Research Article

A Note on the Range of the Operator
\(X \mapsto TX - XT \) Defined on \(C_2(H) \)

Vasile Lauric

Department of Mathematics, Florida A&M University, Tallahassee, FL 32307, USA

Correspondence should be addressed to Vasile Lauric, vasile.lauric@famu.edu

Received 10 November 2008; Accepted 11 May 2009

We show how a proof of J. Stampfli can be extended to prove that the operator \(X \mapsto TX - XT \) defined on the Hilbert-Schmidt class, when \(T \) is an \(M \)-hyponormal, \(p \)-hyponormal, or log-hyponormal operator, has a closed range if and only if \(\sigma(T) \) is finite.

Copyright © 2009 Vasile Lauric. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \(\mathcal{H} \) be a complex, separable, infinite dimensional Hilbert space, and let \(\mathcal{L} (\mathcal{H}) \) denote the algebra of all linear bounded operators on \(\mathcal{H} \). The Hilbert-Schmidt class, denoted by \(C_2(\mathcal{H}) \), is a Hilbert space with the \(\| \cdot \|_2 \)-norm that arises from the inner product \(\langle X, Y \rangle = \text{tr}(XY^*) \), where \(\text{tr} \) is the scalar-valued trace. For \(T \in \mathcal{L} (\mathcal{H}) \), define \(\Delta_T : \mathcal{L} (\mathcal{H}) \to \mathcal{L} (\mathcal{H}) \) by \(\Delta_T(X) = TX - XT \), and let \(\sigma(T) \) denote the spectrum of \(T \). Let the range of a linear operator \(S \) be denoted by \(\mathcal{R}(S) \). For a normal operator \(N \in \mathcal{L} (\mathcal{H}) \), Anderson and Foiaš [1] proved that \(\mathcal{R}(\Delta_N) \) is norm closed if and only if \(\sigma(N) \) is a finite set. In [2], Stampfli extended this result to the class of hyponormal operators.

Theorem A ([2]). Let \(T \in \mathcal{L} (\mathcal{H}) \) be a hyponormal operator. Then \(\mathcal{R}(\Delta_T) \) is norm closed if and only if \(\sigma(T) \) is finite.

In fact, Stampfli provided a proof of the “only if” implication which extends to a larger class of operators than the class of hyponormal operators (see Proposition 2.2). For an operator \(T \in \mathcal{L} (\mathcal{H}) \), let \(\sigma_{\text{nap}} (T) \) denote its normal approximate point spectrum, that is, the set of those \(\lambda \in \mathbb{C} \) for which there exists an orthonormal sequence \(\{ \phi_n \}_n \) in \(\mathcal{H} \) such that

\[\| (T - \lambda) \phi_n \| + \| (T - \lambda)^* \phi_n \| \to 0. \] (1.1)
Define the class $\mathcal{G}(\mathcal{M})$ as follows:

$$\mathcal{G}(\mathcal{M}) := \{ T \in \mathcal{L}(\mathcal{M}) \mid \sigma_{\text{nap}}(T) \text{ is an infinite set} \}. \quad (1.2)$$

Some classes of hyponormal related operators, such as M-hyponormal operators, that is,

$$m \cdot \|(T - \lambda)^* \phi\| \leq \|(T - \lambda) \phi\|, \quad (\forall) \phi \in \mathcal{M}, \quad (\forall) \lambda \in \mathbb{C}, \text{ for some } m > 0, \quad (1.3)$$

p-hyponormal operators, that is, $(T^* T)^p \geq (T T^*)^p$ for some $p > 0$, or log-hyponormal operators, that is, invertible operators such that $\log(T^* T) \geq \log(T T^*)$, have spectrum that is finite or they belong to $\mathcal{G}(\mathcal{M})$. Particularly, the hyponormal operators (i.e., 1-hyponormal) have this property.

In [3] Stampfli proved the following lemma which will be used in Section 2.

Lemma B. Let $T \in \mathcal{G}(\mathcal{M})$ and let $\{ \lambda_n \}_{n=1}^{\infty}$ be a sequence of distinct points of $\sigma_{\text{nap}}(T)$. Then for any sequence $\{ \varepsilon_n \}_{n=1}^{\infty}$ of positive numbers converging to zero, there exists an orthonormal sequence $\{ \phi_n \}_{n=1}^{\infty}$ of vectors in \mathcal{M} such that

$$\|(T - \lambda_n) \phi_n\| + \|(T - \lambda_n)^* \phi_n\| < \varepsilon_n \quad \text{for } n = 1, 2, \ldots, \quad (1.4)$$

$$\langle \phi_n, T \phi_k \rangle = 0 \quad \text{for } k = 1, \ldots, n - 1. \quad (1.5)$$

2. The Closedness of the Range of $\Delta_2^{(2)}$

The operator Δ_2 defined on the Hilbert-Schmidt class will be denoted in the remainder of this note by $\Delta_2^{(2)}$, that is, $\Delta_2^{(2)} : C_2(\mathcal{M}) \rightarrow C_2(\mathcal{M})$, $\Delta_2^{(2)}(X) = TX - XT$. Let $H^M(\mathcal{M})$ denote the set of M-hyponormal operators.

Proposition 2.1. Let $T \in H^M(\mathcal{M})$. If $\sigma(T)$ is finite, then $\mathcal{R}(\Delta_2^{(2)})$ is closed.

Proof. It is well known that an operator $T \in H^M(\mathcal{M})$ with finite spectrum is normal. Indeed, for such an operator, the restriction to an invariant subspace \mathcal{M} belongs to $H^M(\mathcal{M})$. On the other hand, if $T \in H^M(\mathcal{M})$ with $\sigma(T) = \{ \lambda \}$, then $T = \lambda I$, (cf. [4]). Thus, we can write $T = \sum_{i=1}^{n_0} \lambda_i E_i$, where E_i’s are the spectral projections.

Let X_n and C be in $C_2(\mathcal{M})$ such that $\|\Delta_2^{(2)}(X_n) - C\|_2 \rightarrow 0$. Therefore $\Delta_2(X_n) - C \rightarrow 0$ in the $\mathcal{L}(\mathcal{M})$ norm, and according to Theorem A, there exists $X^0 \in \mathcal{L}(\mathcal{M})$ such that $C = TX^0 - X^0 T$.

For an arbitrary $X \in \mathcal{L}(\mathcal{M})$, let $[X_{ij}]$ be the block-matrix representation of X relative to the decomposition $\mathcal{M} = \sum_{i=1}^{n_0} \oplus E_i \mathcal{M}$. Thus

$$C_{ij} = (\lambda_i - \lambda_j) X^0_{ij}, \quad (2.1)$$

for all $i, j = 1, \ldots, n_0$. This implies that each $X^0_{ij} = 1/(\lambda_i - \lambda_j) C_{ij}$ is a Hilbert-Schmidt operator. Moreover X^0_{ii} can be chosen 0, and thus $X^0 \in C_2(\mathcal{M})$. \qed
Proposition 2.2. Let \(T \in \mathcal{G}(\mathcal{K}) \). Then \(\mathcal{R}(\Delta_T^{(2)}) \) is not closed.

Proof. We will use same notation and circle of ideas as in [2]. Let \(\{\lambda_n\}_{n \geq 1} \) be sequence of distinct points of \(\sigma_{\text{nap}}(T) \) so that \(\lambda_n \to \lambda_0 \). Let

\[
\eta_n = \max \{ |\lambda_{j+1} - \lambda_j|^{-1/2} | j = 1, \ldots, n \},
\]

and choose a nonincreasing sequence \(\{\epsilon_n\}_{n \geq 1} \) so that \(0 < \epsilon_n \leq |\lambda_{n+1} - \lambda_n|^2, n \geq 1, \) and \(\sum_{n \geq 1} \epsilon_n^2 \eta_n^2 < \infty \). According to Lemma B, there exists an orthonormal sequence \(\{\phi_n\}_{n \geq 1} \) that satisfies (1.4) and (1.5). Let \(\mathcal{K}_1 = \sqrt{\{\phi_n | n \geq 1\}}, \mathcal{K}_2 = \mathcal{K}_1^\perp \), and let \(\delta_n \) such that

\[
T \phi_n = \mu_n \phi_n + \delta_n, \quad \delta_n \perp \phi_n, \quad n \geq 1.
\]

It results that

\[
|\mu_n - \lambda_n| < \epsilon_n, \quad ||\delta_n|| < 2\epsilon_n, \quad n \geq 1.
\]

Define \(V : \mathcal{K} \to \mathcal{K} \) by \(V \phi_n = |\lambda_{j+1} - \lambda_j|^{-1/2} \phi_{j+1}, n \geq 1, \) and \(V g = 0, g \in \mathcal{K}_2 \). Let \(\mathcal{M}_n = \sqrt{\{\phi_j | j = 1, \ldots, n\}} \) and let \(P_n \) be the orthogonal projection onto \(\mathcal{M}_n \), and define \(V_n = VP_n \). A tedious calculation shows that

\[
\Delta_T(V_n)\phi_j = \begin{cases}
\nu_j (\mu_{j+1} - \mu_j) \phi_{j+1} + \nu_j \delta_{j+1} - V_n \delta_j, & j \leq n, \\
- V_n \delta_j, & j > n,
\end{cases}
\]

where \(\nu_j = |\lambda_{j+1} - \lambda_j|^{-1/2} \). Denoting \(\Delta_T(V_n) - \Delta_T(V_m) \) by \(\Delta_T^{n,m} \), then for \(n < m \),

\[
\Delta_T^{n,m} \phi_j = \begin{cases}
0, & j \leq n, \\
- \nu_j (\mu_{j+1} - \mu_j) \phi_{j+1} + \nu_j \delta_{j+1} + (V_m - V_n) \delta_j, & n < j \leq m, \\
(V_m - V_n) \delta_j, & j > m.
\end{cases}
\]

Furthermore, from (2.3) it results that

\[
\delta_j \perp \phi_j, \phi_{j+1}, \phi_{j+2}, \ldots
\]

and from (2.4)

\[
\|V_n \delta_j\| \leq 2\eta_j \epsilon_j, \quad \forall j, n \geq 1.
\]

We will show next that \(\|\Delta_T^{n,m}\|_2 \to 0 \) when \(m, n \to \infty \), thus there exists \(C \in C_2(\mathcal{K}) \) such that \(\|\Delta_T(V_n) - C\|_2 \to 0 \), that is, \(C \in \mathcal{R}(\Delta_T^{(2)}). \)
First, we will show that \(\| \Delta T^{n,m} | \omega_t \|^2 \to 0 \), when \(m, n \to \infty \). Indeed,

\[
\| \Delta T^{n,m} | \omega_t \|^2 = \sum_{j=1}^{\infty} \| \Delta T^{n,m}_j \|^2 = \sum_{j=n+1}^{m} \| -\nu_j (\mu_{j+1} - \mu_j) \phi_{j+1} + \nu_j \delta_{j+1} + (V_m - V_n) \delta_j \|^2 + \sum_{j=n+1}^{\infty} \| (V_m - V_n) \delta_j \|^2. \tag{2.9}
\]

The first sum of the right-hand side of the above can be majorized by

\[
2 \cdot \sum_{j=n+1}^{m} \| -\nu_j (\mu_{j+1} - \mu_j) \phi_{j+1} + \nu_j \delta_{j+1} \|^2 + 2 \cdot \sum_{j=n+1}^{m} \| (V_m - V_n) \delta_j \|^2. \tag{2.10}
\]

Since \(\phi_{j+1} \perp \delta_{j+1} \), we have

\[
\| \Delta T^{n,m} | \omega_t \|^2 \leq 2 \left[\sum_{j=n+1}^{m} \left(\nu_j^2 |\mu_{j+1} - \mu_j|^2 + \nu_j^2 \| \delta_{j+1} \|^2 \right) + \sum_{j=n+1}^{\infty} \| (V_m - V_n) \delta_j \|^2 \right]. \tag{2.11}
\]

According to (2.8),

\[
\| (V_m - V_n) \delta_j \|^2 \leq 16 \eta_j^2 \varepsilon_j^2, \tag{2.12}
\]

and according to (2.4),

\[
\nu_j^2 \| \delta_{j+1} \|^2 \leq 4 \eta_j^2 \varepsilon_{j+1}^2 \leq 4 \eta_j^2 \varepsilon_j^2, \quad |\mu_{j+1} - \mu_j|^2 \leq (2 \varepsilon_j + |\lambda_{j+1} - \lambda_j|^2) \leq 8 \varepsilon_j^2 + 2 |\lambda_{j+1} - \lambda_j|^2, \tag{2.13}
\]

which implies

\[
\nu_j^2 |\mu_{j+1} - \mu_j|^2 \leq 8 \eta_j^2 \varepsilon_j^2 + 2 |\lambda_{j+1} - \lambda_j|. \tag{2.14}
\]

Therefore

\[
\| \Delta T^{n,m} | \omega_t \|^2 \leq c_1 \sum_{j=n+1}^{\infty} \eta_j^2 \varepsilon_j^2 + c_2 \sum_{j=n+1}^{m} |\lambda_{j+1} - \lambda_j|, \tag{2.15}
\]

where \(c_1 \) and \(c_2 \) are some constants. After a careful review of the proof, one can see that the sequence \(\{ \lambda_n \} \) can be assumed to converge fast enough (otherwise choose a subsequence of it), more precisely \(\sum_{j=n+1}^{m} |\lambda_{j+1} - \lambda_j| \to 0 \) when \(n, m \to \infty \).
We show next that \(\| \Delta_{T}^{n,m} H_{2} \|_{2}^{2} \to 0 \), when \(m, n \to \infty \). Indeed, we can write

\[
T^{*} \phi_n = \overline{\mu}_n \phi_n + \gamma_n \quad \text{with} \quad \langle \gamma_n, \phi_n \rangle = 0, \quad \| \gamma_n \| \leq 2 \epsilon_n, \quad n \geq 1.
\]

(2.16)

Obviously, we can write \(T^{*} \phi_n = \theta_n \phi_n + \gamma_n \) with \(\langle \gamma_n, \phi_n \rangle = 0 \), which implies

\[
\theta_n = \langle \theta_n \phi_n + \gamma_n, \phi_n \rangle = \langle T^{*} \phi_n, \phi_n \rangle = \langle \phi_n, \mu_n \phi_n + \delta_n \rangle = \overline{\mu}_n^{(n)} \cdot \lambda_n^{(n)},
\]

\[
\| \gamma_n \| = \| (T^{*} - \overline{\mu}_n) \phi_n \| \leq \| (T - \lambda_n) \phi_n \| + \| \lambda_n - \overline{\mu}_n \| \leq 2 \epsilon_n.
\]

(2.17)

For an orthonormal basis \(\{ \psi_i \}_{i \geq 1} \) of \(H_2 \), we will show that

\[
\sum_{i=1}^{\infty} \| \Delta_{T}^{n,m} \psi_i \|^2 \to 0 \quad \text{when} \quad n, m \to \infty.
\]

(2.18)

For each \(i \), write \(T \psi_i = \sum_{k=1}^{\infty} a_{k}^{(i)} \phi_k + w_i \) with \(w_i \in H_2 \). Thus

\[
V_m T \psi_i = \sum_{k=1}^{m} a_{k}^{(i)} V_m \phi_k + V_m w_i = \sum_{k=1}^{m} a_{k}^{(i)} v_k \phi_{k+1}.
\]

(2.19)

Since \(V_m \psi_i = 0 \), we have \(\Delta_{T}^{m} (V_m) \psi_i = -V_m \psi_i \), and consequently, for \(n < m \),

\[
\Delta_{T}^{n,m} \psi_i = \sum_{k=n+1}^{m} a_{k}^{(i)} v_k \phi_{k+1}.
\]

(2.20)

Since the sequence \(\{ \phi_k \} \) is orthonormal, we have

\[
\| \Delta_{T}^{n,m} \psi_i \|^2 = \sum_{k=n+1}^{m} | a_{k}^{(i)} |^2 \cdot v_k^2.
\]

(2.21)

Therefore

\[
\sum_{i=1}^{\infty} \| \Delta_{T}^{n,m} \psi_i \|^2 = \sum_{i=1}^{\infty} \sum_{k=n+1}^{m} | a_{k}^{(i)} |^2 \cdot v_k^2 = \sum_{k=n+1}^{m} v_k^2 \left(\sum_{i=1}^{\infty} | a_{k}^{(i)} |^2 \right).
\]

(2.22)
For a fixed \(k \),
\[
\sum_{i=1}^{\infty} |a_k^{(i)}|^2 = \sum_{i=1}^{\infty} |\langle T \psi_i, \phi_k \rangle|^2 = \sum_{i=1}^{\infty} |\langle \psi_i, T^* \phi_k \rangle|^2
\]

\[\stackrel{(2.16)}{=} \sum_{i=1}^{\infty} |\langle \psi_i, \mu_k \phi_k + \gamma_k \rangle|^2 = \sum_{i=1}^{\infty} |\langle \psi_i, \gamma_k \rangle|^2 \leq \|\gamma_k\|^2 \tag{2.23}\]

Consequently,
\[
\sum_{i=1}^{\infty} \|\Delta_T^{n,m} \psi_i\|^2 \leq 4 \sum_{k=n+1}^{m} \nu_k^2 \cdot \epsilon_k^2 \rightarrow 0 \text{ for } n, m \rightarrow \infty.
\]

The operator \(C \) is not in \(\mathcal{R}(\Delta_T^{(2)}) \) since, according to the proof of Theorem A in [2], \(C \notin \mathcal{R}(\Delta_T) \). \(\square \)

Theorem 2.3. Let \(T \in H^M(\mathcal{A}) \). Then \(\mathcal{R}(\Delta_T^{(2)}) \) is closed if and only if \(\sigma(T) \) is finite.

Proof. If \(T \in H^M(\mathcal{A}) \) and \(\sigma(T) \) are finite, then according to Proposition 2.1, \(\mathcal{R}(\Delta_T^{(2)}) \) is closed. Conversely, if \(T \in H^M(\mathcal{A}) \) has an infinite spectrum, then there are infinitely many distinct points \(\{\lambda_n\}_n \) that are either isolated points of the spectrum, in which case they are eigenvalues, or accumulation points of the spectrum, in which case they are in \(\sigma_{ap}(T) \). Since \(T \in H^M(\mathcal{A}) \), we have \(\sigma_p(T) \subseteq \sigma_{ap}(T) \). Thus \(T \in \mathcal{G}(\mathcal{A}) \) and according to Proposition 2.2, \(\mathcal{R}(\Delta_T^{(2)}) \) is not closed. \(\square \)

References

