ERRATUM TO “HYPERFINITE AND STANDARD UNIFICATIONS FOR PHYSICAL THEORIES”

ROBERT A. HERRMANN

Received 5 January 2006; Accepted 28 March 2006

This corrects the major theorem on product consequence operators.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

In [1], Definition 5.2, and Theorem 5.3 and its proof are stated incorrectly. The following is the correct definition, theorem, and proof.

Definition 5.2. Suppose one has a nonempty finite set \(\mathcal{C} = \{C_1, \ldots, C_m\} \) of general consequence operators, each defined on a nonempty language \(L_i, 1 \leq i \leq m \). Define the operator \(\Pi C_m \) as follows: for any \(X \subset L_1 \times \cdots \times L_m \), using the projection \(pr_i, 1 \leq i \leq m \), define \(\Pi C_m(X) = C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) \).

Theorem 5.3. The operator \(\Pi C_m \) defined on the subsets of \(L_1 \times \cdots \times L_m \) is a general consequence operator and if, at least, one member of \(\mathcal{C} \) is axiomless, then \(\Pi C_m \) is axiomless. If each member of \(\mathcal{C} \) is finitary and axiomless, then \(\Pi C_m \) is finitary.

Proof. (a) Let \(X \subset L_1 \times \cdots \times L_m \). Then for each \(i, 1 \leq i \leq m \), \(pr_i(X) \subset C_i(pr_i(X)) \subset L_i \). But, \(X \subset pr_1(X) \times \cdots \times pr_m(X) \subset C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) = \Pi C_m(X) \subset L_1 \times \cdots \times L_m \). Suppose that \(X \neq \emptyset \). Then \(\emptyset \neq \Pi C_m(X) = C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) \subset L_1 \times \cdots \times L_m \). Hence, \(\emptyset \neq pr_i(\Pi C_m(X)) = C_i(pr_i(X)), 1 \leq i \leq m \), implies that \(C_i(pr_i(\Pi C_m(X))) = C_i(pr_i(X)), 1 \leq i \leq m \). Hence, \(\Pi C_m(\Pi C_m(X)) = \Pi C_m(X) \).

Let \(X = \emptyset \) and assume that no member of \(\mathcal{C} \) is axiomless. Then each \(pr_i(X) = \emptyset \). But, each \(C_i(pr_i(X)) \neq \emptyset \) implies that \(\Pi C_m(X) \neq \emptyset \). By the previous method, it follows, in this case, that \(\Pi C_m(\Pi C_m(X)) = \Pi C_m(X) \).

Now suppose that there is some \(j \) such that \(C_j \) is axiomless. Hence, \(C_j(pr_j(X)) = \emptyset \) implies that \(\Pi C_m(X) = C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) = \emptyset \), which implies that \(C_j(pr_j(\Pi C_m(X))) = \emptyset \). Consequently, \(C_j(pr_j(\Pi C_m(X))) \times \cdots \times C_m(pr_m(\Pi C_m(X)))) = \emptyset \). Thus, \(\Pi C_m(\Pi C_m(X)) = \emptyset \) and axiom (1) holds. Also in the case where at least one member of \(\mathcal{C} \) is axiomless, then \(\Pi C_m \) is axiomless.

(b) Let \(X \subset Y \subset L_1 \times \cdots \times L_m \). For each \(i, 1 \leq i \leq m \), \(pr_i(X) \subset pr_i(Y) \), whether \(pr_i(X) \) is the empty set or not. Hence, \(C_i(pr_i(X)) \subset C_i(pr_i(Y)) \).

DOI 10.1155/IJMMS/2006/80231

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 80231, Pages 1–2
Erratum to “hyperfinite and standard unifications”

\[C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) \subset C_1(pr_1(Y)) \times \cdots \times C_m(pr_m(Y)) = \Pi C_m(Y) \] and axiom (2) holds. Thus, \(\Pi C_m \) is, at least, a general consequence operator.

(c) Assume that each member of \(\mathcal{C} \) is finitary and axiomless and let \(x \in \Pi C_m(X) \) where, since \(\Pi C_m \) is axiomless, \(X \) is nonempty. Then for each \(i, \; pr_i(x) \in C_i(pr_i(X)) \).

Since each \(C_i \) is finitary and axiomless, then there is some nonempty finite \(F_i \subset pr_i(X) \) such that \(pr_i(x) \in C_i(F_i) \subset C_i(pr_i(X)) \). Hence, nonempty and finite \(F = F_1 \times \cdots \times F_m \subset pr_1(X) \times \cdots \times pr_m(X) \). Then for each \(i, \; pr_i(F) = F_i \) implies that finite \(F = F_1 \times \cdots \times F_m \) subsequence of \(pr_1(X) \times \cdots \times pr_m(X) \). From axiom (2), \(x \in \Pi C_m(F) = C_1(pr_1(F)) \times \cdots \times C_m(pr_m(F)) \subset \Pi C_m(pr_1(X) \times \cdots \times pr_m(X)) = C_1(pr_1(X)) \times \cdots \times C_m(pr_m(X)) = \Pi C_m(X) \). This completes the proof.

References

Robert A. Herrmann: Institute for Mathematics and Philosophy, 44890 Rivermont Terrace 100, Ashburn VA 20147, USA
E-mail address: rah@usna.edu