It is well known that the concept of Hyers-Ulam-Rassias stability was originated by Th. M. Rassias (1978) and the concept of Ulam-Gavruta-Rassias stability was originated by J. M. Rassias (1982–1989) and by P. Gavruta (1999). In this paper, we give results concerning these two stabilities.

Copyright © 2007 Paisan Nakmahachalasint. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 1940, Ulam [13] proposed the Ulam stability problem of additive mappings. In the next year, Hyers [5] considered the case of approximately additive mappings $f : E \to E'$, where E and E' are Banach spaces and f satisfies inequality $\|f(x + y) - f(x) - f(y)\| \leq \varepsilon$ for all $x, y \in E$. It was shown that the limit $L(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$ exists for all $x \in E$ and that L is the unique additive mapping satisfying $\|f(x) - L(x)\| \leq \varepsilon$. In 1978, Rassias [14] generalized the result to an approximation involving a sum of powers of norms. In 1982–1989, Rassias [8–11] treated the Ulam-Gavruta-Rassias stability on linear and nonlinear mappings and generalized Hyers result to the following theorem.

Theorem 1.1 (J. M. Rassias). Let $f : E \to E'$ be a mapping, where E is a real-normed space and E' is a Banach space. Assume that there exist $\theta > 0$ such that

$$\|f(x + y) - f(x) - f(y)\| \leq \theta \|x\|^p \|y\|^q$$

(1.1)

for all $x, y \in E$, where $r = p + q \neq 1$. Then there exists a unique additive mapping $L : E \to E'$
such that
\[\| f(x) - L(x) \| \leq \frac{\theta}{|2 - 2^r|} \| x \|^r \] (1.2)
for all \(x \in E \).

However, the case \(r = 1 \) in the above inequality is singular. A counterexample has been given by Găvruta [2]. The above-mentioned stability involving a product of different powers of norms is called Ulam-Gavruta-Rassias stability by Bouikhalene and Elqorachi [1], Ravi and ArunKumar [12], and Nakmahachalasint [6]. In recent years, some other authors [3, 4, 7] have investigated the stability of additive mapping in various forms.

In this paper, we propose an \(n \)-dimensional additive functional equation and investigate its Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities.

2. The functional equation and the solution

Theorem 2.1. Let \(n > 1 \) be an integer and let \(X, Y \) be real vector spaces. A mapping \(f : X \to Y \) satisfies the functional equation
\[
 nf \left(\sum_{i=1}^{n} x_i \right) = \sum_{i=1}^{n} f(x_i) + \sum_{1 \leq i < j \leq n} f(x_i + x_j) \quad \forall x_1, x_2, \ldots, x_n \in X \quad (2.1)
\]
if and only if \(f \) satisfies the Cauchy functional equation
\[
 f(x + y) = f(x) + f(y) \quad \forall x, y \in X. \quad (2.2)
\]

Proof. We first suppose that a mapping \(f : X \to Y \) satisfies (2.2). By the additivity of the Cauchy functional equation, we have
\[
 \sum_{i=1}^{n} f(x_i) + \sum_{1 \leq i < j \leq n} f(x_i + x_j) = \sum_{i=1}^{n} f(x_i) + \sum_{1 \leq i < j \leq n} (f(x_i) + f(x_j))
\]
\[
 = n \sum_{i=1}^{n} f(x_i) = nf \left(\sum_{i=1}^{n} x_i \right) \quad (2.3)
\]
for all \(x_1, x_2, \ldots, x_n \in X \). Hence, \(f \) satisfies (2.1).

Now suppose that a mapping \(f : X \to Y \) satisfies (2.1). Putting \(x_1 = x_2 = \cdots = x_n = 0 \) in (2.1), we have \(nf(0) = n f(0) + \left(\binom{n}{2} f(0) \right) \), which leads to \(f(0) = 0 \). Putting \(x_1 = x, x_2 = y \) and, if \(n > 2, x_3 = x_4 = \cdots = x_n = 0 \) in (2.1), we get
\[
 nf(x + y) = f(x) + f(y) + (n - 2) f(x) + (n - 2) f(y) + f(x + y) \quad \forall x, y \in X, \quad (2.4)
\]
which simplifies to \(f(x + y) = f(x) + f(y) \) as desired. \(\square \)
The following theorem treats the Hyers-Ulam-Rassias stability of (2.1).

Theorem 3.1. Let $n > 1$ be an integer, let X be a real vector space, and let Y be a Banach space. Given real numbers $\delta, \theta \geq 0$ and $p \in (0, 1) \cup (1, \infty)$ with $\delta = 0$ when $p > 1$. If a mapping $f : X \to Y$ satisfies the inequality

$$
\left\| nf \left(\sum_{i=1}^{n} x_i \right) - \sum_{i=1}^{n} f(x_i) - \sum_{1 \leq i < j \leq n} f(x_i + x_j) \right\| \leq \delta + \theta \sum_{i=1}^{n} \|x_i\|^p \tag{3.1}
$$

for all $x_1, x_2, \ldots, x_n \in X$, then there exists a unique additive mapping $L : X \to Y$ that satisfies (2.1) and the inequality

$$
\left\| f(x) - L(x) \right\| \leq \frac{2\delta}{n} + \frac{2\theta}{(n-1)|2-2^p|} \|x\|^p \quad \forall x \in X. \tag{3.2}
$$

The mapping L is given by

$$
L(x) = \begin{cases}
\lim_{m \to \infty} 2^{-m} f(2^m x) & \text{if } 0 < p < 1 \\
\lim_{m \to \infty} 2^m f(2^{-m} x) & \text{if } p > 1
\end{cases} \quad \forall x \in X. \tag{3.3}
$$

Proof. Putting $x_1 = x_2 = \cdots = x_n = 0$ in (3.1), we have $\|nf(0) - nf(0) - \binom{n}{2} f(0)\| \leq \delta$. Thus, $\|f(0)\| \leq 2\delta/(n^2 - n)$. Setting $x_1 = x_2 = x$ and, if $n > 2$, $x_3 = x_4 = \cdots = x_n = 0$ in (3.1), we have

$$
\left\| nf(2x) - 2f(x) - (n-2)f(0) - f(2x) - 2(n-2)f(x) - \binom{n-2}{2} f(0) \right\| \leq \delta + 2\theta \|x\|^p, \tag{3.4}
$$

which simplifies to

$$
(n-1) \left\| f(2x) - 2f(x) - \frac{n-2}{2} f(0) \right\| \leq \delta + 2\theta \|x\|^p. \tag{3.5}
$$

Therefore,

$$
\left\| 2f(x) - f(2x) \right\| \leq \frac{n-2}{2} \left\| f(0) \right\| + \frac{\delta + 2\theta \|x\|^p}{n-1} \leq \frac{2\delta}{n} + \frac{2\theta}{n-1} \|x\|^p. \tag{3.6}
$$

We first consider the case where $0 < p < 1$. Rewrite the above inequality (3.6) as

$$
\left\| f(x) - 2^{-1} f(2x) \right\| \leq \frac{\delta}{n} + \frac{\theta}{n-1} \|x\|^p. \tag{3.7}
$$
For every positive integer \(m \),

\[
\|f(x) - 2^{-m} f(2^m x)\| = \left\| \sum_{i=0}^{m-1} (2^{-i} f(2^i x) - 2^{-(i+1)} f(2^{i+1} x)) \right\|
\leq \sum_{i=0}^{m-1} \|2^{-i} f(2^i x) - 2^{-(i+1)} f(2^{i+1} x)\|
= \sum_{i=0}^{m-1} 2^{-i} \|f(2^i x) - 2^{-1} f(2 \cdot 2^i x)\|. \tag{3.8}
\]

Substituting \(x \) with \(x, 2x, 2^2x, \ldots, 2^{m-1}x \) in (3.7), the above inequality becomes

\[
\|f(x) - 2^{-m} f(2^m x)\| \leq \frac{\delta}{n} \sum_{i=0}^{m-1} 2^{-i} + \frac{\theta}{n-1} \|x\|^p \sum_{i=0}^{m-1} 2^{i(p-1)}. \tag{3.9}
\]

Consider the sequence \(\{2^{-m} f(2^m x)\} \). For all positive integers \(k < l \), we have

\[
\|2^{-k} f(2^k x) - 2^{-l} f(2^l x)\| = 2^{-k} \|f(2^k x) - 2^{-(l-k)} f(2^{l-k} \cdot 2^k x)\|
\leq 2^{-k} \left(\frac{\delta}{n} \sum_{i=0}^{l-k-1} 2^{-i} + \frac{\theta}{n-1} \|2^k x\|^p \sum_{i=0}^{l-k-1} 2^{i(p-1)} \right)
\leq \frac{2^{-k} \delta}{n} \sum_{i=0}^{\infty} 2^{-i} + \frac{\theta}{n-1} 2^{-k(1-p)} \|x\|^p \sum_{i=0}^{\infty} 2^{i(p-1)}. \tag{3.10}
\]

The right-hand side of the above inequality approaches 0 as \(k \to \infty \). Therefore, \(L(x) = \lim_{m \to \infty} 2^{-m} f(2^m x) \) is well defined. Taking the limit of (3.9) as \(m \to \infty \), we have

\[
\|f(x) - L(x)\| \leq \frac{\delta}{n} \sum_{i=0}^{\infty} 2^{-i} + \frac{\theta}{n-1} \|x\|^p \sum_{i=0}^{\infty} 2^{i(p-1)} = \frac{2\delta}{n} + \frac{2\theta}{(n-1)(2-2^p)} \|x\|^p \quad \forall x \in X. \tag{3.11}
\]

To show that \(L \) satisfies (2.1), replace each \(x_i \) in (3.1) with \(2^m x_i \). This results in

\[
\left\|nf\left(\sum_{i=1}^{n} 2^m x_i\right) - \sum_{i=1}^{n} f(2^m x_i) - \sum_{1 \leq i < j \leq n} f(2^m x_i + 2^m x_j)\right\| \leq \left(\delta + \theta \sum_{i=1}^{n} \|2^m x_i\|^p \right). \tag{3.12}
\]

Dividing the above inequality by \(2^m \) and taking the limit as \(m \to \infty \), we obtain

\[
\left\|nL\left(\sum_{i=1}^{n} x_i\right) - \sum_{i=1}^{n} L(x_i) - \sum_{1 \leq i < j \leq n} f(x_i + x_j)\right\| \leq \lim_{m \to \infty} \left(\frac{\delta}{2^m} + \frac{\theta}{2^{m(1-p)}} \sum_{i=1}^{n} \|x_i\|^p \right) = 0, \tag{3.13}
\]

which verifies that \(L \) indeed satisfies (2.1).
To prove the uniqueness of \(L \), suppose there is a mapping \(L' : X \to Y \) such that \(L' \) satisfies (2.1) and (3.2). The additivity of \(L \) and \(L' \) is asserted by Theorem 2.1; hence,

\[
\|L(x) - L'(x)\| = 2^{-m}\|L(2^m x) - L'(2^m x)\| \\
\leq 2^{-m}\left(\|L(2^m x) - f(2^m x)\| + \|L'(2^m x) - f(2^m x)\|\right) \\
\leq 2^{-m} \cdot 2 \left(\frac{2\delta}{n} + \frac{2\theta}{(n-1)(2-2^p)} \|2^m x\|^p\right) \to 0. \tag{3.14}
\]

Thus, \(L(x) = L'(x) \) for all \(x \in X \).

For the case \(p > 1, \delta = 0 \) and (3.7) must be replaced by

\[
\|f(x) - 2f(2^{-1}x)\| \leq \frac{2\theta}{n-1} \|2^{-1}x\|^p. \tag{3.15}
\]

The rest of the proof can be done in the same fashion as that of the case \(0 < p < 1 \). \(\Box \)

4. Ulam-Gavruta-Rassias stability

The following theorem treats the Ulam-Gavruta-Rassias stability of (2.1).

Theorem 4.1. Let \(n > 1 \) be an integer, let \(X \) be a real vector space, and let \(Y \) be a Banach space. Given real numbers \(\delta, \theta \geq 0 \) and \(p \in (0,1) \cup (1,\infty) \) with \(\delta = 0 \) when \(p > 1 \). If a mapping \(f : X \to Y \) satisfies the inequality

\[
\left\|n f \left(\sum_{i=1}^{n} x_i \right) - \sum_{i=1}^{n} f(x_i) - \sum_{1 \leq i < j \leq n} f(x_i + x_j) \right\| \leq \delta + \theta \sum_{1 \leq i < j \leq n} \|x_i\|^{p/2}\|x_j\|^{p/2} \tag{4.1}
\]

for all \(x_1, x_2, \ldots, x_n \in X \), then there exists a unique additive mapping \(L : X \to Y \) that satisfies (2.1) and the inequality

\[
\|f(x) - L(x)\| \leq \frac{2\delta}{n} + \frac{\theta}{(n-1)(2-2^p)} \|x\|^p \quad \forall x \in X. \tag{4.2}
\]

The mapping \(L \) is given by (3.3).

Proof. We make the same substitution as in the proof of Theorem 3.1 and obtain instead of (3.5) the following inequality:

\[
(n-1) \left\|f(2x) - 2f(x) - \frac{n-2}{2} f(0) \right\| \leq \delta + \theta \|x\|^p \quad \forall x \in X. \tag{4.3}
\]

The rest of the proof, apart from a multiplicative factor of 2 appears before \(\theta \), can be carried over from that of Theorem 3.1. \(\Box \)

It should be remarked that in the case where \(n = 2 \), functional equation (2.1) reduces to the Cauchy functional equation, and the Ulam-Gavruta-Rassias stability of this problem has been treated by J. M. Rassias, and the result has been restated in Theorem 1.1.
Acknowledgment

The author would like to thank the referee for valuable comments.

References

Paisan Nakmahachalasint: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Email address: paisan.n@chula.ac.th