GENERALIZED AFFINE TRANSFORMATION MONOIDS ON GALOIS RINGS

YONGLIN CAO

Received 10 November 2005; Revised 14 July 2006; Accepted 18 July 2006

Let A be a ring with identity. The generalized affine transformation monoid $\text{Gaff}(A)$ is defined as the set of all transformations on A of the form $x \mapsto xu + a$ (for all $x \in A$), where $u, a \in A$. We study the algebraic structure of the monoid $\text{Gaff}(A)$ on a finite Galois ring A. The following results are obtained: an explicit description of Green’s relations on $\text{Gaff}(A)$; and an explicit description of the Schützenberger group of every H-class, which is shown to be isomorphic to the affine transformation group for a smaller Galois ring.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

It is interesting to characterize algebra systems by use of semigroup theory. For an algebra system Ω with underlying set S, we consider special subsemigroups of the transformation semigroup on the set S, where every transformation in these subsemigroups is dependent on the algebra structure of Ω. The studies of special transformation subsemigroups on S may provide relationships between the algebra structure of Ω and semigroup theory.

Let A be a ring with identity and $U(A)$ the group of units of A. We consider a transformation α on the set A defined by the following: there exist $u, a \in A$ such that $(x)\alpha = xu + a$ for all $x \in A$, and we denote this transformation by $\langle u, a \rangle$ in this paper. If $u \in U(A)$, then $\langle u, a \rangle$ is an affine transformation and $\text{Aff}(A) := \{ \langle u, a \rangle \mid u \in U(A), a \in A \}$ is the affine transformation group on the ring A (see [6]). For any $u \in A$, we call $\langle u, a \rangle$ a generalized affine transformation on the ring A. If $v, b \in A$, we have $\langle u, a \rangle = \langle v, b \rangle$ if and only if $u = v$ and $a = b$, and that $\langle u, a \rangle \langle v, b \rangle = \langle uv, av + b \rangle$ as transformations on A. Let $\text{Gaff}(A) = \{ \langle u, a \rangle \mid u, a \in A \}$. Then $\text{Gaff}(A)$ is a monoid with respect to the transformation multiplication. We call $\text{Gaff}(A)$ the generalized affine transformation monoid on the ring A. Since the structure of Galois rings has been fully studied, it is easy to determine the explicit structure of generalized affine transformation monoids on Galois rings. So we will study the algebraic structure of the monoid $\text{Gaff}(A)$ on a Galois ring A in this note.

We conclude this section by recalling some of the basic properties of Galois rings. These have been well documented in [5, 7]. There is a number of equivalent descriptions
of Galois rings: they are the separable extensions of finite, unital, local, commutative rings and the unramified extensions of such rings. Let \(T \) be a finite, local, commutative ring with unity and has a maximal ideal \((p)\) for some prime \(p \). A polynomial \(h(x) \in T[x] \) is called basic irreducible if it is irreducible modulo \(p \). We construct the Galois ring as a quotient ring of \(\mathbb{Z}_{p^n}[x] \) as follows. Let \(n \) and \(m \) be positive integers and let \(h(x) \in \mathbb{Z}_{p^n}[x] \) be a monic basic irreducible polynomial of degree \(m \). The quotient ring \(\mathbb{Z}_{p^n}[x]/(h(x)) \), denoted \(GR(p^n, p^{nm}) \), is called the Galois ring of order \(p^{nm} \) and characteristic \(p^n \). Moreover, the integers \(p, n, m \) chosen as above determined uniquely (up to isomorphism) the Galois ring \(GR(p^n, p^{nm}) \) [7, page 207]. For the remainder of the text the symbol \(A \) will denote the Galois ring \(GR(p^n, p^{nm}) \). It is known that all ideals of \(A \) are given by \((0) = (p^n) \subseteq (p^{n-1}) \subseteq \cdots \subseteq (p) \subseteq (p^0) = A \) and that the ideal \((p^i)\), \(0 \leq i \leq n \), has cardinality \(p^{(n-i)m} \). By [8, Theorem 14.8] there exists an element \(\xi \in A \) of multiplicative order \(p^m - 1 \), which is a root of a basic primitive polynomial \(h(x) \) of degree \(m \) over \(\mathbb{Z}_{p^n} \) and dividing \(x^{p^m-1} - 1 \) in \(\mathbb{Z}_{p^n}[x] \), and every element \(a \in A \) can be written uniquely as \(a = a_0 + a_1 p + \cdots + a_{n-1} p^{n-1} \), \(a_0, a_1, \ldots, a_{n-1} \in \mathcal{T} \), where \(\mathcal{T} = \{0, 1, \ldots, \xi^{p^m-2}\} \). Moreover, \(a \) is a unit if and only if \(a_0 \neq 0 \), and \(a \) is a zero divisor or 0 if and only if \(a_0 = 0 \). Using notation of [2], we define the \(p \)-exponent of \(a \) by \(v_p(0) = n \) and \(v_p(a) = i \) if \(a = a_i p^i + \cdots + a_{n-1} p^{n-1} \) with \(a_i \neq 0 \). By [8, Corollary 14.9], \(U(A) \equiv \langle \xi \rangle \times [1 + (p)] \), where \(\langle \xi \rangle \) is the cyclic group of order \(p^m - 1 \) and \(1 + (p) = \{1 + x \mid x \in (p)\} \) is the one-group of Galois ring \(A \), so \(|U(A)| = (p^m - 1) p^{(n-1)m} \).

2. Main results

Let \(S \) be a monoid. As in [4], Green’s relations \(\mathcal{R}, \mathcal{L}, \mathcal{J}, \mathcal{H}, \) and \(\mathcal{D} \) are defined on \(S \) by \(\mathcal{R} := \{(a, b) \in S \times S \mid aS = bS\}, \mathcal{L} := \{(a, b) \in S \times S \mid Sa = Sb\}, \mathcal{J} := \{(a, b) \in S \times S \mid SaS = SbS\}, \mathcal{H} = \mathcal{R} \cap \mathcal{L}, \) and \(\mathcal{D} = \mathcal{R} \vee \mathcal{L}, \) respectively. An element \(a \) of \(S \) is called regular if \(axa = a \) for some \(x \in S \) [3, page 26]. A \(\mathcal{D} \)-class \(D \) of \(S \) is called regular if every element of \(D \) is regular [3, page 58]. It is known that a \(\mathcal{D} \)-class \(D \) of a semigroup is regular if \(D \) contains a regular element [3, Theorem 2.11]. Now, we list Green’s relations, properties, and structure of the monoid \(\text{Gaff}(A) \) as follows. Firstly, since \(\text{Gaff}(A) \) is a finite semigroup, by [4, Proposition 2.3] we have \(\mathcal{J} = \mathcal{D} \).

Theorem 2.1. Let \(u, v, a, b \in A \). Then

1. \(\langle u, a \rangle \mathcal{R} \langle v, b \rangle \) in the monoid \(\text{Gaff}(A) \) if and only if \(v_p(u) = v_p(v) \);
2. \(\langle u, a \rangle \mathcal{L} \langle v, b \rangle \) in the monoid \(\text{Gaff}(A) \) if and only if \(v_p(u) = v_p(v) \) and \(a \equiv b \ (\text{mod}(p^i)) \), where \(i = v_p(u) \);
3. \(\mathcal{H} = \mathcal{L} \) and \(\mathcal{D} = \mathcal{R} \);
4. there are exactly \(n + 1 \) \(\mathcal{D} \)-classes in \(\text{Gaff}(A) : D^{(i)} := \{\langle u, a \rangle \mid v_p(u) = i, u, a \in A\}, \) \(i = 0, 1, \ldots, n \);
5. for every \(0 \leq i \leq n \), there are exactly \(p^m \) \(\mathcal{H} \)-classes contained in the \(\mathcal{D} \)-class \(D^{(i)} \) of \(\text{Gaff}(A) : H^{(i, \omega)} := \{\langle u, a \rangle \mid v_p(u) = i, \omega, a \in A\}, \) where \(\omega \) is a residue class of \(A \) modulo its ideal \((p^i) \), that is, \(\omega \in A/(p^i) \);
6. there are exactly 2 regular \(\mathcal{D} \)-classes in \(\text{Gaff}(A) : D^{(0)} \) and \(D^{(n)} \), where \(D^{(0)} = \text{Aff}(A) \) is the affine transformation group over \(A \) and \(D^{(n)} = \{\langle 0, a \rangle \mid a \in A\} \) is an ideal of \(\text{Gaff}(A) \) and a right zero band;
(7) let $D^* := \bigcup_{i=1}^n D^{(i)}$. Then D^* is a maximal ideal of $Gaff(A)$ and the maximal nil-extension of the right zero band $D^{(n)}$ in $Gaff(A)$;

(8) the Rees quotient semigroup of $Gaff(A)$ modulo its ideal D^* is given by $Gaff(A)/D^* = Aff(A) \cup \{0\}$. Thus $Gaff(A)$ is an ideal extension of D^* by $Aff(A) \cup \{0\}$.

Proof. (1) Let $\langle u,a \rangle \mathcal{R} \langle v,b \rangle$ in the monoid $Gaff(A)$. Then there exist $x,y,c,d \in A$ such that $(u,a) \langle x,c \rangle = \langle v,b \rangle$ and $\langle v,b \rangle \langle y,d \rangle = \langle u,a \rangle$. Hence $ux = v$ and $vy = u$, so $(u) = (v) = (p^i)$ as ideals of $Gaff(A)$ for some $0 \leq i \leq n$. Thus $\nu_p(u) = \nu_p(v) = i$.

Conversely, let $\nu_p(u) = \nu_p(v) = i$. Then there exist $s,t \in U(A)$ such that $u = p^is$ and $v = p^it$. Select $c = b - as^{-1}t$, $d = a - bt^{-1}s \in A$. Then $(u,a) \langle s^{-1}t,c \rangle = (p^i,ss^{-1}t,as^{-1}t + c) = (v,b)$ and $(v,b) \langle t^{-1}s,d \rangle = (p^it^{-1}s,bt^{-1}s + d) = \langle u,a \rangle$. Hence $\langle u,a \rangle \mathcal{R} \langle v,b \rangle$ in the monoid $Gaff(A)$.

(2) Let $\langle u,a \rangle \mathcal{L} \langle v,b \rangle$ in the monoid $Gaff(A)$. Then there exist $x,y,c,d \in A$ such that $(x,c) \langle u,a \rangle = \langle v,b \rangle$ and $\langle y,d \rangle \langle v,b \rangle = \langle u,a \rangle$, that is, $v = xu$, $u = vy$, $b = uc + a$ and $a = vd + b$. Hence $(u) = (v) = (p^i)$ for some $0 \leq i \leq n$ and $a - b \in (p^i)$, so $\nu_p(u) = \nu_p(v) = i$ and $a \equiv b (\text{mod}(p^i))$.

Conversely, let $\nu_p(u) = \nu_p(v) = i$ and $a - b \in (p^i)$. Then there exist $s,t \in U(A)$ and $c,d \in A$ such that $u = p^is$, $v = p^it$, $a - b = dv$, and $b - a = cu$. Hence $(ts^{-1},c) \langle u,a \rangle = (ts^{-1}p^is,uc + a) = (v,b)$ and $(st^{-1},d) \langle v,b \rangle = (st^{-1}p^it,vd + b) = \langle u,a \rangle$, so $\langle u,a \rangle \mathcal{L} \langle v,b \rangle$ in the monoid $Gaff(A)$.

Then (3) follows because $\mathcal{L} \subseteq \mathcal{R}$ by (1) and (2), and (4) follows by (1).

(5) For every $0 \leq i \leq n$, by (1) and (2) we see that all distinct \mathcal{H}-classes contained in $R^{(i)}$ of $Gaff(A)$ are given by $H^{(i,\omega)}$, $\omega \in A/(p^i)$. Hence the number of \mathcal{H}-classes contained in $R^{(i)}$ is equal to $|A/(p^i)| = p^{nm}/p^{(n-1)m} = p^{im}$.

(6) We consider idempotents of the monoid $Gaff(A)$ first. Let $u,a \in A$ satisfying $\langle u,a \rangle^2 = \langle u,a \rangle$, that is, $uu - 1u = 0$ and $ua = 0$. If u is invertible in A, then by $u(u - 1) = 0$ and $ua = 0$, we have $u = 1$ and $a = 0$. Otherwise, $u - 1$ is invertible in A, from which we obtain $u = 0$ by $uu - 1 = 0$. Hence all idempotents of $Gaff(A)$ are given by $\langle 1,0 \rangle$ and $\langle 0,1 \rangle$, $a \in A$.

Since $\nu_p(1) = 0$, $D^{(0)} = R^{(0)} = \{\langle u,a \rangle \mid \nu_p(u) = 0, u,a \in A\} = \{\langle u,a \rangle \mid u \in U(A), a \in A\} = Aff(A)$, that is, the \mathcal{R}-class of $Gaff(A)$ containing the idempotent $\langle 1,0 \rangle$. Hence $D^{(0)}$ is regular and equal to the affine transformation group over A. For every $a \in A$, since $\nu_p(0) = n$, $D^{(n)} = R^{(n)} = \{\langle u,b \rangle \mid \nu_p(u) = n, u,b \in A\} = \{\langle 0,b \rangle \mid b \in A\}$, that is, the \mathcal{R}-class of $Gaff(A)$ containing the idempotent $\langle 0,a \rangle$. So $D^{(n)}$ is regular. For any $u,a,b \in A$, since $\langle u,a \rangle \langle 0,b \rangle = \langle 0,b \rangle \in R^{(n)}$ and $\langle 0,b \rangle \langle u,a \rangle = \langle 0,ub + a \rangle \in D^{(n)}$, we see that $D^{(n)}$ is an ideal of $Gaff(A)$ and a right zero band.

Then (7) and (8) follow immediately from (1)–(6) and semigroup theory [3, page 137] and [1, page 62–64].

Then we give an explicit description of every \mathcal{H}-class of the monoid $Gaff(A)$.

Lemma 2.2. For any $1 \leq i \leq n$ and $\omega \in A/(p^i)$, there is a bijection from the set $U(A/(p^{n-i})) \times (p^i)$ onto the \mathcal{H}-class $H^{(i,\omega)}$ of the monoid $Gaff(A)$.

Proof. Let $a_0 \in A$ satisfying $\omega = a_0 + (p^i)$. Define $\phi : U(A/(p^{n-i})) \times (p^i) \to H^{(i,\omega)}$ via $(s + (p^{n-i}), b) \mapsto (ps,a_0 + b)$. We show firstly that ϕ is well defined. If $s_1,s_2 \in A$ satisfying
s_1 + (p^{n-i}) = s_2 + (p^{n-i}), then p^i s_1 - p^i s_2 = p^i(s_1 - s_2) \in p^i(p^{n-i}) = \{0\}. Hence p^i s_1 = p^i s_2.

Let s + (p^{n-i}) \in U(A/(p^{n-i})) and b \in (p^i). Then a_0 + b + (p^i) = a_0 + (p^i) = \omega and p^i s \in (p^i). Since s + (p^{n-i}) \in U(A/(p^{n-i})), there exists t \in A such that st \equiv 1 \mod(p^{n-i}), which is equivalent to p^i(st - 1) = 0. Hence p^i = p^i st \in (p^i s) and so (p^i s) = (p^i). Thus \langle p^i s, a_0 + b \rangle \in H^{(i,o)} \text{ by Theorem 2.1(5)}. So \phi is well defined. Now, we prove that \phi is a bijection. Obviously, \phi is injective. For any \langle u, d \rangle \in H^{(i,o)}, by Theorem 2.1(5) we have \nu_p(u) = i and d + (p^i) = a_0 + (p^i). Since \nu_p(u) = i, there exist s, t \in A such that u = p^i s and p^i = ut. Then p^i = p^i st and so st - 1 \in (p^{n-i}). Hence s + (p^{n-i}) \in U(A/(p^{n-i})). From d + (p^i) = a_0 + (p^i) we obtain d - a_0 \in (p^i). Then (s + (p^{n-i}) d - a_0) \phi = \langle u, d \rangle. So \phi is surjective.

Now, for every 1 \leq i \leq n, let (G, o) be the semidirect product U(A/(p^{n-i})) \ltimes (p^i) of the multiplicative group U(A/(p^{n-i})) on the additive group (p^i) with respect to the action of U(A/(p^{n-i})) on (p^i) defined by c^t(p^{n-i}) = ct for all c \in (p^i), t + (p^{n-i}) \in U(A/(p^{n-i})). Then the multiplication “o” on G is given by the following: for any (s + (p^{n-i}), b), (t + (p^{n-i}), d) \in G, (s + (p^{n-i}), b) o (t + (p^{n-i}), d) = (st + (p^{n-i}), bt + d).

Lemma 2.3. For every 1 \leq i \leq n, U(A/(p^{n-i})) \ltimes (p^i) is isomorphic to the affine transformation group on the Galois ring GR(p^{n-i}, p^{(n-i)m}).

Proof. Let (G, o) = U(A/(p^{n-i})) \ltimes (p^i). We first prove that U(A/(p^{n-i})) \cong U(GR(p^{n-i}, p^{(n-i)m})) as multiplicative groups. Recall that for the Galois ring A = GR(p^n, p^{nm}), there exists \xi \in A of multiplicative order p^m - 1 such that \xi is a root of a certain basic primitive polynomial h(x) \in Z_{p^n}[x] of degree m satisfying h(x)/(x^{p^m} - 1). So A = Z_{p^n}[\xi] = Z_{p^n}[x]/(h(x)) up to ring isomorphism. Let \sigma : c + (p^{n-i}) \rightarrow c + (p^{n-i}) \text{ for all } c \in Z, be the natural surjective ring homomorphism from Z_{p^n} onto Z_{p^{n-i}}. Then \sigma induces a surjective ring ring homomorphism \tilde{\sigma} on Z_{p^{n-i}}[x] defined by \tilde{\sigma} : \Sigma_{k\xi} x^k \rightarrow \Sigma_{[\xi(k)]} x^k (\text{for all } \Sigma_{\xi} x^k \in Z_{p^n}[x]). For any f(x) \in Z_{p^n}[x], denote \tilde{f}(x) = (f(x))\tilde{\sigma}. Obviously, \tilde{h}(x) is a basic primitive polynomial in Z_{p^{n-i}}[x] of degree m. Hence we have GR(p^{n-i}, p^{(n-i)m}) = Z_{p^{n-i}}[x]/(\tilde{h}(x)) up to isomorphism. Define mapping \tau : A \rightarrow GR(p^{n-i}, p^{(n-i)m}) via f(x) + (h(x)) \rightarrow \tilde{f}(x) + (\tilde{h}(x)) for all f(x) \in Z_{p^n}[x]. Then \tau is a surjective ring ring homomorphism from A onto GR(p^{n-i}, p^{(n-i)m}) with kernel Ker(\tau) = p^{n-i}A = (p^{n-i}). Then we have a ring isomorphism A/(p^{n-i}) \cong GR(p^{n-i}, p^{(n-i)m}), which induces a multiplicative group isomorphism U(A/(p^{n-i})) \cong U(GR(p^{n-i}, p^{(n-i)m})).

Similarly, define a mapping \theta : (p^i) = p^iA \rightarrow GR(p^{n-i}, p^{(n-i)m}) via p^i f(x) + (h(x)) \rightarrow \tilde{f}(x) + (\tilde{h}(x)) for all f(x) \in Z_{p^n}[x]. It is a routine matter to show that \theta is an additive group surjective homomorphism from (p^i) onto GR(p^{n-i}, p^{(n-i)m}) with kernel Ker(\theta) = \{0\}. Hence ((p^i), +) \cong (GR(p^{n-i}, p^{(n-i)m}), +).

Finally, we prove that (G, o) is isomorphic to the affine transformation group Aff(GR(p^{n-i}, p^{(n-i)m})). Define a mapping \zeta : G \rightarrow Aff(GR(p^{n-i}, p^{(n-i)m})) by

\[
(\alpha)\zeta = \langle \tilde{f_1}(x) + (\tilde{h}(x)), \tilde{f_2}(x) + (\tilde{h}(x)) \rangle = \langle \{f_1(x) + (h(x))\} \tau, \{p^i f_2(x) + (h(x))\} \theta \rangle
\]

(2.1)

for all \alpha = (f_1(x) + (h(x)) + p^{n-i}A, p^i f_2(x) + (h(x))) \in G, where f_1(x), f_2(x) \in Z_{p^n}[x]. Obviously, \zeta is a bijection. Moreover, for any g_1(x), g_2(x) \in Z_{p^n}[x], and \beta = (g_1(x) + (h(x)) + p^{n-i}A, p^i g_2(x) + (h(x))) \in G, by definitions and properties of \tilde{\sigma}, \tau, and \theta, we
Theorem

Let \mathcal{H} be a semigroup and H an \mathcal{H}-class of S^1. As in [4], the submonoid $T_r(H)$ of S^1, defined by $T_r(H) = \{ x \in S^1 \mid Hx = H \}$, is called the right stabilizer of H. The quotient monoid $\Gamma_r(H) = T_r(H)/\eta$ of $T_r(H)$ by its congruence η, defined by $\eta = \{(x,y) \mid (\exists h \in H) hx = hy, \ x, y \in T_r(H)\}$, is a transitive group of permutations of H. It is known that $\Gamma_r(H_1)$ and $\Gamma_r(H_2)$ are equivalent permutation groups for any two \mathcal{H}-classes H_1 and H_2 contained in the same \mathcal{D}-class D of S. The abstract group $\Gamma_r(H)$ is called the Schützenberger group of the \mathcal{D}-class containing H.

Theorem 2.4. For every $1 \leq i \leq n$, the Schützenberger group of the \mathcal{D}-class $D(i)$ of Gaff(A) is isomorphic to the affine transformation group on the Galois ring $GR(p^{n-i}, p^{(n-i)m})$. Then $|H(i, \omega)| = (p^n - 1)p^{(2n-2i-1)m}$ for any $\omega \in A/(p^i)$.

Proof. By Lemma 2.3 we need only to show that the Schützenberger group of $D(i)$ is isomorphic to $(G, \circ) = U(A/(p^{n-i})) \times (p^i)$. Consider the \mathcal{H}-class $H^{(i, \omega)}$ contained in $D(i)$, where $\omega = (p^i) \in A/(p^i)$. In view of Lemma 2.2, $H^{(i, \omega)} = \{(p^i s, b) \mid s + (p^{n-i}) \in U(A/(p^{n-i}))$, $b \in (p^i)\}$. Now, we denote $H^{(i, \omega)}$ by H for brevity. First, we determine the right stabilizer $T_r(H) = \{ \langle t, c \rangle \mid H \langle t, c \rangle = H, \ t, c \in A\}$ of H. By properties of \mathcal{H}-classes in semigroup theory [4, Lemma 3.2, page 32], for any $t, c \in A$, $\langle t, c \rangle \in T_r(H)$ if and only if there exist $s + (p^{n-i}) \in U(A/(p^{n-i}))$ and $b \in (p^i)$ such that $\langle p^i s, b \rangle (t, c) = \langle p^i s t, b t + c \rangle \in H$, which is equivalent to $(p^i s t) = (p^i)$ and $b t + c = b t + c - 0 \in (p^i)$ by Theorem 2.1(5). Since $b \in (p^i)$, $b t + c \in (p^i)$ is equivalent to $c \in (p^i)$. Since $s + (p^{n-i}) \in U(A/(p^{n-i}))$, $(p^i s t) = (p^i)$ is equivalent to $s t w \equiv 1(\mod(p^{n-i}))$ for some $w \in A$, that is, $t + (p^{n-i}) \in U(A/(p^{n-i}))$. Therefore, we have

$$T_r(H) = \{ \langle t, c \rangle \mid t + (p^{n-i}) \in U(A/(p^{n-i})), c \in (p^i), t \in A\}.$$

(2.3)

Now, define mapping $\psi : T_r(H) \to G$ by $\langle t, c \rangle \psi = (t + (p^{n-i}), c)$ for all $t + (p^{n-i}) \in U(A/(p^{n-i}))$, $c \in (p^i)$. Then ψ is surjective, and for any $a_i = \langle t_i, c_i \rangle \in T_r(H)$, $i = 1, 2$, we have $\langle a_1 a_2 \rangle = \langle t_1 t_2, t_2 c_1 + c_2 \rangle \psi = (t_1 t_2 + (p^{n-i}), t_2 c_1 + c_2) = (t_1 + (p^{n-i}), c_1) \circ (t_2 + (p^{n-i}), c_2) = (a_1 \psi)(a_2 \psi)$. Hence ψ is a surjective semigroup homomorphism from $T_r(H)$ onto (G, \circ). Moreover, in view of semigroup theory [4, page 32] we have $(a_1, a_2) \in \eta$ if and only if
there exist \(s + (p^{n-i}) \in U(A/(p^{n-i})) \) and \(b \in (p^i) \) such that \(\langle p^i s, b \rangle \alpha_1 = \langle p^i s, b \rangle \alpha_2 \), that is, \(\langle p^i s t_1, t_1 b + c_1 \rangle = \langle p^i s t_2, t_2 b + c_2 \rangle \), which is equivalent to \(p^i s t_1 = p^i s t_2 \) and \(t_1 b + c_1 = t_2 b + c_2 \). Since \(s + (p^{n-i}) \in U(A/(p^{n-i})) \), we have

\[
p^i s t_1 = p^i s t_2 \iff st_1 \equiv st_2 \pmod{(p^{n-i})} \iff t_1 \equiv t_2 \pmod{(p^{n-i})} \iff t_1 + (p^{n-i}) = t_2 + (p^{n-i}) ,
\]

and that \(t_1 b + c_1 = t_2 b + c_2 \) is equivalent to \(c_2 - c_1 = b(t_1 - t_2) \in (p^i)(p^{n-i}) = \{0\} \), that is, \(c_1 = c_2 \). Therefore, \((\alpha_1, \alpha_2) \in \eta \) if and only if \(\alpha_1 \psi = \alpha_2 \psi \). Hence \(\eta = \text{Ker}(\psi) \) and so \(\Gamma_r(H) = T_r(H)/\eta \equiv (G, \circ) \) as groups.

Since \(U(A/(p^{n-i})) \equiv U(GR(p^{n-i}, p^{(n-i)m})) \), we have \(|U(A/(p^{n-i}))| = |U(GR(p^{n-i}, p^{(n-i)m}))| = (p^m - 1)p^{(n-i-1)m} \). But \(|(p^i)| = p^{(n-i)m} \), and so we have \(|H| = |U(A/(p^{n-i}))| \times |(p^i)| = (p^m - 1)p^{(2n-2i-1)m} \) by Lemma 2.2.

Acknowledgments

This research is supported in part by the NSF of Shandong Province, China, under Grant 2003ZX13 and the NSF of Shandong University of Technology, under Grant 2005KJM13.

References

Yonglin Cao: Institute of Applied Mathematics, School of Mathematics and Information, Shandong University of Technology, Zibo, Shandong 255091, China

E-mail address: ylcao@sdut.edu.cn