We study the simultaneous approximation properties of the well-known Phillips operators. We establish the rate of convergence of the Phillips operators in simultaneous approximation by means of the decomposition technique for functions of bounded variation.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Phillips operators (see, e.g., [5]) are defined as

\[
P_n(f, x) = n \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k-1}(t) f(t) dt + e^{-nx} f(0), \quad n \in \mathbb{N}, \quad x \in [0, \infty),
\]

where

\[
p_{n,k}(x) = e^{-nx} \frac{(nx)^k}{k!}.
\]

May [4] estimated some direct and inverse results for certain combinations of these operators. Very recently Finta and Gupta [1] studied some direct and inverse results for the second-order Ditzian-Totik modulus of smoothness. The rates of convergence in ordinary approximation for function of bounded variation for these operators and similar types of operators were estimated in [2, 3, 7]. Very recently Srivastava and Gupta [6] proposed a general family of linear positive operators, which include the Phillips operators as special case, but they have estimated the rate of convergence in ordinary approximation. In the present paper we investigate and estimate the rate of convergence of the Phillips operators in simultaneous approximation by means of the decomposition technique for functions of bounded variation.
2 Simultaneous approximation for the Phillips operators

2. Auxiliary results

In this section we give the following lemmas, which will be needed to prove our main result, given in Section 3.

Lemma 2.1. For all \(x \in (0, \infty) \) and \(k \in \mathbb{N} \cup \{0\} \),

\[
P_{n,k}(x) \leq \frac{1}{\sqrt{2enx}}, \tag{2.1}
\]

where the constant \(1/\sqrt{2e} \) and the estimation order \(n^{-1/2} \) (for \(n \to \infty \)) are the best possible.

Proof. Following [8], we have

\[
P_{n,k}(x) \leq H(j) \frac{\sqrt{n}x}{j}, \tag{2.2}
\]

where \(H(j) = (j + 1/2)^{j+1/2}e^{-(j+1/2)/j!} \).

Since \(\max_{j \geq 0} H(j) = H(0) = 1/\sqrt{2e} \), it follows that

\[
P_{n,k}(x) \leq \frac{1}{\sqrt{2enx}} \text{ for each integer } k \geq 0, \tag{2.3}
\]

and Lemma 2.1 is thus proved. \(\square \)

Remark 2.2. The above lemma can be utilized to give better estimate over the main results of [2, 3, 6].

Lemma 2.3. If \(f \in L_1[0, \infty) \), \(f^{(r-1)} \in A \cdot C_{\text{loc}}, r \in \mathbb{N} \), and \(f^{(r)} \in L_1[0, \infty) \), then

\[
P_n^{(r)}(f, x) = n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} p_{n,k+r-1}(t)f^{(r)}(t)dt. \tag{2.4}
\]

Proof. First by the definition,

\[
P_n^{(1)}(f, x) = n \sum_{k=1}^{\infty} p_{n,k}^{(1)}(x) \int_0^{\infty} p_{n,k-1}(t)f(t)dt - n e^{-nx}f(0). \tag{2.5}
\]

Using the identity \(p_{n,k}^{(1)}(x) = n[p_{n,k-1}(x) - p_{n,k}(x)], k \geq 1 \), we have

\[
P_n^{(1)}(f, x) = n \sum_{k=1}^{\infty} n[p_{n,k-1}(x) - p_{n,k}(x)] \int_0^{\infty} p_{n,k-1}(t)f(t)dt - n \cdot e^{-nx}f(0)
\]

\[
= n^2 p_{n,0}(x) \int_0^{\infty} p_{n,0}(t)f(t)dt - ne^{-nx}f(0)
\]

\[
+ n^2 \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^{\infty} [p_{n,k}(t) - p_{n,k-1}(t)] f(t)dt
\]

\[
= n^2 e^{-nx} \int_0^{\infty} e^{-nt}f(t)dt + n^2 \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^{\infty} \frac{-1}{n} p_{n,k}^{(1)}(t)f(t)dt - ne^{-nx}f(0)
\]
\[n^2 e^{-nx} \left[f(t) \frac{e^{-nt}}{-n} \bigg|_0^\infty - \int_0^\infty f^{(1)}(t) \frac{e^{-nt}}{-n} \, dt \right] \]

\[-n \sum_{k=1}^{\infty} p_{n,k}(x) \left[f(t)p_{n,k}(t) \bigg|_0^\infty - \int_0^\infty p_{n,k}(t)f^{(1)}(t) \, dt \right] - ne^{-nx} f(0) \]

\[= ne^{-nx} \int_0^\infty e^{-nt} f^{(1)}(t) \, dt + n \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k}(t)f^{(1)}(t) \, dt \]

\[= n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k}(t)f^{(1)}(t) \, dt. \]

(2.6)

Thus the result is true for \(r = 1 \). We prove the result by induction hypothesis, and for this we suppose it is true for \(r = i \). Then

\[P_n^{(i)}(f, x) = n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k+i-1}(t)f^{(i)}(t) \, dt. \]

(2.7)

Again using the identity \(p_{n,k}(x) = n[p_{n,k-1}(x) - p_{n,k}(x)], k \geq 1 \), it follows that

\[P_n^{(i+1)}(f, x) = n \sum_{k=0}^{\infty} n[p_{n,k-1}(x) - p_{n,k}(x)] \int_0^\infty p_{n,k+i-1}(t)f^{(i)}(t) \, dt \]

\[+ n(-ne^{-nx}) \int_0^\infty p_{n,i-1}(t)f^{(i)}(t) \, dt \]

\[= n^2 p_{n,0}(x) \int_0^\infty p_{n,i}(t)f^{(i)}(t) \, dt - n^2 p_{n,0}(x) \int_0^\infty p_{n,i-1}(t)f^{(i)}(t) \, dt \]

\[+ n^2 \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^\infty [p_{n,k+i}(t) - p_{n,k+i-1}(t)]f^{(i)}(t) \, dt \]

\[= n^2 p_{n,0}(x) \int_0^\infty \left(-\frac{p_{n,i}(t)}{n} \right) f^{(i)}(t) \, dt + n^2 \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^\infty \left(-\frac{p_{n,k+i}(t)}{n} \right) f^{(i)}(t) \, dt. \]

(2.8)

Integrating by parts, we obtain

\[P_n^{(i+1)}(f, x) = n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k+i}(t)f^{(i+1)}(t) \, dt, \]

(2.9)

which was proved and this completes the proof of Lemma 2.3.

\[\square \]

Lemma 2.4. For \(m \in N \cup \{0\}, r \in N \), if the \(m \text{-th order moment} \) is defined by

\[\mu_{r,n,m}(x) = n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty p_{n,k+r-1}(t)(t-x)^m \, dt, \]

(2.10)
Simultaneous approximation for the Phillips operators

then

\[
\mu_{r,n,0}(x) = 1, \quad \mu_{r,n,1}(x) = \frac{r}{n}, \quad \mu_{r,n,2}(x) = \frac{2nx + r(1 + r)}{n^2}.
\] (2.11)

Also, there holds the following recurrence relation:

\[
n!\mu_{r,n,m+1}(x) = x[\mu_{r,n,m}(x) + 2m\mu_{r,n,m-1}(x)] + (m + r)\mu_{r,n,m}(x).
\] (2.12)

Consequently, by the recurrence relation, for all \(x \in [0, \infty)\),

\[
\mu_{r,n,m}(x) = O\left(n^{-[(m+1)/2]}\right).
\] (2.13)

Proof. Using the identity \(xp_n'(x) = (k - nx)p_{n,k}(x)\), we have

\[
x\mu_{r,n,m}^{(1)}(x) = \sum_{k=0}^{\infty} x p_n'(x) \int_{0}^{\infty} p_{n,k+r-1}(t)(t-x)^m dt - mx\mu_{r,n,m-1}(x).
\] (2.14)

Thus

\[
x[\mu_{r,n,m}(x) + m\mu_{r,n,m-1}(x)]
\]

\[
= \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} \left[(k + r - 1) - nt \right] p_{n,k+r-1}(t)(t-x)^m dt
\]

\[
= \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} tp_{n,k+r-1}'(t)(t-x)^m dt + n\mu_{r,n,m+1}(x) + (1 - r)\mu_{r,n,m}(x)
\]

\[
= \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}'(t)(t-x)^m dt
\]

\[
+ nx \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}'(t)(t-x)^m dt + n\mu_{r,n,m+1}(x) + (1 - r)\mu_{r,n,m}(x).
\] (2.15)

Integrating by parts, we get the required recurrence relation. The other consequences easily follow from the recurrence relation. \(\square\)

Remark 2.5. In particular by Lemma 2.4, for given any number \(\lambda > 2\) and \(0 < x < \infty\), we get for \(n \geq 2\),

\[
\mu_{r,n,2}(x) \leq \frac{\lambda x}{n}.
\] (2.16)

Remark 2.6. We can observe from Lemmas 2.3 and 2.4 that for \(r = 0\), the summation over \(k\) starts from 1. For \(r = 0\), Lemma 2.4 may be defined as in [6, Lemma 2], with \(c = 0\).
Lemma 2.7. Suppose $x \in (0, \infty)$, $r \in \mathbb{N}$, and $K_{r,n}(x,t) = n \sum_{k=0}^{\infty} p_{n,k}(x) p_{n,k+r-1}(t)$. Then for $\lambda > 2$ and for $n \geq 2$, there hold

\[
\int_{0}^{y} K_{r,n}(x,t) dt \leq \frac{\lambda x}{n(x-y)^2}, \quad 0 \leq y < x, \quad (2.17)
\]

\[
\int_{x}^{\infty} K_{r,n}(x,t) dt \leq \frac{\lambda x}{n(z-x)^2}, \quad x < z < \infty. \quad (2.18)
\]

Proof. We first prove (2.17) as follows:

\[
\int_{0}^{y} K_{r,n}(x,t) dt \leq \int_{0}^{y} \frac{(x-t)^2}{(x-y)^2} K_{r,n}(x,t) dt \leq \frac{1}{(x-y)^2} P_n((x-t)^2,x) \leq \frac{\lambda x}{n(x-y)^2}
\]

by using (2.16). The proof of (2.18) follows along similar lines. □

3. Rate of convergence

We denote the class $B_{r,a}$ by $B_{r,a} = \{ f : f^{(r-1)} \in C[0,\infty), f_{x}^{(r)}(x) \text{ exist everywhere and are bounded on every finite subinterval of } [0,\infty) \text{ and } f_{x}^{(r)} = O(e^{\alpha t})(t \rightarrow \infty), \text{ for some } \alpha > 0 \}$, $r = 1,2,\ldots$. By $f_{x}^{(0)}(x)$ we mean $f(x \pm)$.

Now we are ready to prove and state our main theorem.

Theorem 3.1. Let $f \in B_{r,a}$, $r = 1,2,\ldots$, $\alpha > 0$. Then for every $x \in (0,\infty)$ and $n \geq \max\{2,4\alpha\}$,

\[
\left| P_{n}^{(r)}(f,x) - \frac{1}{2} \left\{ f_{+}^{(r)}(x) + f_{-}^{(r)}(x) \right\} \right| \leq \frac{2r - 1}{\sqrt{8enx}} \cdot \left| f_{+}^{(r)}(x) - f_{-}^{(r)}(x) \right| + \frac{x + 2\lambda}{nx} \sum_{k=1}^{n} V_{x-x/\sqrt{\lambda}}^{x+x/\sqrt{\lambda}}(g_{r,x}) + (nx)^{-1/2}(\lambda 2^{r})^{1/2} e^{2ax},
\]

(3.1)

where $g_{r,x}$ is the auxiliary function defined by

\[
g_{r,x}(t) = \begin{cases} f^{(r)}(t) - f_{x}^{(r)}(x), & 0 \leq t < x, \\ 0, & t = x, \\ f^{(r)}(t) - f_{+}^{(r)}(x), & x < t < \infty, \end{cases}
\]

(3.2)

and $V_{a}^{b}(g_{r,x}(t))$ is the total variation of $g_{r,x}(t)$ on $[a,b]$. In particular $g_{0,x}(t) \equiv g_{x}(t)$ as defined in [3].
Simultaneous approximation for the Phillips operators

Proof. Clearly
\[
\left| P_n^{(r)}(f, x) - \frac{1}{2} \left\{ f_+^{(r)}(x) + f_-^{(r)}(x) \right\} \right| \leq \left| P_n^{(r)}(g_{r,x}(t), x) \right| + \frac{1}{2} \left| f_+^{(r)}(x) - f_-^{(r)}(x) \right| \cdot \left| P_n^{(r)}(\text{sign}(t-x), x) \right|. \tag{3.3}
\]

In order to prove the result we need the estimates for \(P_n^{(r)}(g_{r,x}, x) \) and \(P_n^{(r)}(\text{sign}(t-x), x) \).

Next we estimate \(P_n^{(r)}(\text{sign}(t-x), x) \) as follows:
\[
P_n^{(r)}(\text{sign}(t-x), x) = \int_x^\infty K_{r,n}(x, t) dt - \int_0^x K_{r,n}(x, t) dt
= A_{r,n}(x) - B_{r,n}(x), \quad \text{say.} \tag{3.4}
\]

It is easily verified that \(A_{r,n}(x) + B_{r,n}(x) = 1 \). Thus \(P_n^{(r)}(\text{sign}(t-x), x) = 1 - 2A_{r,n}(x) \).

Using the fact that \(\sum_{j=0}^{k+r-1} p_{n,j}(x) = n \int_x^\infty p_{n,k+r-1}(t) dt \), we get
\[
A_{r,n}(x) = n \sum_{k=0}^\infty p_{n,k}(x) \int_x^\infty p_{n,k+r-1}(t) dt = \sum_{k=0}^\infty p_{n,k}(x) \sum_{j=0}^{k+r-1} p_{n,j}(x)
\leq \sum_{k=0}^\infty p_{n,k}(x) \sum_{j=0}^k p_{n,j}(x) + \frac{r-1}{\sqrt{2enx}}. \tag{3.5}
\]

Proceeding along similar lines as in [3], we get
\[
| A_{r,n}(x) - B_{r,n}(x) | = | 2A_{r,n}(x) - 1 | \leq \frac{|2r-1|}{\sqrt{2enx}}. \tag{3.6}
\]

Next we estimate \(P_n^{(r)}(g_{r,x}, x) \), and for this, note that by Lebesgue-Stieltjes integral representation, we have
\[
P_n^{(r)}(g_{r,x}, x) = \int_0^\infty g_{r,x}(t) K_{r,n}(x, t) dt
= R_1 + R_2 + R_3 + R_4, \quad \text{say,} \tag{3.7}
\]
where \(I_1 = [0, x-x/\sqrt{n}] \), \(I_2 = [x-x/\sqrt{n}, x+x/\sqrt{n}] \), \(I_3 = [x+x/\sqrt{n}, 2x] \), and \(I_4 = [2x, \infty) \).

Let us define \(\eta_{r,n}(x, t) = \int_0^t K_{r,n}(x, u) du \).

We first estimate \(R_1 \), and for this if we write \(y = x-x/\sqrt{n} \) and use integration by parts, we get
\[
R_1 = \int_0^y g_{r,x}(t) d_t(\eta_{r,n}(x, t)) = g_{r,x}(y)\eta_{r,n}(x, t) - \int_0^y \eta_{r,n}(x, t) d_t(g_{r,x}(t)). \tag{3.8}
\]
By Remark 2.5, it follows that
\[|R_1| \leq V_y^x(g_{r,x}) \eta_{r,n}(x,y) + \int_0^y \eta_{r,n}(x,t)dt(-V_t^x(g_{r,x})) \]
\[\leq V_y^x(g_{r,x}) \frac{\lambda x}{n(x-y)^2} + \frac{\lambda x}{n} \int_0^y \frac{1}{(x-t)^2}dt(-V_t^x(g_{r,x})). \] \hspace{1cm} (3.9)

Integrating by parts the last term, we get after simple computation
\[|R_1| \leq \frac{\lambda x}{n} \left[\frac{V_0^x(g_{r,x})}{x^2} + 2 \int_0^y \frac{V_t^x(g_{r,x})}{(x-t)^3} dt \right]. \] \hspace{1cm} (3.10)

Now replacing the variable \(y \) in the last integral by \(x - x/\sqrt{\eta} \), we get
\[|R_1| \leq \frac{2\lambda}{nx} \sum_{k=1}^n V_{x-x/\sqrt{\eta}}(g_{r,x}). \] \hspace{1cm} (3.11)

Next, we estimate \(R_2 \), and for this, note that for \(t \in [x - x/\sqrt{\eta}, x + x/\sqrt{\eta}] \), we have
\[|g_{r,x}(t)| = |g_{r,x}(t) - g_{r,x}(x)| \leq V_{x-x/\sqrt{\eta}}^x(g_{r,x}). \] \hspace{1cm} (3.12)

Also, by the fact that \(\int_a^b dt(\eta_{r,n}(x,t)) \leq 1 \) for \((a, b) \subset [0, \infty) \), we get
\[|R_2| \leq V_{x-x/\sqrt{\eta}}^x(g_{r,x}) \leq \frac{1}{n} \sum_{k=1}^n V_{x-x/\sqrt{\eta}}(g_{r,x}). \] \hspace{1cm} (3.13)

Now to estimate \(R_3 \), write \(z = x + x/\sqrt{\eta} \). Then
\[R_3 = \int_z^{2x} K_{r,n}(x,t)g_{r,x}(t)dt = -\int_z^{2x} g_{r,x}(t)dt(1 - \eta_{r,n}(x,t)) \]
\[= -g_{r,x}(2x)(1 - \eta_{r,n}(x,2x)) + g_{r,x}(z)(1 - \eta_{r,n}(x,z)) + \int_z^{2x} (1 - \eta_{r,n}(x,t))dtg_{r,x}(t). \] \hspace{1cm} (3.14)

Since \(|g_{r,x}(t)| = |g_{r,x}(t) - g_{r,x}(x)| \leq V^t_x(g_{r,x}) \), it follows by Lemma 2.7 that
\[|R_3| \leq \frac{\lambda x}{n} \left\{ x^{-2}V_{x}^{2x}(g_{r,x}) + (z - x)^{-2}V_{x}^{z}(g_{r,x}) + \int_z^{2x} (t-x)^{-2}dtV^t_x(g_{r,x}) \right\}. \] \hspace{1cm} (3.15)

Again integrating by parts, we get
\[|R_3| \leq \frac{\lambda x}{n} \left\{ 2x^{-2}V_{x}^{2x}(g_{r,x}) + 2\int_z^{2x} V^t_x(g_{r,x})(t-x)^{-3}dt \right\}. \] \hspace{1cm} (3.16)

Arguing similarly as in the estimate of \(R_1 \), we obtain
\[|R_3| \leq \frac{2\lambda}{nx} \sum_{k=1}^n V_{x+x/\sqrt{\eta}}(g_{r,x}). \] \hspace{1cm} (3.17)
Finally, we estimate R_4 as follows:

$$|R_4| = \left| \int_{2x}^{\infty} K_{r,n}(x,t)g_{r,x}(t)dt \right| \leq n \sum_{k=0}^{\infty} p_{n,k}(x) \int_{2x}^{\infty} p_{n,k+r-1}(t)e^{\alpha t}dt$$

$$\leq \frac{1}{x} \left(n \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}(t)(t-x)^2 dt \right)^{1/2} \left(n \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}(t)e^{2\alpha t}dt \right)^{1/2} \quad (3.18)$$

To estimate the above first expression we will use Remark 2.5, and to evaluate the second expression, we note that

$$\sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}(t)e^{2\alpha t}dt$$

$$= n \sum_{k=0}^{\infty} p_{n,k}(x) \frac{n^{k+r-1}}{(k+r-1)!} \int_{0}^{\infty} t^{k+r-1}e^{-(n-2\alpha)t}dt$$

$$= n \sum_{k=0}^{\infty} p_{n,k}(x) \frac{n^{k+r-1}}{(k+r-1)!} \frac{\Gamma(k+r)}{(n-2\alpha)^{k+r}} = \frac{n^r}{(n-2\alpha)^r} \sum_{k=0}^{\infty} \left(\frac{n}{n-2\alpha} \right)^k p_{n,k}(x)$$

$$= \frac{n^r}{(n-2\alpha)^r} e^{-nx} \sum_{k=0}^{\infty} \left(\frac{n^2x}{n-2\alpha} \right)^k \frac{1}{k!} = \frac{n^r}{(n-2\alpha)^r} e^{2nx/(n-2\alpha)} \leq 2^r e^{4ax} \quad \text{for } n > 4a. \quad (3.19)$$

If we now combine the above estimate with Remark 2.5, we get

$$|R_4| \leq \frac{1}{x} \left(n \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}(t)(t-x)^2 dt \right)^{1/2} \left(n \sum_{k=0}^{\infty} p_{n,k}(x) \int_{0}^{\infty} p_{n,k+r-1}(t)e^{2\alpha t}dt \right)^{1/2}$$

$$\leq (nx)^{-1/2} (\lambda^2)^{1/2} e^{2ax}. \quad (3.20)$$

Finally, combining the estimates obtained in (3.3)–(3.20), we get the required result, and the proof of the theorem is thus complete. \qed

Remark 3.2. Since the Bézier variant of the Phillips operators for $\beta \geq 1$ is defined by

$$P_{n,\beta}(f,x) = n \sum_{k=1}^{\infty} Q_{n,k}^{(\beta)}(x) \int_{0}^{\infty} p_{n,k-1}(t)f(t)dt + Q_{n,0}^{(\beta)}(x)f(0), \quad (3.21)$$

where $Q_{n,k}^{(\beta)}(x) = J_{n,k}^{(\beta)}(x) - J_{n,k+1}^{(\beta)}(x), J_{n,k}(x) = \sum_{i=k}^{\infty} p_{n,i}(x)$, the rate of convergence in simultaneous approximation for the above Bézier variant of Phillips operators can be obtained along similar lines. We omit the details.
Acknowledgment

This research was carried out while the second author was visiting Auburn University, USA, during the fall of 2005.

References

N. K. Govil: Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5108, USA
E-mail address: govilnk@auburn.edu

Vijay Gupta: School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110075, India
E-mail address: vijay@nsit.ac.in

Muhammad Aslam Noor: Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan
E-mail address: aslamnoor@comsats.edu.pk
Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie