We presented a formula for the Wiener polynomial of the kth power graph. We use this formula to find the Wiener polynomials of the kth power graphs of paths, cycles, ladder graphs, and hypercubes. Also, we compute the Wiener indices of these graphs.

Copyright © 2007 Omar A. AbuGhneim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The graphs in this paper are connected and simple. Let $d(u, v)$ denote the distance between two vertices $u, v \in V(G)$. The Wiener polynomial and the Wiener index of G are defined as follows.

Definition 1.1. The Wiener polynomial of G is

$$W(G; q) = \sum_{\{u, v\} \subseteq V(G)} q^{d(u, v)}. \quad (1.1)$$

The Wiener index of G is

$$W(G) = \sum_{\{u, v\} \subseteq V(G)} d(u, v), \quad (1.2)$$

where the sum is taken over all unordered distinct pairs of vertices $\{u, v\}$ in G.

Observe that the degree of the Wiener polynomial is equal to the diameter of G and the coefficient of q is equal to the number of the edges in G. Also, notice that

$$W(G) = W'(G; 1). \quad (1.3)$$
The Wiener index is first presented by Wiener in [1] to determine the boiling point of paraffin. Also, the index has some applications related to properties of molecules and some applications related to mathematics. For more information, the reader is advised to see [2–4].

Wiener polynomials were first introduced by Hosoya in [5]. Some authors call these polynomials Hosoya’s polynomials as an honor of Haruo Hosoya. Many papers have been devoted to compute the Wiener polynomial for different types of graphs. More information can be found in [6–9].

In this paper, we will present the Wiener polynomials and the Wiener indices of the kth power graphs.

2. Main result

First, we give the definition of the kth power graph.

Definition 2.1. The kth power graph, denoted by G_k, has the same vertex set as G. Two vertices are adjacent in G_k if their distance in G is at most k.

For instance, if the diameter of G is k, then G_k is complete. In the definition of the Wiener polynomial, one can collect the coefficients that have the same power and get

$$W(G; q) = \sum_{\{u,v\}} q^{d(u,v)} = \sum_{i=1}^{n} a_i q^i, \quad (2.1)$$

where a_i denotes the number of distinct pairs of vertices in G at distance i, and n denotes the diameter of G.

Now, we give the main result in this paper.

Theorem 2.2. If G is a graph with Wiener polynomial $\sum_{i=1}^{n} a_i q^i$, then the Wiener polynomial of G_k is given by

$$\sum_{i=0}^{[n/k]-1} \sum_{j=1}^{k} a_{i+ik} q^{i+1} + (a_{1+[n/k]k} + \cdots + a_n) q^{[n/k]+1}, \quad (2.2)$$

where $[n/k]$ is the greatest integer less than or equal to n/k, $a_{n+1} = a_{n+2} = \cdots = 0$, and $n \geq k$. If $[n/k] = n/k$, then the Wiener polynomial of G_k becomes

$$\sum_{i=1}^{[n/k]} \left(\sum_{(i-1)k+1 \leq j \leq ik} a_j \right) q^i. \quad (2.3)$$

Proof. The distinct pairs of vertices in G that are at distance 1, 2, ..., k become adjacent in G_k. There are a_1, a_2, \ldots, a_k vertices that are at distance 1, 2, ..., k, respectively, in G. These vertices become at distance one in G_k. Hence the coefficient of q is $\sum_{j=1}^{k} a_j$ in G_k.

One can generalize this idea by taking the distinct pairs of vertices in G whose distance lies in the set $A_i = \{ik + j, j = 1, 2, \ldots, k\}$, where $0 \leq i \leq [n/k] - 1$. There are $a_{ik+1} + \cdots + a_{ik+k}$ distinct pairs of vertices in G whose distance lies in A_i. These distinct pairs of vertices
become at distance \(i + 1 \) in \(G^k \). Hence we have \(a_{ik+1} + \cdots + a_{ik+k} \) distinct pairs of vertices in \(G^k \) that are at distance \(i + 1 \). This gives the Wiener polynomial of \(G^k \).

Next, we state Wiener polynomials for paths, cycles, ladder graphs, and hypercubes. One can find the proof of the next theorem in [8, 9].

Theorem 2.3. (1) \(W(P_n, q) = (n - 1)q + (n - 2)q^2 + \cdots + q^{n-1} \), where \(P_n \) is a path with \(n \) vertices.

(2) \(W(C_{2n+1}, q) = (2n+1)(q + q^2 + \cdots + q^n) \), where \(C_{2n+1} \) is a cycle with \(2n + 1 \) vertices.

(3) \(W(C_{2n}, q) = 2n(q + q^2 + \cdots + q^{n-1}) + nq^n \), where \(C_{2n} \) is a cycle with \(2n \) vertices.

(4) \(W(L_n, q) = (3n - 2)q + \sum_{i=2}^{n} (2i - 3)q^{n-i-2} \), where \(L_n \) is the ladder graph.

(5) \(W(Q_n, q) = 2^{n-1}[(1 + q)^n] - 1 \), where \(Q_n \) is the hypercube.

Now, we use Theorem 2.2 to find Wiener polynomials and Wiener indices of the \(k \)th power graphs of paths, cycles, ladder graphs, and hypercubes.

Corollary 2.4. The Wiener polynomial of the graph \(P^k_n \) is given by

\[
W(P^k_n, q) = \sum_{i=1}^{\lceil (n-1)/m \rceil} \frac{k}{2} (2n - (2i-1)k - 1) q^i \\
+ \left(\frac{1}{2} (n - 1) - \left[\frac{n-1}{k} \right] \right) \left(n - \left[\frac{n-1}{k} \right] k \right) q^{\lceil (n-1)/k \rceil + 1}, \quad n - 1 \geq k.
\]

(2.4)

The Wiener index of \(P^k_n \) is given by

\[
W(P^k_n) = \frac{n(n-1)}{2} + \left(\frac{n(n-1)}{2} k + \frac{k^2}{4} + \frac{k^3}{12} \left[\frac{n-1}{k} \right] \right) \\
+ \left(\frac{k^2}{4} + \frac{kn}{2} \right) \left[\frac{n-1}{k} \right]^2 + \left(\frac{k^3}{6} \right) \left[\frac{n-1}{k} \right]^3, \quad n - 1 \geq k.
\]

(2.5)

where \(P_n \) is a path with \(n \) vertices and \(P^k_n \) is the \(k \)th power graph of \(P_n \).

Proof. Using Theorems 2.2 and 2.3, we will get the coefficient of \(q \) in \(P^k_n \) which is

\[
(n - 1) + (n - 2) + \cdots + (n - k) = \frac{k}{2} (2n - k - 1).
\]

(2.6)

Again, using Theorems 2.2 and 2.3, we get the coefficient of \(q^i \) in \(P^k_n \) which is

\[
(n - (i-1)k - 1) + (n - (i-1)k - 2) + \cdots + (n - ik) = \frac{k}{2} (2n - (2i - 1)k - 1).
\]

(2.7)

The coefficient of \(q^{\lceil (n-1)/k \rceil + 1} \), which is the highest power in \(P^k_n \), will be

\[
\left(n - \left[\frac{n-1}{k} \right] k \right) + \left(n - \left[\frac{n-1}{k} \right] k - 1 \right) + \cdots + 1 \\
= \frac{1}{2} \left(n - \left[\frac{n-1}{k} \right] k \right) \left((n - \left[\frac{n-1}{k} \right] k) + 1 \right).
\]

(2.8)
Hence we get the formula for the Wiener polynomial of P_{n}^{k}. For the Wiener index of P_{n}^{k}, we have

$$W(P_{n}^{k}) = W'(P_{n,k}^{k}; 1) = \sum_{i=1}^{\lfloor(n-1)/k\rfloor} \frac{k}{2} (2n - (2i - 1)k - 1) i + \left(\frac{1}{2}(n-1) - \left\lfloor\frac{n-1}{k}\right\rfloor k\right) \left(n - \left\lfloor\frac{n-1}{k}\right\rfloor k\right) \left\lfloor\frac{n-1}{k}\right\rfloor + 1. \tag{2.9}$$

Simplifying and using the identities $\sum_{i=1}^{n} i = (n(n + 1))/2$ and $\sum_{i=1}^{n} i^2 = (n(n + 1)(2n + 1))/6$ will give the formula for the Wiener index of P_{n}^{k}.

We give the following example as an application of Corollary 2.4.

Example 2.5. Using Theorem 2.3, we have $P_{10} = 9q + 8q^2 + 7q^3 + 6q^4 + 5q^5 + 4q^6 + 3q^7 + 2q^8 + q^9$. Using Corollary 2.4, we get

$$W(P_{10}^2; q) = 17q + 13q^2 + 9q^3 + 5q^4 + q^5, \quad W(P_{10}^3) = 95,$$

$$W(P_{10}^3; q) = 24q + 15q^2 + 6q^3, \quad W(P_{10}^3) = 72,$$

$$W(P_{10}^4; q) = 30q + 14q^2 + q^3, \quad W(P_{10}^4) = 61,$$

$$W(P_{10}^5; q) = 35q + 10q^2, \quad W(P_{10}^5) = 55,$$

$$W(P_{10}^6; q) = 39q + 6q^2, \quad W(P_{10}^6) = 51,$$

$$W(P_{10}^7; q) = 42q + 3q^2, \quad W(P_{10}^7) = 48,$$

$$W(P_{10}^8; q) = 44q + q^2, \quad W(P_{10}^8) = 46,$$

$$W(P_{10}^9; q) = 45q, \quad W(P_{10}^9) = 45.$$

We leave the check of the next three corollaries to the reader.

Corollary 2.6. The Wiener polynomial and the Wiener index of the graph C_{2n+1}^k are given by

$$W(C_{2n+1}^k; q) = \sum_{i=1}^{\lfloor n/k \rfloor} (2n + 1) k q^i + \left(n - \left\lfloor\frac{n}{k}\right\rfloor k \right) (2n + 1) q^{\lfloor n/k \rfloor + 1}, \quad n \geq k, \tag{2.11}$$

$$W(C_{2n+1}^k) = n(2n + 1) \left(\left\lfloor\frac{n}{k}\right\rfloor + 1\right).$$

The Wiener polynomial and the Wiener index of C_{2n}^k are given by

$$W(C_{2n}^k; q) = \sum_{i=1}^{\lfloor (n-1)/k \rfloor} (2n) k q^i + \left((n - 1) - \left\lfloor\frac{n-1}{k}\right\rfloor k \right) (2n) + n \right) q^{\lfloor (n-1)/k \rfloor + 1}, \quad n - 1 \geq k,$$

$$W(C_{2n}^k) = n(2n - 1) \left(\left\lfloor\frac{n-1}{k}\right\rfloor + 1\right). \tag{2.12}$$

We give the following example as an application of Corollary 2.6.
Example 2.7. Using Theorem 2.3, we have \(C_{15} = 15(q + q^2 + q^3 + q^4 + q^5 + q^6 + q^7) \). Using Corollary 2.6, we get

\[
W(C_{15}; q) = 30(q + q^2 + q^3) + 15q^4, \quad W(C_{15}^2) = 240,
\]

\[
W(C_{15}^3; q) = 45(q + q^2) + 15q^3, \quad W(C_{15}^3) = 180,
\]

\[
W(C_{15}^3; q) = 60q + 45q^2, \quad W(C_{15}^5) = 150,
\]

\[
W(C_{15}^5; q) = 75q + 30q^2, \quad W(C_{15}^5) = 135,
\]

\[
W(C_{15}^5; q) = 90q + 15q^2, \quad W(C_{15}^6) = 120,
\]

\[
W(C_{15}^6; q) = 105q, \quad W(C_{15}^7) = 105.
\]

Corollary 2.8. The Wiener polynomial of graph \(L_{kn} \) is given by

\[
W(L_n^k; q) = (2k(2n - k) - n)q + \sum_{i=2}^{[n/k]} 2k(2n + (1 - 2i)k)q^i + 2\left(n - \left[\frac{n}{k}\right]k\right)^2 q^{[n/k]+1}, \quad n \geq k.
\]

The Wiener index of \(L_n^k \) is given by

\[
W(L_n^k) = (2n^2 - n) + \left(2n^2 + \frac{k^2}{3} - 2nk\right)\left[\frac{n}{k}\right]^2 + (k^2 - 2nk)\left[\frac{n}{k}\right]^2 + 2k^2 \left[\frac{n}{k}\right]^3,
\]

where \(L_n \) is the ladder graph.

Corollary 2.9. The Wiener polynomial and the Wiener index of the graph \(Q_n^k \) are given by

\[
W(Q_n^k; q) = \sum_{i=0}^{[n/k]-1} \sum_{j=1}^{k} \binom{n}{j+ik} 2^{n-1} q^i + \left(\binom{n}{1 + [n/k]k} + \binom{n}{2 + [n/k]k} + \cdots + \binom{n}{n}\right)q^{[n/k]+1}, \quad n \geq k,
\]

\[
W(Q_n^k) = \sum_{i=0}^{[n/k]-1} \sum_{j=1}^{k} \binom{n}{j+ik} 2^{n-1} i + \left(\binom{n}{1 + [n/k]k} + \binom{n}{2 + [n/k]k} + \cdots + \binom{n}{n}\right)\left(\left[\frac{n}{k}\right] + 1\right).
\]

References

Omar A. AbuGhneim: Department of Mathematics, Faculty of Science, University of Jordan,
Amman 11942, Jordan
Email address: o.abughneim@ju.edu.jo

Hasan Al-Ezeh: Department of Mathematics, Faculty of Science, University of Jordan,
Amman 11942, Jordan
Email address: alezeh@ju.edu.jo

Mahmoud Al-Ezeh: Department of Mathematics, Faculty of Science, University of Jordan,
Amman 11942, Jordan
Email address: mah_azzeh@yahoo.com