

(d) \(\lambda \equiv 3 \pmod{6}\) and \(n\) is odd.

The results of Chaiyasena, et al. [7] will be useful, and we will state their results as follows.

Theorem 2.6. Let \(v\) be a positive integer with \(v \geq 3\). The spectrum of \(\lambda\), denoted \(S_{1,v}\) is defined as

\[
S_{1,v} = \{\lambda : \text{a GDD}(1, v; 1, \lambda)\ \text{exists}\}.
\]
Then

(a) \(S_{1,v} = \{1, 3, 5, \ldots, v - 1\} \) if \(v \equiv 0 \) (mod 6),
(b) \(S_{1,v} = \{6, 12, 18, \ldots, v - 1\} \) if \(v \equiv 1 \) (mod 6),
(c) \(S_{1,v} = \{1, 7, 13, \ldots, v - 1\} \) if \(v \equiv 2 \) (mod 6),
(d) \(S_{1,v} = \{2, 4, 6, \ldots, v - 1\} \) if \(v \equiv 3 \) (mod 6),
(e) \(S_{1,v} = \{3, 9, 15, \ldots, v - 1\} \) if \(v \equiv 4 \) (mod 6), and
(f) \(S_{1,v} = \{4, 10, 16, \ldots, v - 1\} \) if \(v \equiv 5 \) (mod 6).

The following notations will be used throughout the paper for our constructions.

(1) Let \(T = \{x, y, z\} \) be a triple and \(a \notin T \). We use \(a \ast T \) for three triples of the form \(\{a, x, y\}, \{a, x, z\}, \{a, y, z\} \). If \(\mathcal{T} \) is a set of triples, then \(\ast \mathcal{T} \) is defined as \(\{a \ast T : T \in \mathcal{T}\} \).
(2) Let \(G = \langle V(G), E(G) \rangle \) be a graph. If \(u, v \in V(G), e = uv \in E(G), \) and \(a \notin V(G), \) then we use \(a + e \) for the triple \(\{a, u, v\} \). We further use \(a + E(G) \) for the collection of triples \(a + e \) for all \(e \in E(G) \). In other words,

\[
a + E(G) := \{a + e : e \in E(G)\}.
\] (2.3)

In particular, if \(\mathcal{F} = \{x_1y_1, x_2y_2, \ldots, x_ny_n\} \) is a 1-factor of \(K_{2n} \) and \(a \) is not in the vertex set of \(K_{2n} \), then

\[
a + \mathcal{F} = \{\{a, x_1, y_1\}, \{a, x_2, y_2\}, \ldots, \{a, x_n, y_n\}\}.
\] (2.4)

If \(C_m : x_1, x_2, \ldots, x_{m+1} = x_1 \) is a cycle in \(K_n \), then

\[
a + C_m = \{\{a, x_1, x_2\}, \{a, x_2, x_3\}, \ldots, \{a, x_{m-1}, x_m\}, \{a, x_m, x_1\}\}.
\] (2.5)

Also if \(G \) is a 2-regular graph and \(a \notin V(G) \), then \(a + E(G) \) forms a collection of triples such that for each \(u \in V(G) \), there are exactly two triples in \(a + E(G) \) containing \(a \) and \(u \). In general if \(G \) is an \(r \)-regular graph and \(a \notin V(G) \), then \(a + E(G) \) forms a collection of triples such that for each \(u \in V(G) \), there are exactly \(r \) triples in \(a + E(G) \) containing \(a \) and \(u \).

(3) Let \(V \) be a \(v \)-set. We use \(K(V) \) for the complete graph \(K_v \) on the vertex set \(V \).
(4) Let \(V \) be a \(v \)-set. Let \(STS(V) \) be defined as

\[\text{STS}(V) = \{\mathcal{B} : (V, \mathcal{B}) \text{ is an STS}(v)\}\]. (2.6)

\(KTS(V)\) and \(\text{BIBD}(v, 3, \lambda)\) can be defined similarly, that is,

\[KTS(V) = \{\mathcal{B} : (V, \mathcal{B}) \text{ is a KTS}(v)\}\],
(2.7)

\[\text{BIBD}(v, 3, \lambda) = \{\mathcal{B} : (V, \mathcal{B}) \text{ is a BIBD}(v, 3, \lambda)\}\].
Let X and Y be disjoint sets of cardinality m and n, respectively. We define $\text{GDD}(X, Y; \lambda_1, \lambda_2)$ as

$$\text{GDD}(X, Y; \lambda_1, \lambda_2) = \{B : (X, Y; B) \text{ is a GDD}(m, n; \lambda_1, \lambda_2)\}. \quad (2.8)$$

(5) When we say that B is a collection of subsets (blocks) of a v-set V, B may contain repeated blocks. Thus, “\cup” in our construction will be used for the union of multisets.

3. $\text{GDD}(m, n; \lambda, 1)$

Let λ be a positive integer. We consider in this section the problem of determining all pairs of integers (m, n) in which a $\text{GDD}(m, n; \lambda, 1)$ exists. Recall that the existence of $\text{GDD}(m, n; \lambda, 1)$ implies $3 \mid |m(m - 1) + n(n - 1)| + 2mn$, $2 \mid \lambda(m - 1) + n$ and $2 \mid \lambda(n - 1) + m$. Let

$$S(\lambda) := \{(m, n) : \text{a GDD}(m, n; \lambda, 1) \text{ exists}\}. \quad (3.1)$$

By solving systems of linear congruences, we obtain the following necessary conditions.

Lemma 3.1. Let t be a nonnegative integer.

(a) If $(m, n) \in S(6t + 1)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 1, 6h + 2}, \{6k + 1, 6h + 6\}, \{6k + 3, 6h + 4\}, \{6k + 3, 6h + 6\}, \{6k + 5, 6h + 2\}, \{6k + 5, 6h + 4\}$.

(b) If $(m, n) \in S(6t + 2)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 6, 6h + 4\}, \{6k + 6, 6h + 6\}$.

(c) If $(m, n) \in S(6t + 3)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 1, 6h + 6\}, \{6k + 3, 6h + 2\}, \{6k + 3, 6h + 4\}, \{6k + 3, 6h + 6\}, \{6k + 5, 6h + 6\}$.

(d) If $(m, n) \in S(6t + 4)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 2, 6h + 2\}, \{6k + 2, 6h + 4\}, \{6k + 6, 6h + 4\}, \{6k + 6, 6h + 6\}$.

(e) If $(m, n) \in S(6t + 5)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 1, 6h + 6\}, \{6k + 3, 6h + 4\}, \{6k + 3, 6h + 6\}$.

(f) If $(m, n) \in S(6t + 6)$, then there exist nonnegative integers h and k such that $(m, n) \in \{6k + 6, 6h + 2\}, \{6k + 6, 6h + 4\}, \{6k + 6, 6h + 6\}$.

In order to obtain sufficient conditions on an existence of $\text{GDD}(m, n; \lambda, 1)$, we first observe the following facts.

(1) Let X and Y be two disjoint sets of size m and n, respectively. Then $\text{STS}(X \cup Y) \neq \emptyset$ if and only if $\text{GDD}(X, Y; 1, 1) \neq \emptyset$.

(2) Let X and Y be two disjoint sets of size m and n; respectively, and let $\lambda \in \{2, 3, 4, 5, 6\}$. Then $\text{GDD}(X, Y; \lambda, 1) \neq \emptyset$ if $\text{STS}(X \cup Y) \neq \emptyset$, $\text{BIBD}(X, 3, \lambda - 1) \neq \emptyset$, and $\text{BIBD}(Y, 3, \lambda - 1) \neq \emptyset$.

Thus, we have the following results.
Lemma 3.2. Let \(h \) and \(k \) be nonnegative integers. Then

(a) \((6k + 1, 6h + 6), (6k + 6, 6h + 1), (6k + 3, 6h + 6), (6k + 6, 6h + 3), (6k + 3, 6h + 4), (6k + 4, 6h + 3), (6k + 1, 6h + 2), (6k + 2, 6h + 1), (6k + 5, 6h + 2), (6k + 2, 6h + 5), (6k + 5, 6h + 4), (6k + 4, 6h + 5) \in S(1),

(b) \((6k+1, 6h+6), (6k+6, 6h+1), (6k+3, 6h+6), (6k+6, 6h+3), (6k+3, 6h+4), (6k+4, 6h+3) \in S(3), \) and

(c) \((6k+1, 6h+6), (6k+6, 6h+1), (6k+3, 6h+6), (6k+6, 6h+3), (6k+3, 6h+4), (6k+4, 6h+3) \in S(5). \)

Lemma 3.3. Let \(h \) and \(k \) be nonnegative integers. Then,

(a) \((6k + 6, 6h + 6) \in S(2) \) and

(b) \((6k + 6, 6h + 6), (6k + 4, 6h + 6) \in S(2). \)

Proof. (a) We first consider an existence of GDD(6,6;2,1), where the groups are \(X = \{1,2,3,4,5,6\} \) and \(Y = \{a_1, a_2, \ldots, a_6\}. \) Let \(\mathcal{F} = \{ \mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_6 \} \) be a 1-factorization of \(K(X). \)

Let \(B_1 = \bigcup_{i=1}^{6} (a_i \mathcal{F}_i), B_2 \in \text{STS}(X \cup \{a_1\}), \) and \(B_3 \in \text{BIBD}(Y, 3, 2). \) Then \((X, Y; B)\) forms a GDD(6,6;2,1), where \(B = B_1 \cup B_2 \cup B_3. \) Thus \((6,6) \in S(2). \)

Let \(X \) and \(Y \) be two sets of size \(6k + 6 \) and \(6h + 6, \) respectively. Suppose that \(k \leq h \) and \(h \geq 1. \) Let \(a_1, a_2, a_3 \in Y \) and let \(Y' = Y - \{a_1, a_2, a_3\}. \) Thus, KTS(Y') \(\neq \emptyset. \) Let \(B_1 \in \text{KTS}(Y') \) with \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{3h+1} \) as its parallel classes. Since STS(X ∪ Y') and STS(X ∪ \{a_1, a_2, a_3\}) are not empty, there exist \(B_2 \in \text{STS}(X \cup Y') \) and \(B_3 \in \text{STS}(X \cup \{a_1, a_2, a_3\}). \) We now let \(B \) as

\[
\left(\bigcup_{i=1}^{3} (a_i \mathcal{P}_i) \right) \cup \left(\bigcup_{i=4}^{3h+1} \mathcal{P}_i \right) \cup \bigcup B_2 \cup B_3 \cup \{ \{ a_1, a_2, a_3 \} \}. \quad (3.2)
\]

Thus, \((X, Y; B)\) forms a GDD(6k + 6, 6h + 6; 2, 1) and \((6k + 6, 6h + 6) \in S(2). \)

(b) Let \(X \) and \(Y \) be two sets of size \(6k + 6 \) and \(6h + 4, \) respectively, \(a \in Y \) and let \(Y' = Y - \{a\}. \) Choose \(B_1 \in \text{KTS}(Y') \) with \(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{3h+1} \) as its parallel classes. Since STS(X ∪ Y') and STS(X ∪ \{a\}) are not empty, there exist \(B_2 \in \text{STS}(X \cup Y') \) and \(B_3 \in \text{STS}(X \cup \{a\}). \) We now let \(B \) as

\[
B_2 \cup B_3 \cup \{a \mathcal{P}_1\} \cup \left(\bigcup_{i=2}^{3h+1} \mathcal{P}_i \right). \quad (3.3)
\]

Thus, \((X, Y; B)\) forms a GDD(6k + 6, 6h + 4; 2, 1) and \((6k + 6, 6h + 4) \in S(2). \)

Therefore, the proof is complete.

Part of the proof of the following lemma is based on an existence of GDD(4,4;2,3) which we now construct. Let \(A = \{a, b, c, d\} \) and \(B = \{1, 2, 3, 4\}. \) Then it is easy to check that \(F \in \text{GDD}(A, B; 2, 3), \) where \(F = \{\{1, a, b\}, \{1, a, c\}, \{1, a, d\}, \{2, b, c\}, \{2, b, d\}, \{2, b, a\}, \{3, c, d\}, \{3, c, a\}, \{3, c, b\}, \{4, d, a\}, \{4, d, b\}, \{4, d, c\}, \{a, 2, 3\}, \{a, 2, 4\}, \{a, 3, 4\}, \{b, 1, 3\}, \{b, 1, 4\}, \{b, 3, 4\}, \{c, 1, 2\}, \{c, 1, 4\}, \{c, 2, 4\}, \{d, 1, 2\}, \{d, 1, 3\}, \{d, 2, 3\}\}.

Lemma 3.4. Let \(h \) and \(k \) be nonnegative integers. Then

\[
(6k + 2, 6h + 3), (6k + 3, 6h + 2), (6k + 5, 6h + 6), (6k + 6, 6h + 5) \in S(3) \quad (3.4)
\]
Case 1. Let X_k be a $(6k + 2)$-set containing $a_1, a_2,$ and Y_h be a $(6h + 3)$-set containing $1, 2, 3$.

Subcase 1 ($k = 0$). Let $B_0 = \{\{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, a_1, a_2\}, \{2, a_1, a_2\}, \{3, a_1, a_2\}\}$, and we can see that $B_0 \in \text{GDD}(X_0, Y_0; 3, 1).$ Suppose that $h \geq 1$. Since $X_0 \cup Y_h$ is a set of size $6h + 5$, it follows by Theorem 2.2, that there exists a PBD$(6h + 5)$, $(X_0 \cup Y_h, B_1)$, in which $\{1, 2, 3, a_1, a_2\} \in B_1$ and $6h^2 + 9h$ triples in B_1. Let $B'_1 = B_1 - \{\{1, 2, 3, a, b\}\}$. Since Y_h is a $(6h + 3)$-set, it follows, by Theorem 2.5, that $\text{BIBD}(Y_h, 3) \neq \emptyset$. Let $B_2 \in \text{BIBD}(Y_h, 3)$. It is easy to see that $(X_0, Y_h; B)$ forms a GDD$(2, 6h + 3; 3, 1)$, where

$$B = B_0 \cup B'_1 \cup B_2.$$ (3.5)

Subcase 2 ($k = 1$). A GDD$(8, 6h + 3; 3, 1)$ can be constructed as follows. Let $X = A \cup B$, where A and B are sets of size four. It is clear that STS(Y_h), STS$(A \cup Y_h)$, and STS$(B \cup Y_h)$ are not empty. It has been shown above that GDD$(A, B; 2, 3)$ is not empty. We now choose $B_1 \in \text{STS}(Y_h)$, $B_2 \in \text{STS}(A \cup Y_h)$, $B_3 \in \text{STS}(B \cup Y_h)$, and $B_4 \in \text{GDD}(A, B; 2, 3)$, and let $B = B_1 \cup B_2 \cup B_3 \cup B_4$. Then, $(X, Y_h; B)$ form a GDD$(8, 6h + 3; 3, 1)$.

Subcase 3 ($k = 2$). We first consider the existence of GDD$(4, 10; 2, 3)$ with $A = \{0, 1, 2, \ldots, 9\}$ and $B = \{a_0, a_1, a_2, a_3\}$. Let $K(A)$ be the complete graph of order 10 with A as its vertex set. It is well known that K_{10} is 1-factorable. In other words, K_{10} can be decomposed as a union of nine edge-disjoint 1-factors. Consequently, K_{10} can be decomposed as a union of three edge-disjoint 3-factors. Also, K_{10} can be decomposed as a union of $10C_3$ and a 3-factor: ten triples $\{\{x, x + 1, x + 3\} : x = 0, 1, \ldots, 9\}$ and a 3-factor \mathcal{F}_0 of K_{10}, where

$$E(\mathcal{F}_0) = \bigcup_{i=0}^{9} \{i, i + 4, i, i + 5, i, i + 6\},$$ (3.6)

reducing arithmetic operations (mod 10). Therefore, $2K_{10}$ can be decomposed as a union of $10C_3$ and four 3-factors.

Let $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ be a 3-factorization of K_{10} and $10C_3$ and \mathcal{F}_0 as described above. Then $(A, B; B)$ forms a GDD$(10, 4; 2, 3)$, where the collection

$$B = \{10C_3\} \cup \bigcup_{i=0}^{3} (a_i + \mathcal{F}_i) \cup B_1$$ (3.7)

with $B_1 = \{\{a_0, a_1, a_2\}, \{a_1, a_2, a_3\}, \{a_2, a_3, a_0\}, \{a_3, a_0, a_1\}\}$.

A GDD$(14, 6h + 3; 3, 1)$ can be constructed as follows. Let $X = A \cup B$, where A and B are sets of size ten and four, respectively. It is clear that STS(Y_h), STS$(A \cup Y_h)$, and STS$(B \cup Y_h)$ are not empty. It has been shown above that GDD$(A, B; 2, 3)$ is not empty. We now choose $B_1 \in \text{STS}(Y_h)$, $B_2 \in \text{STS}(A \cup Y_h)$, $B_3 \in \text{STS}(B \cup Y_h)$, and $B_4 \in \text{GDD}(A, B; 2, 3)$, and let $B = B_1 \cup B_2 \cup B_3 \cup B_4$. Then $(X, Y_h; B)$ form a GDD$(14, 6h + 3; 3, 1)$.

Subcase 4 ($k \geq 3$). Let $A = \{a_1, a_2, a_3, a_4, a_5\}$. Suppose that $A \subseteq X_k$ and $X' = X_k - A$. Since X' is a $(6k - 3)$-set, it follows that STS$(X') \neq \emptyset$ and KTS$(X') \neq \emptyset$. Choose $B_1 \in \text{STS}(X')$ and let $\mathcal{K} \in \text{KTS}(X')$ with $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{3k-2}$ as its parallel classes. Let $B_2 = \bigcup_{i=1}^{3} (a_i \ast \mathcal{P}_i) \cup \bigcup_{i=0}^{3k-2} \mathcal{P}_i$.

Proof
Since $X_k \cup Y_h$ is a set of size $6(k + h) + 5$, we choose a PBD$(6(k + h) + 5)$, $(X_k \cup Y_h; \mathcal{B})$, as in Theorem 2.2 in which $A \in \mathcal{B}_3$. Let $\mathcal{B}'_3 = \mathcal{B}_3 - \{A\}$. Since A is a 5-set and Y_h is a $(6h + 3)$-set, it follows, by Theorem 2.5(c) and (d), that there exist $\mathcal{B}_4 \in \text{BIBD}(5, 3, 3)$ and $\mathcal{B}_5 \in \text{BIBD}(Y_h, 3, 2)$. Thus, we can see that $(X_k, Y_h; \mathcal{B})$ forms a GDD$(6k + 2, 6h + 3; 3, 1)$, where

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}'_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5. \quad (3.8)$$

Case 2. We now suppose that X and Y be sets of size $6k + 5$ and $6h + 6$, respectively. We suppose further that $a \in X$ and $X' = X - \{a\}$. By Lemma 3.3(b), we have GDD$(X', Y; 2, 1) \neq \emptyset$. Choose $\mathcal{B}_1 \in \text{GDD}(X', Y; 2, 1)$ and $\mathcal{B}_2 \in \text{STS}(Y \cup \{a\})$. By Theorem 2.6(e) that GDD$(\{a\}, X'; 1, 3) \neq \emptyset$. Choose $\mathcal{B}_3 \in \text{GDD}([a], X'; 1, 3)$. Let $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$, and it is easy to see that $\mathcal{B} \in \text{GDD}(X, Y; 3, 1)$.

Thus, $(6k + 5, 6h + 6) \in S(3)$. \hfill \qed

Lemma 3.5. Let h and k be nonnegative integers. Then

(a) $(6k + 6, 6h + 6) \in S(4)$ and $(6k + 6, 6h + 6) \in S(6)$,

(b) $(6k + 6, 6h + 4), (6k + 4, 6h + 6) \in S(4)$ and $(6k + 6, 6h + 4), (6k + 4, 6h + 6) \in S(6)$,

(c) $(6k + 2, 6h + 2)$ with h, k not both zero, $(6k + 2, 6h + 4), (6k + 4, 6h + 2) \in S(4)$, and

(d) $(6k + 6, 6h + 2), (6k + 2, 6h + 6) \in S(6)$.

Proof. The proofs of (a) and (b) follow from the results of Lemma 3.3(a), and (b), respectively, and Theorem 2.5(c).

(c) We have the following cases.

Case 1 $(6k + 2, 6h + 2)$. Let X_k be a $(6k + 2)$-set and Y_h be a $(6h + 2)$-set. It is clear that GDD$(X_0, Y_0; 4, 1) = \emptyset$. We now construct a GDD$(2, 8; 4, 1)$, $(X_0, Y_1; \mathcal{B})$, with $X_0 = \{x, y\}$, $Y_1 = \{a_1, a_2, \ldots, a_6\}$, $A = \{a_1, a_2, a_3\}$, $Y'_1 = Y_1 - A$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4$, where $\mathcal{B}_1 \in \text{BIBD}(A, 3, 4)$, $\mathcal{B}_2 \in \text{STS}(X \cup Y'_1)$, $\mathcal{B}_3 = \bigcup_{i=1}^{6} (a_i + E(K(Y'_1)))$, and $\mathcal{B}_4 = \{(a_i, x, y) : i = 1, 2, 3\}$. We now construct a GDD$(6k + 2, 6h + 2; 4, 1)$, $(X_k, Y_h; \mathcal{B})$, in general case, where $k \geq 0$ and $h \geq 1$. We first let $A = \{a_1, a_2, a_3\} \subseteq Y_h$, $Y'_h = Y_h - A$, and we will use a result of the existence of GDD$(1, 6h - 1; 1, 4)$ which has been shown in Theorem 2.6(f), namely, GDD$([a], Y'_h; 1, 4) \neq \emptyset$. Therefore, we can choose $\mathcal{B}_1 \in \text{GDD}([a], Y'_h; 1, 4)$, $\mathcal{B}_4 \in \text{BIBD}(A, 3, 4)$, $\mathcal{B}_3 \in \text{STS}(X \cup Y'_h)$, and $\mathcal{B}_6 = \bigcup_{i=1}^{6} F_i$, where $F_i \in \text{STS}(X_k \cup \{a_i\})$. We can see that $\mathcal{B} \in \text{GDD}(X_k, Y_h; 4, 1)$, where $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \cup \mathcal{B}_6$.

Case 2 $(6k + 2, 6h + 4)$. Let X_k be a $(6k + 2)$-set and Y_h be a $(6h + 4)$-set. It is easy to see that GDD$(X_0, Y_0; 4, 1) \neq \emptyset$ by constructing $(X_0, Y_0; \mathcal{B})$ as follows. Let $X_0 = \{a, b\}$, $Y_0 = \{1, 2, 3, 4\}$, and $\mathcal{B} = \bigcup_{i=1}^{6} (\{i, a, b\} \cup P_2 \cup P_2)$, where $P_2 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$. We now turn to more general cases. Suppose that $a \in Y_h$ and $Y'_h = Y_h - \{a\}$. Since Y'_h is a $(6h + 3)$-set, it follows that KTS$(Y'_h) \neq \emptyset$. Choose $B_1 \in \text{KTS}(Y'_h)$ with parallel classes $P_1, P_2, \ldots, P_{6h+1}$. Let $B_2 = (a + P_1) \cup (a + P_2) \cup \bigcup_{i=1}^{5} \{P_i\}$. We have shown in Lemma 3.4(d) that GDD$(X_k, Y'_h; 3, 1) \neq \emptyset$. Choose $B_3 \in \text{GDD}(X_k, Y'_h; 3, 1)$ and $B_4 \in \text{STS}(X_k \cup \{a\})$. We can see that $\mathcal{B} \in \text{GDD}(X_k, Y'_h; 4, 1)$, where $\mathcal{B} = B_2 \cup B_3 \cup B_4$.

(d) Let X_k be a $(6k + 6)$-set and Y_h be a $(6h + 2)$-set. Let $X_0 = \{a_1, a_2, \ldots, a_6\}$ and $Y_0 = \{a, b\}$. Let $\mathcal{B}_1 = \{(a_i, a, b) : i = 1, 2, \ldots, 6\}$, $\mathcal{B}_2 \in \text{BIBD}(X_0, 3, 6)$. Then $\mathcal{B}_1 \cup \mathcal{B}_2 \in \text{GDD}(X_0, Y_0; 6, 1)$.

International Journal of Mathematics and Mathematical Sciences
Next we will show that GDD($X_k, Y_0; 6, 1$) $\not= \emptyset$ by letting $X_k = \{a_1, a_2, \ldots, a_{6k+6}\}$, $Y_0 = \{a, b\}$, $A = \{a_1, a_2, \ldots, a_5\}$ and $X'_k = X_k - A$. Let $B_1 = \{\{a_i, a, b\} : i = 1, 2, \ldots, 5\}$, $B_2 \in \text{STS}((a, b) \cup X'_k)$, and $B_3 \in \text{BIBD}(A, 3, 6)$. Theorem 2.6(b) shows an existence of a GDD(1, 6$t + 1; 1, 6$). Let $B_4 = \bigcup_{i=1}^{5} B'_i$, where $B'_i \in \text{GDD}(\{a\}, X'_k; 1, 6)$. It is easy to check that $B \in \text{GDD}(X_k, Y_0; 6, 1)$, where $B = B_1 \cup B_2 \cup B_3 \cup B_4$.

Finally, let $h \geq 1$, $a \in Y$ and $Y'_h = Y_h - \{a\}$. We now choose $B_1 \in \text{BIBD}(X_k, 3, 4)$, $B_2 \in \text{BIBD}(Y'_h, 3, 4)$, $B_3 \in \text{STS}(X_k \cup Y'_h)$, and $B_4 \in \text{STS}(X_k \cup \{a\})$. By Theorem 2.6(b) that GDD(1, $Y'_h; 1, 6$) $\not= \emptyset$. Choose $B_5 \in \text{GDD}(\{a\}, Y'_h; 1, 6)$. Thus, we can check that $B \in \text{GDD}(X_k, Y'_h; 6, 1)$, where $B = B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5$. Thus $(6k + 6, 6h + 2) \in S(6)$ for all positive integers h, k.

Now we have an existence of a GDD($m, n; r, 1$) for $r = 1, 2, \ldots, 6$ whenever m and n are not equal to 2, so we can readily extend to any $6t + r$ by the following lemma.

Lemma 3.6. Let m and n be positive integers with $m \not= 2$ and $n \not= 2$. If there exists a GDD($m, n; r, 1$) with $r \geq 1$, then a GDD($m, n; 6t + r, 1$), $t \geq 0$, exists.

Proof. Let X be an m-set and Y be an n-set. By assumption we have GDD($X, Y; r, 1$) $\not= \emptyset$. Choose $B_1 \in \text{GDD}(X, Y; r, 1)$. Since m and n are not equal to 2, by Theorem 2.5(a) there exist $B_2 \in \text{BIBD}(X, 3, 6t)$ and $B_3 \in \text{BIBD}(Y, 3, 6t)$. It is easy to see that $(X, Y; B)$ forms a GDD($m, n; 6t + r, 1$), where $B = B_1 \cup B_2 \cup B_3$. Thus $(m, n) \in S(6t + r)$ with $r \geq 1$.

Finally, we have the main result as in the following.

Theorem 3.7. Let m and n be positive integers with $m \not= 2$ and $n \not= 2$. There exists a GDD($m, n; \lambda, 1$), $\lambda \geq 1$ if and only if

1. $3 \mid \lambda(m(m-1) + n(n-1)) + 2mn$ and
2. $2 \mid \lambda(m-1) + n$ and $2 \mid \lambda(n-1) + m$.

Proof. The proof follows from Lemmas 3.1–3.6.

Acknowledgment

N. Pabhapote is supported by the University of the Thai Chamber of Commerce, and N. Punnim is supported by the Thailand Research Fund.

References

Submit your manuscripts at http://www.hindawi.com