For the Riemann-Liouville transform \mathcal{R}_α, $\alpha \in \mathbb{R}_+$, associated with singular partial differential operators, we define and study the Weyl transforms W_σ connected with \mathcal{R}_α, where σ is a symbol in S^m, $m \in \mathbb{R}$. We give criteria in terms of σ for boundedness and compactness of the transform W_σ.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In his book [14], Wong studies the properties of pseudodifferential operators arising in quantum mechanics, first envisaged by Weyl [13], as bounded linear operators on $L^2(\mathbb{R}^n)$ (the space of square integrable functions on \mathbb{R}^n with respect to the Lebesgue measure). For this reason, M. W. Wong calls the operators treated in his book Weyl transforms.

Here, we consider the singular partial differential operators

$$\Delta_1 = \frac{\partial}{\partial x},$$
$$\Delta_2 = \frac{\partial^2}{\partial r^2} + \frac{2\alpha + 1}{r} \frac{\partial}{\partial r} - \frac{\partial^2}{\partial x^2}, \quad (r, x) \in]0, +\infty[\times \mathbb{R}, \; \alpha \geq 0. \quad (1.1)$$

We associate to Δ_1 and Δ_2 the Riemann-Liouville transform \mathcal{R}_α defined on $C_\alpha(\mathbb{R}^2)$ (the space of continuous functions on \mathbb{R}^2, even with respect to the first variable) by

$$\mathcal{R}_\alpha(f)(r, x) = \begin{cases} \frac{\alpha}{\pi} \int_{-1}^{1} f\left(rs\sqrt{1 - t^2}, x + rt \right) (1 - t^2)^{\alpha - 1/2} (1 - s^2)^{\alpha-1} \, dt \, ds & \text{if } \alpha > 0, \\ \frac{1}{\pi} \int_{-1}^{1} f\left(r\sqrt{1 - t^2}, x + rt \right) \frac{dt}{\sqrt{1 - t^2}} & \text{if } \alpha = 0. \end{cases} \quad (1.2)$$

For more general integral transforms, we can see [2].
The transform \mathcal{R}_α generalizes the mean operator defined by

$$\mathcal{R}_\alpha(f)(r,x) = \frac{1}{2\pi} \int_0^{2\pi} f(r \sin \theta, x + r \cos \theta) d\theta. \quad (1.3)$$

The mean operator \mathcal{R}_α and its dual play an important role and have many applications, for example, in image processing of the so-called synthetic aperture radar (SAR) data [5, 6], or in the linearized inverse scattering problem in acoustics [3].

In [1], we have defined a convolution product and a Fourier transform \mathcal{F}_α associated with \mathcal{R}_α, and we have established many harmonic analysis results (inversion formula, Paley-Wiener, and Plancherel theorems, etc.).

Using these results, we define and study, in this paper the Weyl transforms associated with \mathcal{R}_α, we give criteria in terms of symbols to prove the boundedness and compactness of these transforms. To obtain these results, we have first defined the Fourier-Wigner transform associated with the operator \mathcal{R}_α, and we have established for it an inversion formula.

More precisely, in Section 2, we recall some properties of harmonic analysis for the operator \mathcal{R}_α. In Section 3, we define the Fourier-Wigner transform associated with \mathcal{R}_α, study some of its properties, and prove an inversion formula.

In Section 4, we introduce the Weyl transform W_σ associated with \mathcal{R}_α, with σ a symbol in class S^m, for $m \in \mathbb{R}$, and we give its connection with the Fourier-Wigner transform. We prove that for σ sufficiently smooth, W_σ is a compact operator from $L^2(d\nu)$, the space of square integrable functions on $[0, +\infty[\times\mathbb{R}$, with respect to the measure

$$d\nu(r,x) = \frac{1}{2^\alpha \Gamma(\alpha + 1)\sqrt{2\pi}} r^{2\alpha + 1} dr \otimes dx, \quad (1.4)$$

into itself.

In Section 5, we define W_σ for σ in a certain space $L^p(d\nu \otimes dy)$, with $p \in [1, 2]$, and we establish that W_σ is again a compact operator.

In Section 6, we define W_σ for σ in another function space, and use this to prove in Section 7 that for $p > 2$, there exists a function $\sigma \in L^p(d\nu \otimes dy)$, with the property that the Weyl transform W_σ is not bounded on $L^2(d\nu)$.

For more Weyl transforms, we can see [8, 15].

2. Riemann-Liouville transform associated with the operators Δ_1 and Δ_2

In this section, we recall some properties of the Riemann-Liouville transform that we use in the next sections. For more details, see [1].

For all $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}$, the system

$$\Delta_1 u(r,x) = -i\lambda u(r,x),$$
$$\Delta_2 u(r,x) = -\mu^2 u(r,x), \quad (2.1)$$
$$u(0,0) = 1, \quad \frac{\partial u}{\partial r} (0,x) = 0, \quad \forall x \in \mathbb{R},$$

admits a unique solution given by

$$\varphi_{\mu,\lambda}(r,x) = j_\alpha \left(r \sqrt{\mu^2 + \lambda^2} \right) \exp(-i\lambda x),$$ \hspace{1cm} (2.2)

where j_α is the modified Bessel function defined by

$$j_\alpha(s) = \frac{2\alpha}{\Gamma(\alpha + 1)} J_\alpha(s) \frac{s^{\alpha}}{\Gamma(\alpha + 1)} + \infty \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(\alpha + k + 1)} \left(\frac{s}{2} \right)^{2k},$$ \hspace{1cm} (2.3)

and J_α is the Bessel function of first kind and index α (see [7, 12]).

Moreover, we have

$$\sup_{(r,x) \in \mathbb{R}^2} \mid \varphi_{\mu,\lambda}(r,x) \mid = 1 \text{ iff } (\mu, \lambda) \in \Gamma,$$ \hspace{1cm} (2.4)

where Γ is the set defined by

$$\Gamma = \mathbb{R}^2 \cup \{ (i\mu, \lambda); (\mu, \lambda) \in \mathbb{R}^2, |\mu| \leq |\lambda| \}.$$ \hspace{1cm} (2.5)

Proposition 2.1. The eigenfunction $\varphi_{\mu,\lambda}$ given by (2.2) has the following Mehler integral representation:

$$\varphi_{\mu,\lambda}(r,x) = \begin{cases} \frac{\alpha}{\pi} \int_{-1}^{1} \cos(\mu rs \sqrt{1-t^2}) e^{-i\lambda (x+rt)} (1-t^2)^{\alpha-1/2} (1-s^2)^{\alpha-1} \ dt \ ds & \text{if } \alpha > 0, \\ \frac{1}{\pi} \int_{-1}^{1} \cos(r \mu \sqrt{1-t^2}) e^{-i\lambda (x+rt)} \ dt \sqrt{1-t^2} & \text{if } \alpha = 0. \end{cases}$$ \hspace{1cm} (2.6)

This result shows that

$$\varphi_{\mu,\lambda}(r,x) = \mathcal{R}_\alpha \left(\cos(\mu.) \exp(-i\lambda.) \right)(r,x),$$ \hspace{1cm} (2.7)

where \mathcal{R}_α is the Riemann-Liouville transform associated with the operators Δ_1 and Δ_2, given in the introduction.

We denote by

(i) $\mathcal{C}^\infty_{\ast,c}(\mathbb{R}^2)$ the subspace of $\mathcal{C}^\infty(\mathbb{R}^2)$ consisting of functions with compact support;

(ii) $d\nu(r,x)$ the measure defined on $[0, +\infty] \times \mathbb{R}$ by

$$d\nu(r,x) = c_\alpha r^{2\alpha+1} dr \otimes dx,$$ \hspace{1cm} (2.8)

with $c_\alpha = 1/\sqrt{2\pi} \Gamma(\alpha + 1)$;

(iii) $L^p(d\nu)$ the space of measurable functions f on $[0, +\infty] \times \mathbb{R}$, satisfying

$$\|f\|_{p,\nu} = \left(\int_{\mathbb{R}} \int_0^{+\infty} |f(r,x)|^p d\nu(r,x) \right)^{1/p} < +\infty \text{ if } p \in [1, +\infty[,$$ \hspace{1cm} (2.9)

$$\|f\|_{\infty,\nu} = \text{ess sup}_{(r,x) \in [0, +\infty[\times \mathbb{R}} |f(r,x)| < +\infty \text{ if } p = +\infty;$$
The convolution product associated with the Riemann-Liouville transform of f is defined on $L^1(dy)$ by
\[
\int_{\Gamma} f(\mu, \lambda) d\gamma(\mu, \lambda) = c_\alpha \left\{ \int_{\mathbb{R}} \int_{0}^{+\infty} f(\mu, \lambda) (\mu^2 + \lambda^2)^\alpha \mu d\mu d\lambda + \int_{\mathbb{R}} \int_{0}^{+|\lambda|} f(i\mu, \lambda) (\lambda^2 - \mu^2)^\alpha \mu d\mu d\lambda \right\};
\] (2.10)

$L^p(dy)$, $p \in [1, +\infty]$, the space of measurable functions on Γ satisfying
\[
\|f\|_{p,y} = \left(\int_{\Gamma} |f(\mu, \lambda)|^p d\gamma(\mu, \lambda) \right)^{1/p} < +\infty \quad \text{if } p \in [1, +\infty],
\]
\[
\|f\|_{\infty,y} = \text{ess sup}_{(\mu, \lambda) \in \Gamma} |f(\mu, \lambda)| < +\infty \quad \text{if } p = +\infty.
\] (2.11)

\textbf{Definition 2.2.} (i) The translation operator associated with Riemann-Liouville transform is defined on $L^1(dy)$, for all $(r, x), (s, y) \in [0, +\infty] \times \mathbb{R}$, by
\[
\mathcal{T}_{(r,x)} f(s, y) = \frac{\Gamma(\alpha + 1)}{\sqrt{\pi \Gamma(\alpha + 1/2)}} \int_{0}^{\alpha} f\left(\sqrt{r^2 + s^2 + 2rs \cos \theta}, x + y \right) \sin^{2\alpha} \theta d\theta.
\] (2.12)

(ii) The convolution product associated with the Riemann-Liouville transform of $f, g \in L^1(dy)$ is defined by
\[
\forall (r, x) \in [0, +\infty] \times \mathbb{R}, \quad f \ast g(r, x) = \int_{\mathbb{R}} \int_{0}^{+\infty} \mathcal{T}_{(r,-x)} \hat{f}(s, y) g(s, y) d\gamma(s, y),
\] (2.13)
where $\hat{f}(s, y) = f(s, -y)$.

We have the following properties.

(i) We have the following product formula:
\[
\mathcal{T}_{(r,x)} \varphi_{\mu,\lambda}(s, y) = \varphi_{\mu,\lambda}(r, x) \varphi_{\mu,\lambda}(s, y).
\] (2.14)

(ii) Let f be in $L^1(dy)$. Then, for all $(s, y) \in [0, +\infty] \times \mathbb{R}$, we have
\[
\int_{\mathbb{R}} \int_{0}^{\infty} \mathcal{T}_{(s,y)} f(r, x) d\gamma(r, x) = \int_{\mathbb{R}} \int_{0}^{\infty} f(r, x) d\gamma(r, x).
\] (2.15)

(iii) If $f \in L^p(dy)$, $1 \leq p \leq +\infty$, then for all $(s, y) \in [0, +\infty] \times \mathbb{R}$, the function $\mathcal{T}_{(s,y)} f$ belongs to $L^p(dy)$, and we have
\[
\|\mathcal{T}_{(s,y)} f\|_{p,y} \leq \|f\|_{p,y}.
\] (2.16)

(iv) For $f, g \in L^1(dy)$, $f \ast g$ belongs to $L^1(dy)$, and the convolution product is commutative and associative.

(v) For $f \in L^1(dy), g \in L^p(dy)$, $1 < p \leq +\infty$, the function $f \ast g \in L^p(dy)$ and
\[
\|f \ast g\|_{p,y} \leq \|f\|_{1,y} \|g\|_{p,y}.
\] (2.17)
(vi) For \(f, g \in L_{*c}(\mathbb{R}^2) \), such that \(\text{supp} \ f \subset [−a_1, a_1] \times [−a_2, a_2] \) and \(\text{supp} \ g \subset [−b_1, b_1] \times [−b_2, b_2] \), the function \(f * g \) belongs to \(L_{*c}(\mathbb{R}^2) \) and

\[
\text{supp}(f * g) \subset [−(a_1 + b_1), a_1 + b_1] \times [−(a_2 + b_2), a_2 + b_2].
\]

(2.18)

Definition 2.3. The Fourier transform associated with the Riemann–Liouville operator is defined on \(L^1(dy) \), by

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}_a(f)(\mu, \lambda) = \int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x)\varphi_{\mu, \lambda}(r, x)dv(r, x),
\]

where \(\Gamma \) is the set defined by the relation (2.5).

We have the following properties.

(i) Let \(f \) be in \(L^1(dy) \). For all \((r, x) \in [0, +\infty[\times \mathbb{R} \), we have

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}_a(f)\big((r, x)\big)(\mu, \lambda) = \varphi_{\mu, \lambda}(r, x)\mathcal{F}_a(f)(\mu, \lambda).
\]

(ii) For \(f, g \in L^1(dy) \), we have

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}_a(f \ast g)(\mu, \lambda) = \mathcal{F}_a(f)(\mu, \lambda)\mathcal{F}_a(g)(\mu, \lambda).
\]

(iii) For \(f \in L^1(dy) \), we have

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}_a(f)(\mu, \lambda) = \mathcal{B} \circ \widetilde{\mathcal{F}}_a(f)(\mu, \lambda),
\]

where, for every \((\mu, \lambda) \in \mathbb{R}^2\),

\[
\widetilde{\mathcal{F}}_a(f)(\mu, \lambda) = \int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x)j_a(r\mu)\exp(−i\lambda x)dv(r, x),
\]

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{B}f(\mu, \lambda) = f\left(\sqrt{\mu^2 + \lambda^2}, \lambda\right).
\]

(iv) For \(f \in L^1(dy) \) such that \(\mathcal{F}_a(f) \in L^1(dy) \), we have the inversion formula for \(\mathcal{F}_a \), for almost every \((r, x) \in [0, +\infty[\times \mathbb{R} \),

\[
f(r, x) = \int_{\Gamma} \mathcal{F}_a(f)(\mu, \lambda)\overline{\varphi_{\mu, \lambda}(r, x)}dv(\mu, \lambda).
\]

(2.25)

Proposition 2.4. Let \(f \) be in \(L^p(dy) \), with \(p \in [1, 2] \). Then, \(\mathcal{F}_a(f) \) belongs to \(L^{p'}(dy) \), with \(\frac{1}{p} + \frac{1}{p'} = 1 \), and \(\|\mathcal{F}_a(f)\|_{p', y} \leq \|f\|_{p, y} \).

Proof. The mapping \(\widetilde{\mathcal{F}}_a \) given by the relation (2.23) is an isometric isomorphism from \(L^2(dy) \) onto itself, then \(\|\widetilde{\mathcal{F}}_a(f)\|_{2, y} = \|f\|_{2, y} \).

On the other hand, we have \(\|\widetilde{\mathcal{F}}_a(f)\|_{\infty, y} \leq \|f\|_{1, y} \).

Thus, from these relations and the Riesz–Thorin theorem [10, 11], we deduce that for all \(f \in L^p(dy) \), with \(p \in [1, 2] \), the function \(\widetilde{\mathcal{F}}_a(f) \) belongs to \(L^{p'}(dy) \), with \(p' = p/(p - 1) \), and we have

\[
\|\widetilde{\mathcal{F}}_a(f)\|_{p', y} \leq \|f\|_{p, y}.
\]

(2.26)
We complete the proof by using the fact that
\[\left\| F_\alpha(f) \right\|_{p',q} = \left\| \widetilde{F}_\alpha(f) \right\|_{p',q}, \] (2.27)
which is a consequence of the relation (2.22).

We denote by (see [1, 9])
(i) \(\mathcal{S}_*(\mathbb{R}^2) \) the space of infinitely differentiable functions on \(\mathbb{R}^2 \) rapidly decreasing together with all their derivatives, even with respect to the first variable;
(ii) \(\mathcal{S}_*(\Gamma) \) the space of functions \(f : \Gamma \to \mathbb{C} \) infinitely differentiable, even with respect to the first variable and rapidly decreasing together with all their derivatives, that is, for all \(k_1, k_2, k_3 \in \mathbb{N}, \)
\[\sup_{(\mu, \lambda) \in \Gamma} \left(1 + |\mu|^2 + |\lambda|^2\right)^{k_1} \left| \left(\frac{\partial}{\partial \mu} \right)^{k_2} \left(\frac{\partial}{\partial \lambda} \right)^{k_3} f(\mu, \lambda) \right| < +\infty, \] (2.28)
where
\[\frac{\partial f}{\partial \mu}(\mu, \lambda) = \begin{cases} \frac{\partial}{\partial r} (f(r, \lambda)) & \text{if } \mu = r \in \mathbb{R}, \\ \frac{1}{i} \frac{\partial}{\partial t} (f(it, \lambda)) & \text{if } \mu = it, |t| \leq |\lambda|. \end{cases} \] (2.29)

Each of these spaces is equipped with its usual topology.

Remark 2.5. From [1], the Fourier transform \(F_\alpha \) is an isomorphism from \(\mathcal{S}_*(\mathbb{R}^2) \) onto \(\mathcal{S}_*(\Gamma) \). The inverse mapping is given by
\[\forall (r, x) \in \mathbb{R}^2, \quad F_\alpha^{-1}(f)(r, x) = \iint_{\Gamma} f(\mu, \lambda) \overline{\phi}_{\mu, \lambda}(r, x) d\gamma(\mu, \lambda). \] (2.30)

3. Fourier-Wigner transform associated with Riemann-Liouville operator

Definition 3.1. The Fourier-Wigner transform associated with the Riemann-Liouville operator is the mapping \(V \) defined on \(\mathcal{S}_*(\mathbb{R}^2) \times \mathcal{S}_*(\mathbb{R}^2) \), for all \(((r, x), (\mu, \lambda)) \in \mathbb{R}^2 \times \Gamma \), by
\[V(f, g)((r, x), (\mu, \lambda)) = \int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) \phi_{\mu, \lambda}(s, y) \overline{T}(r, x) g(s, y) dy (s, y). \] (3.1)

Remark 3.2. The transform \(V \) can also be written in the forms
(i) \(V(f, g)((r, x), (\mu, \lambda)) = F_\alpha(f, \overline{T}(r, x) g)(\mu, \lambda); \)
(ii) \(V(f, g)((r, x), (\mu, \lambda)) = \hat{g} \ast (\phi_{\mu, \lambda} f)(r, -x), \)
where \(\hat{g}(s, y) = g(s, -y) \) and \(\ast \) is the convolution product given in Definition 2.2.

We denote by
(i) \(\mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2) \) the space of infinitely differentiable functions \(f((r, x), (s, y)) \) on \(\mathbb{R}^2 \times \mathbb{R}^2 \), even with respect to the variables \(r \) and \(s \), and rapidly decreasing together with all their derivatives;
(ii) $\mathcal{S}_*(\mathbb{R}^2 \times \Gamma)$ the space of infinitely differentiable functions $f((r,x),(\mu,\lambda))$ on $\mathbb{R}^2 \times \Gamma$, even with respect to the variables r and μ, and rapidly decreasing together with all their derivatives;

(iii) $L^p(d\nu \otimes d\gamma)$, $1 \leq p \leq +\infty$, the space of measurable functions on $([0, +\infty[\times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R})$, verifying for $p \in [1, +\infty[$;

\[
\|f\|_{p,\nu \otimes \gamma} = \left(\int_{\mathbb{R}^2} \int_0^{+\infty} |f((r,x),(s,y))|^p d\nu(r,x)d\gamma(s,y)\right)^{1/p} < +\infty,
\]

for $p = +\infty$,

\[
\|f\|_{\infty,\nu \otimes \gamma} = \text{ess sup}_{(r,x),(s,y) \in [0, +\infty[\times \mathbb{R}} |f((r,x),(s,y))| < +\infty;
\]

(iv) $L^p(d\nu \otimes d\gamma)$, $1 \leq p \leq +\infty$, the space similarly defined (with $d\nu(r,x)d\gamma(\mu,\lambda)$ in the integrand).

Proposition 3.3. (i) The Fourier-Wigner transform V is a bilinear, continuous mapping from $\mathcal{S}_*(\mathbb{R}^2) \times \mathcal{S}_*(\mathbb{R}^2)$ into $\mathcal{S}_*(\mathbb{R}^2 \times \Gamma)$.

(ii) For $p \in]1,2]$,

\[
\|V(f,g)\|_{p',\nu \otimes \gamma} \leq \|f\|_{p,\nu} \|g\|_{p',\gamma}.
\]

The transform V can be extended to a continuous bilinear operator, denoted also by V, from $L^p(d\nu) \times L^{p'}(d\gamma)$ into $L^{p'}(d\nu \otimes d\gamma)$, where $p' = p/(p-1)$ is the conjugate exponent of p.

Proof. (i) Let $f, g \in \mathcal{S}_*(\mathbb{R}^2)$, and let F be the function defined on $\mathbb{R}^2 \times \mathbb{R}^2$ by

\[
F((r,x),(s,y)) = f(s,y)\bar{\mathcal{F}}_{(r,x)}g(s,y).
\]

Then, we have for all $(s,y), (\mu,\lambda) \in \mathbb{R}^2$,

\[
\tilde{\mathcal{F}}_a \otimes I(F)((\mu,\lambda),(s,y)) = j_a(s\mu)\exp(i\lambda y)f(s,y)\tilde{\mathcal{F}}_a(g)(\mu,\lambda),
\]

where I is the identity operator. Since $\tilde{\mathcal{F}}_a$ is an isomorphism from $\mathcal{S}_*(\mathbb{R}^2)$ onto itself, we deduce that the function $\tilde{\mathcal{F}}_a \otimes I(F)$ belongs to the space $\mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$ and consequently, $F \in \mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$. Then, (i) follows from the relation

\[
V(f,g)((r,x),(\mu,\lambda)) = I \otimes \mathcal{F}_a(F)((r,x),(\mu,\lambda)),
\]

and the fact that \mathcal{F}_a is an isomorphism from $\mathcal{S}_*(\mathbb{R}^2)$ into $\mathcal{S}_*(\Gamma)$.

(ii) We get the result from Remark 3.2(i), Proposition 2.4, Minkowski’s inequality for integrals (see [4, page 186]), and from the relation (2.16).

Theorem 3.4. For all $f, g \in \mathcal{S}_*(\mathbb{R}^2)$, $(\mu,\lambda) \in \Gamma$ and $(r,x) \in \mathbb{R}^2$,

\[
\mathcal{F}_a \otimes \mathcal{F}_a^{-1}(V(f,g))((\mu,\lambda),(r,x)) = \mathcal{F}_{\mu,\lambda}(r,x)f(r,x)\mathcal{F}_a(g)(\mu,\lambda).
\]
8 Weyl transforms

Proof. This theorem follows from the relations (2.20) and (3.7).

Using the previous theorem and the relation (2.25), we get the following result.

Corollary 3.5. For \(f, g \in \mathcal{S}(\mathbb{R}^2) \),

(i) for all \((\mu, \lambda) \in \Gamma\),

\[
\int_{\mathbb{R}} \int_{0}^{\infty} \mathcal{F}_a \otimes \mathcal{F}_a^{-1}(V(f, g))((\mu, \lambda), (r, x)) \, dv(r, x) = \mathcal{F}_a(f)(\mu, \lambda) \mathcal{F}_a(g)(\mu, \lambda); \tag{3.9}
\]

(ii) for all \((r, x) \in [0, +\infty[^2 \times \mathbb{R}\),

\[
\int_{\Gamma} \mathcal{F}_a \otimes \mathcal{F}_a^{-1}(V(f, g))((\mu, \lambda), (r, x)) \, dy(\mu, \lambda) = f(r, x)g(r, x). \tag{3.10}
\]

Theorem 3.6. Let \(f, g \in L^1(dv) \cap L^2(dv) \), such that \(c = \int_{\mathbb{R}} \int_{0}^{\infty} g(r, x) \, dv(r, x) \neq 0 \). Then,

\[
\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}_a(f)(\mu, \lambda) = \frac{1}{c} \int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((r, x), (\mu, \lambda)) \, dv(r, x). \tag{3.11}
\]

Proof. From the relation (3.1), we have for all \((\mu, \lambda) \in \Gamma\),

\[
\int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((r, x), (\mu, \lambda)) \, dv(r, x)
\]

\[
= \int_{\mathbb{R}} \int_{0}^{\infty} \left(\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) \varphi_{\mu, \lambda}(s, y) \mathcal{F}_{(r, x)}(g(s, y)) \, dv(s, y) \right) \, dv(r, x). \tag{3.12}
\]

Then, the result follows from the relation (2.15), Definition 2.3, the fact that

\[
\forall (r, x) \in [0, +\infty[^2 \times \mathbb{R}, \forall (\mu, \lambda) \in \Gamma, \quad |\varphi_{\mu, \lambda}(r, x)| \leq 1, \tag{3.13}
\]

and Fubini’s theorem.

Corollary 3.7. With the hypothesis of Theorem 3.6, if \(\mathcal{F}_a(f) \in L^1(dy) \), the following inversion formula for the Fourier-Wigner transform \(V \) holds:

\[
f(r, x) = \frac{1}{c} \int_{\Gamma} \mathcal{F}_{\mu, \lambda}(r, x) \left[\int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((s, y), (\mu, \lambda)) \, dv(s, y) \right] \, dy(\mu, \lambda), \tag{3.14}
\]

for almost every \((r, x) \in \mathbb{R}^2\).

4. Weyl transform associated with Riemann-Liouville operator

In this section, we introduce and study the Weyl transform and give its connection with the Fourier-Wigner transform. To do this, we must define the class of pseudodifferential operators [14].

Definition 4.1. Let \(m \in \mathbb{R} \). Define \(S^m \) to be the set of symbols, consisting of all infinitely differentiable functions \(\sigma((r, x), (\mu, \lambda)) \) on \(\mathbb{R}^2 \times \Gamma \), even with respect to the variables \(r \) and \(\mu \), such that for all \(k_1, k_2, k_3, k_4 \in \mathbb{N} \), there exists a positive constant \(C = C(k_1, k_2, k_3, k_4, m) \).
satisfying
\[
\left| \left(\frac{\partial}{\partial r} \right)^{k_1} \left(\frac{\partial}{\partial x} \right)^{k_2} \left(\frac{\partial}{\partial \mu} \right)^{k_3} \left(\frac{\partial}{\partial \lambda} \right)^{k_4} \sigma((r,x),(\mu,\lambda)) \right| \leq C(1 + \mu^2 + 2\lambda^2)^{m-(k_1+k_4)}. \quad (4.1)
\]

Definition 4.2. For \(\sigma \in S^m, m \in \mathbb{R} \), define the operator \(H_\sigma \) on \(\mathcal{S}_*(\mathbb{R}^2) \times \mathcal{S}_*(\mathbb{R}^2) \), for all \((r,x) \in \mathbb{R}^2\),
\[
H_\sigma(f,g)(r,x) = \int_{\Gamma} \int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s,y),(\mu,\lambda)) \varphi_{\mu,\lambda}(r,x)
\times V(f,g)((s,y),(\mu,\lambda))d\nu(s,y)dy(\mu,\lambda), \quad (4.2)
\]
\[
\mathbb{H}_\sigma(f,g) = H_\sigma(f,g)(0,0). \quad (4.3)
\]

Proposition 4.3. Let \(\sigma \) be the symbol given by
\[
\forall (r,x) \in \mathbb{R}^2, \forall (\mu,\lambda) \in \Gamma, \quad \sigma((r,x),(\mu,\lambda)) = - (\mu^2 + \lambda^2). \quad (4.4)
\]
Then for \(f, g \in \mathcal{S}_*(\mathbb{R}^2) \),
\[
\forall (r,x) \in \mathbb{R}^2, \quad H_\sigma(f,g)(r,x) = c \ell_a f(r,-x), \quad (4.5)
\]
where
\[
c = \int_{\mathbb{R}} \int_{0}^{\infty} g(r,x)d\nu(r,x), \quad \ell_a = \frac{\partial^2}{\partial r^2} + \frac{2\alpha + 1}{r} \frac{\partial}{\partial r}. \quad (4.6)
\]

Proof. From relations (3.1), (4.2) and Fubini’s theorem we get, for all \((r,x) \in \mathbb{R}^2\),
\[
H_\sigma(f,g)(r,x) = \int_{\Gamma} -(\mu^2 + \lambda^2) \varphi_{\mu,\lambda}(r,x)\left\{ \int_{\mathbb{R}} \int_{0}^{\infty} f(t,z)\varphi_{\mu,\lambda}(t,z) \times \left[\int_{\mathbb{R}} \int_{0}^{\infty} \overline{\mathcal{G}}((t,z),g(s,y))d\nu(s,y) \right]d\nu(t,z) \right\}dy(\mu,\lambda). \quad (4.7)
\]
Now, by relation (2.15), it follows that
\[
H_\sigma(f,g)(r,x) = c \int_{\Gamma} -(\mu^2 + \lambda^2) \overline{\mathcal{F}}_a(f)(\mu,\lambda)\varphi_{\mu,\lambda}(r,x)d\nu(\mu,\lambda). \quad (4.8)
\]
The result follows from relation (2.25) and the fact that
\[
\forall (\mu,\lambda) \in \Gamma, \quad -(\mu^2 + \lambda^2) \overline{\mathcal{F}}_a(f)(\mu,\lambda) = \overline{\mathcal{F}}_a(\ell_a f)(\mu,\lambda). \quad (4.9)
\]

Definition 4.4. Let \(\sigma \in S^m, m < -(\alpha + 3/2) \). The Weyl transform associated with the Riemann–Liouville operator is the mapping \(W_\sigma \) defined on \(\mathcal{S}_*(\mathbb{R}^2) \), for all \((r,x) \in \mathbb{R}^2\), by
\[
W_\sigma(f)(r,x) = \int_{\Gamma} \int_{\mathbb{R}} \int_{0}^{\infty} \varphi_{\mu,\lambda}(r,x)\sigma((s,y),(\mu,\lambda)) \overline{\mathcal{G}}((r,x),f(s,y))d\nu(s,y)d\nu(\mu,\lambda). \quad (4.10)
\]
Theorem 4.5. Let $\sigma \in \mathcal{S}_\star(\mathbb{R}^2 \times \Gamma)$. The Weyl transform W_σ is a continuous mapping from $\mathcal{S}_\star(\mathbb{R}^2)$ into itself.

Proof. Let $f \in \mathcal{S}_\star(\mathbb{R}^2)$, since $\tilde{\mathcal{F}}_\sigma$ is an isomorphism from $\mathcal{S}_\star(\mathbb{R}^2)$ onto itself, and

$$\forall (\mu, \lambda) \in \mathbb{R}^2, \quad \tilde{\mathcal{F}}_\sigma(\mathcal{T}_{(x,y)} f)(\mu, \lambda) = j_a(r_\mu) \exp(i\lambda x) \tilde{\mathcal{F}}_\sigma(f)(\mu, \lambda), \quad (4.11)$$

we deduce that for all $(r, x) \in [0, +\infty[\times \mathbb{R}$, the function $(s, y) \mapsto \mathcal{T}_{(r,x)} f(s, y)$ belongs to $\mathcal{S}_\star(\mathbb{R}^2)$. Then, by the inversion formula for $\tilde{\mathcal{F}}_\sigma$, we get, for all $(s, y) \in \mathbb{R}^2$;

$$\mathcal{T}_{(r,x)} f(s, y) = \int_\mathbb{R} \int_0^{+\infty} j_a(r_\mu) \exp(i\lambda x) \tilde{\mathcal{F}}_\sigma(f)(\mu, \lambda) j_a(s_\mu) \exp(i\lambda y) dv(\mu, \lambda). \quad (4.12)$$

By Definition 4.4 and Fubini’s theorem, we obtain, for all $(r, x) \in \mathbb{R}^2$,

$$W_\sigma(f)(r, x)$$

$$= \int_{\Gamma} \varphi_{\mu, \lambda}(r, x) \left[\int_\mathbb{R} \int_0^{+\infty} \tilde{\mathcal{F}}_\sigma(f)(t, z) j_a(r t) \exp(ixz) \times \left\{ \int_\mathbb{R} \int_0^{+\infty} \sigma((s, y), (\mu, \lambda)) j_a(s t) \exp(iyz) dv(s, y) \right\} dv(t, z) \right] dy(\mu, \lambda)$$

$$= \int_{\Gamma} \varphi_{\mu, \lambda}(r, x) \left[\int_\mathbb{R} \int_0^{+\infty} \tilde{\mathcal{F}}_\sigma(f)(t, z) j_a(r t) \exp(ixz) \times \tilde{\mathcal{F}}_\sigma^{-1}(\sigma((\cdot, \cdot), (\mu, \lambda)))(t, z) dv(t, z) \right] dy(\mu, \lambda). \quad (4.13)$$

Now, the function

$$((t, z), (\mu, \lambda)) \mapsto \tilde{\mathcal{F}}_\sigma^{-1}(\sigma((\cdot, \cdot), (\mu, \lambda)))(t, z) \quad (4.14)$$

belongs to $\mathcal{S}_\star(\mathbb{R}^2 \times \Gamma)$.

On the other hand, the mapping $f \mapsto G_f$, given for all $((t, z), (\mu, \lambda)) \in \mathbb{R}^2 \times \Gamma$ by

$$G_f((t, z), (\mu, \lambda)) = \tilde{\mathcal{F}}_\sigma(f)(t, z) \tilde{\mathcal{F}}_\sigma^{-1}(\sigma((\cdot, \cdot), (\mu, \lambda)))(t, z), \quad (4.15)$$

is continuous from $\mathcal{S}_\star(\mathbb{R}^2)$ into $\mathcal{S}_\star(\mathbb{R}^2 \times \Gamma)$, and for all $(r, x) \in \mathbb{R}^2$, we have

$$W_\sigma(f)(r, x) = \int_{\Gamma} \left(\int_\mathbb{R} \int_0^{+\infty} G_f((t, z), (\mu, \lambda)) j_a(r t) \exp(ixz) \varphi_{\mu, \lambda}(r, -x) dv(t, z) \right) dv(\mu, \lambda)$$

$$= \tilde{\mathcal{F}}_\sigma^{-1} \otimes \tilde{\mathcal{F}}_\sigma^{-1}(G_f)((r, x), (r, -x)). \quad (4.16)$$

Since $\tilde{\mathcal{F}}_\sigma^{-1}$ is an isomorphism from $\mathcal{S}_\star(\Gamma)$ onto $\mathcal{S}_\star(\mathbb{R}^2)$, we deduce that $\tilde{\mathcal{F}}_\sigma^{-1} \otimes \tilde{\mathcal{F}}_\sigma^{-1}$ is an isomorphism from $\mathcal{S}_\star(\mathbb{R}^2 \times \Gamma)$ onto $\mathcal{S}_\star(\mathbb{R}^2 \times \mathbb{R}^2)$. \qed
Lemma 4.6. Let $\sigma \in \mathcal{S}_*(\mathbb{R}^2 \times \Gamma)$. Then, the function k defined on $\mathbb{R}^2 \times \mathbb{R}^2$ by

$$k((r,x),(s,y)) = \int_{\Gamma} \varphi_{\mu,\lambda}(r,x) \mathcal{T}_{(r,-x)}(\sigma((\cdot,\cdot),(\mu,\lambda)))(s,y) d\nu(\mu,\lambda)$$

(4.17)

belongs to $\mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$.

Proof. The function k can be written in the form

$$k((r,x),(s,y)) = \mathcal{T}_{(r,-x)}(I \otimes \mathcal{T}_{\alpha}^{-1}(\sigma)((\cdot,\cdot),(r,-x)))(s,y).$$

(4.18)

Since the Fourier transform \mathcal{T}_{α} is an isomorphism from $\mathcal{S}_*(\mathbb{R}^2)$ onto $\mathcal{S}_*(\Gamma)$, we deduce that the function $I \otimes \mathcal{T}_{\alpha}^{-1}(\sigma)$ belongs to $\mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$.

Then, the lemma follows from the fact that for all $g \in \mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$, the function

$$((r,x),(s,y)) \mapsto \mathcal{T}_{(r,-x)}(g((\cdot,\cdot),(r,-x)))(s,y)$$

(4.19)

belongs to $\mathcal{S}_*(\mathbb{R}^2 \times \mathbb{R}^2)$. \hfill \square

Theorem 4.7. Let $\sigma \in \mathcal{S}_*(\mathbb{R}^2 \times \Gamma)$.

(i) For all $f \in \mathcal{S}_*(\mathbb{R}^2)$,

$$\forall (r,x) \in \mathbb{R}^2, \quad W_\sigma(f)(r,x) = \int_{\mathbb{R}} \int_{0}^{\infty} k((r,x),(s,y)) f(s,y) d\nu(s,y).$$

(4.20)

(ii) For $f \in \mathcal{S}_*(\mathbb{R}^2)$ and $p, p' \in [1, +\infty]$ such that $1/p + 1/p' = 1$,

$$\|W_\sigma(f)\|_{p',\nu} \leq \|k\|_{p',\nu} \|f\|_{p,\nu}.$$

(4.21)

(iii) For $p \in [1, +\infty[$, the operator W_σ can be extended to a bounded operator from $L^p(d\nu)$ into $L^{p'}(d\nu)$.

In particular

$$W_\sigma : L^2(d\nu) \longrightarrow L^2(d\nu)$$

(4.22)

is a Hilbert-Schmidt operator, and consequently it is compact.

Proof. (i) Let f be in $\mathcal{S}_*(\mathbb{R}^2)$. From Definition 4.4, for all $(\mu,\lambda) \in \mathbb{R}^2$, we have

$$W_\sigma(f)(r,x) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \phi_{\mu,\lambda}(r,x) \sigma((s,y),(\mu,\lambda)) \mathcal{T}_{(r,x)} f(s,y) d\nu(s,y) \right) d\nu(\mu,\lambda)$$

$$= \int_{\mathbb{R}} \phi_{\mu,\lambda}(r,x) \left(\int_{\mathbb{R}} \sigma((s,y),(\mu,\lambda)) \mathcal{T}_{(r,x)} f(s,y) d\nu(s,y) \right) d\nu(\mu,\lambda).$$

(4.23)

Using Fubini’s theorem, and the equality

$$\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s,y),(\mu,\lambda)) \mathcal{T}_{(r,x)} f(s,y) d\nu(s,y)$$

$$= \int_{\mathbb{R}} \int_{0}^{\infty} f(s,y) \mathcal{T}_{(r,-x)}(\sigma((\cdot,\cdot),(\mu,\lambda)))(s,y) d\nu(s,y),$$

(4.24)
we get

\[
W_\sigma(f)(r,x) = \int_\mathbb{R} \int_0^\infty f(s,y) \left\{ \int_\Gamma \phi_{\mu,\lambda}(r,x) \mathcal{T}_{(r,x)}(\sigma((\cdot, \cdot), (\mu, \lambda)))(s,y) d\nu(\mu, \lambda) \right\} d\nu(s,y) = \int_\mathbb{R} \int_0^\infty f(s,y) k((r,x), (s,y)) d\nu(s,y). \tag{4.25}
\]

(ii) follows from (i), Hölder’s inequality, and Lemma 4.6.

(iii) From (ii) and the fact that the space \(\mathcal{S}_*(\mathbb{R}^2) \) is dense in \(L^p(d\nu) \), \(p \in [1, +\infty[\), we deduce that \(W_\sigma \) can be extended to a continuous mapping from \(L^p(d\nu) \) into \(L^p(d\nu) \).

By Lemma 4.6, the kernel \(k \) belongs to \(L^2(d\nu \otimes d\nu) \), hence \(W_\sigma \) is a Hilbert-Schmidt operator. In particular, it is compact. □

Theorem 4.8. Let \(\sigma \in S^m \), \(m < -(\alpha + 3/2) \). For all \(f, g \in \mathcal{S}_*(\mathbb{R}^2) \), we have

\[
\mathbb{H}_\sigma(f, g) = \left\langle \frac{W_\sigma(g)}{f} \right\rangle, \tag{4.26}
\]

where \(\langle \cdot / \cdot \rangle \) is the inner product of \(L^2(d\nu) \).

Proof. From Definition (3.1) and relations (4.2), (4.3), we get

\[
\mathbb{H}_\sigma(f, g) = \int_\Gamma \left\{ \int_\mathbb{R} \int_0^\infty \sigma((r,x), (\mu, \lambda)) \left(\int_\mathbb{R} \int_0^\infty f(s,y) \phi_{\mu,\lambda}(s,y) \times \mathcal{T}_{(r,x)}g(s,y) d\nu(s,y) \right) d\nu(r,x) \right\} d\nu(\mu, \lambda). \tag{4.27}
\]

Using Fubini’s theorem, we obtain

\[
\mathbb{H}_\sigma(f, g) = \int_\mathbb{R} \int_0^\infty f(s,y) \left\{ \int_\mathbb{R} \phi_{\mu,\lambda}(s,y) \left(\int_\mathbb{R} \int_0^\infty \sigma((r,x), (\mu, \lambda)) \times \mathcal{T}_{(r,x)}g(s,y) d\nu(r,x) \right) d\nu(\mu, \lambda) \right\} d\nu(s,y). \tag{4.28}
\]

The theorem follows from Definition 4.4 and the fact that for all \(((r,x), (s,y)) \in [0, +\infty[\times \mathbb{R} \),

\[
\mathcal{T}_{(r,x)}g(s,y) = \mathcal{T}_{(s,y)}g(r,x). \tag{4.29}
\]

□

5. **Weyl transform associated with symbol in** \(L^p(d\nu \otimes d\gamma) \), \(1 \leq p \leq 2 \)

In this section, we will see that relation (4.26) allows us to prove that the Weyl transform with symbol in \(L^p(d\nu \otimes d\gamma) \), \(1 \leq p \leq 2 \), is a compact operator.
We denote by $\mathcal{B}(L^2(d\nu))$ the \mathbb{C}^*-algebra of bounded operators ψ from $L^2(d\nu)$ into itself, equipped with the norm

$$
\| \psi \|_* = \sup_{\|f\|_{2,\nu} = 1} \| \psi(f) \|_{2,\nu}.
$$

(5.1)

Theorem 5.1. For $p \in [1,2]$, there exists a unique bounded operator Q from $L^p(d\nu \otimes d\gamma)$ into $\mathcal{B}(L^2(d\nu))$: $\sigma \mapsto Q_\sigma$, such that for all $f,g \in \mathcal{F}_*(\mathbb{R}^2)$,

$$
\left\langle \frac{Q_\sigma(g)}{f} \right\rangle = \left\langle \frac{W_\sigma(g)}{f} \right\rangle = \mathbb{H}_\sigma(f,g)
$$

(5.3)

\begin{align*}
&= \int_\Gamma \left(\int_\mathbb{R} \int_0^\infty \sigma((r,x),(\mu,\lambda)) V(f,g)((r,x),(\mu,\lambda)) d\nu(r,x) \right) d\gamma(\mu,\lambda).
\end{align*}

(5.2)

On the other hand, from Proposition 3.3(ii) and Cauchy-Shwartz inequality, we have

$$
\left| \left\langle \frac{Q_\sigma(g)}{f} \right\rangle \right| \leq \|\sigma\|_{2,\nu \otimes \gamma} \|f\|_{2,\nu} \|g\|_{2,\nu}.
$$

(5.4)

This implies that $Q_\sigma \in \mathcal{B}(L^2(d\nu))$ and

$$
\|Q_\sigma\|_* \leq \|\sigma\|_{2,\nu \otimes \gamma}.
$$

(5.5)

We complete the proof by using the fact that the space $\mathcal{F}_*(\mathbb{R}^2 \times \Gamma)$ is dense in $L^2(d\nu \otimes d\gamma)$.

(i) The case $p = 2$.

Let $\sigma \in \mathcal{F}_*(\mathbb{R}^2 \times \Gamma)$. For $g \in \mathcal{F}_*(\mathbb{R}^2)$, we put $Q_\sigma(g) = W_\sigma(g)$.

From Theorem 4.8, we obtain

$$
\left\langle \frac{Q_\sigma(g)}{f} \right\rangle = \left\langle \frac{W_\sigma(g)}{f} \right\rangle = \mathbb{H}_\sigma(f,g)
$$

(5.3)

\begin{align*}
&= \int_\Gamma \left(\int_\mathbb{R} \int_0^\infty \sigma((r,x),(\mu,\lambda)) V(f,g)((r,x),(\mu,\lambda)) d\nu(r,x) \right) d\gamma(\mu,\lambda).
\end{align*}

(5.2)

On the other hand, from Proposition 3.3(ii) and Cauchy-Shwartz inequality, we have

$$
\left| \left\langle \frac{Q_\sigma(g)}{f} \right\rangle \right| \leq \|\sigma\|_{2,\nu \otimes \gamma} \|f\|_{2,\nu} \|g\|_{2,\nu}.
$$

(5.4)

This implies that $Q_\sigma \in \mathcal{B}(L^2(d\nu))$ and

$$
\|Q_\sigma\|_* \leq \|\sigma\|_{2,\nu \otimes \gamma}.
$$

(5.5)

We complete the proof by using the fact that the space $\mathcal{F}_*(\mathbb{R}^2 \times \Gamma)$ is dense in $L^2(d\nu \otimes d\gamma)$.

(ii) The case $p = 1$ can be obtained by the same way.

(iii) Using the cases $p = 1$, $p = 2$, and the Riesz-Thorin theorem [10, 11], we complete the proof for all $p \in [1,2]$. \qed

Remark 5.2. In the following, the operator Q_σ will be denoted by W_σ.

Theorem 5.3. For $\sigma \in L^p(d\nu \otimes d\gamma)$, $1 \leq p \leq 2$, the operator W_σ from $L^2(d\nu)$ into itself is a compact operator.

Proof. Let $\sigma \in L^p(d\nu \otimes d\gamma)$, $1 \leq p \leq 2$, and let $(\sigma_k)_{k \in \mathbb{N}}$ be a sequence in $\mathcal{F}_*(\mathbb{R}^2 \times \Gamma)$, such that

$$
\|\sigma_k - \sigma\|_{p,\nu \otimes \gamma} \to 0.
$$

(5.6)

From relation (5.5), we have $\|W_{\sigma_k} - W_\sigma\|_* \leq \|\sigma_k - \sigma\|_{p,\nu \otimes \gamma}$. This implies that

$$
W_{\sigma_k} \to W_\sigma, \quad \text{in} \ \mathcal{B}(L^2(d\nu)).
$$

(5.7)
But from Theorem 4.7, we know that for all $k \in \mathbb{N}$, the operator W_{σ_k} is compact, then the result of the theorem follows from the fact that the subspace $\mathcal{H}(L^2(d\nu))$ of $\mathcal{B}(L^2(d\nu))$ consisting of compact operators is a closed ideal of $\mathcal{B}(L^2(d\nu))$. \hfill \square

6. Weyl transform with symbol in $S'_*(\mathbb{R}^2 \times \Gamma)$

We denote by

(i) $S'_*(\mathbb{R}^2)$ the space of tempered distributions on \mathbb{R}^2, even with respect to the first variable. It is the topological dual of $S_*(\mathbb{R}^2)$;

(ii) $S'_*(\mathbb{R}^2 \times \Gamma)$ the space of tempered distributions on $\mathbb{R}^2 \times \Gamma$, even with respect to the first variables of \mathbb{R}^2 and Γ. It is the topological dual of $S_*(\mathbb{R}^2 \times \Gamma)$.

Definition 6.1. For $\sigma \in S'_*(\mathbb{R}^2 \times \Gamma)$ and $g \in S_*(\mathbb{R}^2)$, define the operator $W_{\sigma}(g)$ on $S_*(\mathbb{R}^2)$, by

$$
[W_{\sigma}(g)](f) = \sigma(V(f,g)), \quad f \in S_*(\mathbb{R}^2),
$$

(6.1)

where V is the mapping given by (3.1).

Remark 6.2. From Proposition 3.3, it is clear that $W_{\sigma}(g)$ given by (6.1) belongs to $S'_*(\mathbb{R}^2)$.

For a slowly increasing function h on $\mathbb{R}^2 \times \Gamma$, we denote by σ_h the element of $S'_*(\mathbb{R}^2 \times \Gamma)$ defined by

$$
\sigma_h(F) = \iint_{\Gamma} \int_{\mathbb{R}} \int_0^\infty F((r,x),(\mu,\lambda)) h((r,x),(\mu,\lambda)) d\nu(r,x) d\gamma(\mu,\lambda).
$$

(6.2)

Then, we have the following.

Proposition 6.3. Let $\sigma_1 \in S'_*(\mathbb{R}^2 \times \Gamma)$, given by the function equal to 1. One has

$$
W_{\sigma_1}(g) = c\delta,
$$

(6.3)

where $c = \int_{\mathbb{R}} \int_0^\infty g(r,x) d\nu(r,x)$ and δ is the Dirac distribution at $(0,0)$.

Proof. By relation (6.1), we have for all f in $S_*(\mathbb{R}^2)$,

$$
[W_{\sigma_1}(g)](f) = \sigma_1(V(f,g)),
$$

$$
= \iint_{\Gamma} \left(\int_{\mathbb{R}} \int_0^\infty V(f,g)((r,x),(\mu,\lambda)) d\nu(r,x) \right) d\gamma(\mu,\lambda),
$$

(6.4)

and by Theorem 3.6

$$
[W_{\sigma_1}(g)](f) = c \iint_{\Gamma} \mathcal{F}_a(f)(\mu,\lambda) d\gamma(\mu,\lambda).
$$

(6.5)

We complete the proof by using relation (2.25). \hfill \square
Remark 6.4. From Proposition 6.3, we deduce that there exists a function in $L^\infty(\mathbb{R}^2 \times \Gamma)$ given by

$$c = \int_{\mathbb{R}} \int_{0}^{\infty} g(r,x) d\nu(r,x) \neq 0,$$ \hfill (6.6)

the distribution $W_\sigma(g)$ is not given by a function of $L^2(d\nu)$.

7. Weyl transform with symbol in $L^p(d\nu \otimes d\gamma)$, $2 < p < \infty$

Theorem 7.1. Let $p \in]2, +\infty[. There exists a function $\sigma \in L^p(d\nu \otimes d\gamma)$, such that the Weyl transform W_σ defined by (6.1) is not a bounded linear operator on $L^2(d\nu)$.

We break down the proof into two lemmas, of which the theorem is an immediate consequence.

Lemma 7.2. Let $2 < p < \infty$. Suppose that for all $\sigma \in L^p(d\nu \otimes d\gamma)$, the Weyl transform W_σ given by relation (6.1) is a bounded linear operator on $L^2(d\nu)$. Then, there exists a positive constant M such that

$$\|W_\sigma\|_* \leq M \|\sigma\|_{p,\nu \otimes \gamma}, \quad \forall \sigma \in L^p(d\nu \otimes d\gamma).$$ \hfill (7.1)

Proof. Under the assumption of the lemma, there exists for each $\sigma \in L^p(d\nu \otimes d\gamma)$ a positive constant C_σ such that

$$\|W_\sigma(g)\|_{2,\nu} \leq C_\sigma \|g\|_{2,\nu}, \quad \text{for } g \in L^2(d\nu).$$ \hfill (7.2)

Let $f, g \in \mathcal{F}_*(\mathbb{R}^2)$ such that $\|f\|_{2,\nu} = \|g\|_{2,\nu} = 1$, and let us define the operator

$$Q_{f,g} : L^p(d\nu \otimes d\gamma) \rightarrow \mathbb{C}$$ \hfill (7.3)

by

$$Q_{f,g}(\sigma) = \left\langle \frac{W_\sigma(g)}{f} \right\rangle.$$ \hfill (7.4)

Then,

$$\sup_{\|f\|_{2,\nu} = \|g\|_{2,\nu} = 1} \left| Q_{f,g}(\sigma) \right| \leq C_\sigma.$$ \hfill (7.5)

By the Banach-Steinhauss theorem, the operator $Q_{f,g}$ is bounded on $L^p(d\nu \otimes d\gamma)$, then there exists a positive constant M such that

$$\|Q_{f,g}\|_* = \sup_{\|\sigma\|_{p,\nu \otimes \gamma} = 1} \left| Q_{f,g}(\sigma) \right| \leq M.$$ \hfill (7.6)

From this, we deduce that for all $f, g \in \mathcal{F}_*(\mathbb{R}^2)$, and $\sigma \in L^p(d\nu \otimes d\gamma)$, we have

$$\left| \left\langle \frac{W_\sigma(g)}{f} \right\rangle \right| \leq M \|\sigma\|_{p,\nu \otimes \gamma} \|f\|_{2,\nu} \|g\|_{2,\nu},$$ \hfill (7.7)

which implies (7.1). \qed
Lemma 7.3. For $2 < p < \infty$, there is no positive constant M satisfying (7.1).

Proof. Suppose that there exists $M > 0$ such that relation (7.1) holds.

Let p' be such that $1/p + 1/p' = 1$, then $p' \in [1, 2[$.

We consider for $f, g \in \mathcal{F}_\ast(\mathbb{R}^2)$, the function $V(f, g)$ given by the relation (3.1). We have

$$\|V(f, g)\|_{p', \gamma \otimes y} = \sup_{\|\sigma\|_{p, \nu y} = 1} \left| \left\langle \frac{W_\sigma(g)}{f} \right\rangle \right| \leq \sup_{\|\sigma\|_{p, \nu y} = 1} \|W_\sigma(g)\|_{2, \nu} \|f\|_{2, \nu}, \quad (7.8)$$

and consequently

$$\|V(f, g)\|_{p', \gamma \otimes y} \leq M \|f\|_{2, \nu} \|g\|_{2, \nu}. \quad (7.9)$$

Now, let $f, g \in L^2(d\nu)$, we choose sequences $(f_k)_{k \in \mathbb{N}}$ and $(g_k)_{k \in \mathbb{N}}$ in $\mathcal{F}_\ast(\mathbb{R}^2)$, approximating f and g in the $\|\cdot\|_{2, \nu}$-norm.

From (7.9), we get

$$\|V(f_k, g_k)\|_{p', \gamma \otimes y} \leq M \|f_k\|_{2, \nu} \|g_k\|_{2, \nu} \quad (7.10)$$

which implies that $(V(f_k, g_k))_{k \in \mathbb{N}}$ is a Cauchy sequence in $L^{p'}(d\nu \otimes d\gamma)$. Then, it converges to some function F in $L^{p'}(d\nu \otimes d\gamma)$.

Now, using Proposition 3.3, we deduce that $F = V(f, g)$, and

$$\forall f, g \in L^2(d\nu), \quad \|V(f, g)\|_{p', \gamma \otimes y} \leq M \|f\|_{2, \nu} \|g\|_{2, \nu}. \quad (7.11)$$

We will exhibit an example where the relation (7.11) leads to a contradiction. Let f be defined on \mathbb{R}^2, even with respect to the first variable, and supported in $[-1, 1] \times [-1, 1]$.

Then, for all $((r, x), (\mu, \lambda)) \in \mathbb{R}^2 \times \Gamma$,

$$|V(f, f)((r, x), (\mu, \lambda))| \leq |f| * |\hat{f}|((r, -x)), \quad (7.12)$$

where $*$ is the convolution product given by Definition 2.2. From (2.18), we deduce that for all $(\mu, \lambda) \in \Gamma$, the function $(r, x) \mapsto V(f, f)((r, x), (\mu, \lambda))$ is supported in $[-2, 2] \times [-2, 2]$.

On the other hand, by Hölder’s inequality, we have

$$\left(\int_{\Gamma} \int_{-2}^{2} \int_{0}^{2} V(f, f)((r, x), (\mu, \lambda)) d\nu(r, x) \right)^{1/p'} \leq \left(\int_{-2}^{2} \int_{0}^{2} d\nu(r, x) \right)^{1/p} \left(\int_{\Gamma} \int_{-2}^{2} \int_{0}^{+\infty} |V(f, f)((r, x), (\mu, \lambda))|^{p'} d\nu(r, x) d\gamma(\mu, \lambda) \right)^{1/p'}$$

$$= \left(\int_{-2}^{2} \int_{0}^{2} d\nu(r, x) \right)^{1/p} \|V(f, f)\|_{p', \gamma \otimes y} \leq M \left(\int_{-2}^{2} \int_{0}^{2} d\nu(r, x) \right)^{1/p} \|f\|_{2, \nu}^{2}, \quad (7.13)$$
The last inequality follows from (7.9). Now, Theorem 3.6 implies that the function

\[(\mu, \lambda) \mapsto -\int_0^{+\infty} V(f, f)((r, x), (\mu, \lambda))d\nu(r, x) = c\mathcal{F}_a(f)(\mu, \lambda) \tag{7.14}\]

belongs to \(L^p(d\gamma)\), here \(c = \int_0^{+\infty} f(r, x)d\nu(r, x)\).

If we pick \(c = \int_0^{+\infty} f(r, x)d\nu(r, x) \neq 0\), and the last inequality, we deduce that the function \(\mathcal{F}_a(f)\) belongs to \(L^p(d\gamma)\), and

\[\|\mathcal{F}_a(f)\|_{p', \gamma} \leq \frac{M}{|\gamma|} \left(\int_{-\infty}^{\infty} \int_0^{+\infty} d\nu(r, x)\right)^{1/p} \|f\|_{2, \nu}^2. \tag{7.15}\]

In the following, we consider the particular function \(f\) given by

\[f(r, x) = |r|^\beta \mathbf{1}_{[-1,1]}(r)\mathbf{1}_{[-1,1]}(x), \tag{7.16}\]

where \(\mathbf{1}_{[-1,1]}\) is the characteristic function of the interval \([-1, 1]\).

This function belongs to \(L^1(d\nu) \cap L^2(d\nu)\), for \(\beta > -(\alpha + 1)\), and we have

\[\mathcal{F}_a(f)(\mu, \lambda) = \frac{1}{2^{\alpha-1}\Gamma(\alpha+1)\sqrt{2\pi}} \frac{\sin \lambda}{\lambda} \int_0^1 r^{\beta+2\alpha+1} j_\alpha(r\mu)dr, \tag{7.17}\]

so

\[\|\mathcal{F}_a(f)\|_{p', \nu} = \frac{2^{p'}}{(2^{\alpha+1}\Gamma(\alpha+1)\sqrt{2\pi})^{p'+1}} \int_{\mathbb{R}} \left| \left| \int_0^{+\infty} r^{p'} d\lambda \right|_{\nu} \right|^p \mu^{2\alpha+1}d\mu. \tag{7.18}\]

However

\[\int_0^1 r^{\beta+2\alpha+1} j_\alpha(r\mu)dr = \frac{1}{\mu^{\beta+2\alpha+2}} \int_0^\mu r^{\beta+2\alpha+1} j_\alpha(r)dr. \tag{7.19}\]

Using the asymptotic expansion of \(j_\alpha\) (see [7, 12]), given by

\[j_\alpha(r) = \frac{2^{\alpha+1/2}\Gamma(\alpha+1)}{\sqrt{\pi} r^{\alpha+1/2}} \left[\cos \left(r - \alpha \frac{\pi}{2} - \frac{\pi}{4} \right) + O\left(\frac{1}{r} \right) \right], \quad \text{as } (r \to +\infty), \tag{7.20}\]

we deduce that for \(-(\alpha + 1) < \beta < -(\alpha + 1/2)\), the integral

\[a = \int_0^{+\infty} r^{\beta+2\alpha+1} j_\alpha(r)dr \tag{7.21}\]
exists and is finite. This involves that

$$\int_{0}^{1} r^{\beta+2\alpha+1} j_{\alpha}(r\mu) dr \sim \frac{a}{\mu^{\beta+2\alpha+2}}, \quad \text{as } (\mu \to +\infty). \quad (7.22)$$

Then, there exist $A, B > 0$ such that for

$$\mu > A, \quad \left| \int_{0}^{1} r^{\beta+2\alpha+1} j_{\alpha}(r\mu) dr \right| \geq \frac{B}{\mu^{\beta+2\alpha+2}}. \quad (7.23)$$

Replacing in relation (7.18), we get

$$\|\bar{\mathcal{F}}_{\alpha}(f)\|_{p',\gamma} \geq \frac{(2B)^{p'}}{(2^{\alpha}(\alpha+1)\sqrt{2\pi})^{p' + 1}} \int_{\mathbb{R}} \left| \frac{\sin \lambda}{\lambda} \right|^{p'} d\lambda \int_{A}^{+\infty} \frac{d\mu}{\mu^{p'(2\alpha+\beta+2) - 2\alpha - 1}}. \quad (7.24)$$

Thus, for $\beta < -(2\alpha + 2) + (2\alpha + 2/p')$,

$$\|\bar{\mathcal{F}}_{\alpha}(f)\|_{p',\gamma} = \|\bar{\mathcal{F}}_{\alpha}(f)\|_{p',\nu} = +\infty. \quad (7.25)$$

This shows that relation (7.15) is false if we pick

$$\beta \in \left[-(\alpha + 1), \min \left(-\left(\alpha + \frac{1}{2} \right), -(2\alpha + 2) + \frac{2\alpha + 2}{p'} \right) \right]. \quad (7.26)$$

References

N. B. Hamadi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis,
El Manar 2092, Tunis, Tunisia
E-mail address: nadia.zouari@edunet.tn

L. T. Rachdi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis,
El Manar 2092, Tunis, Tunisia
E-mail address: lakhdartannech.rachdi@fst.rnu.tn
Advances in Difference Equations

Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es

Hindawi Publishing Corporation

http://www.hindawi.com