We establish the weak convergence of a sequence of Mann iterates of an I-nonexpansive map in a Banach space which satisfies Opial’s condition.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

Let K be a closed convex bounded subset of uniformly convex Banach space $X = (X, \| \cdot \|)$ and T self-mappings of X. Then T is called nonexpansive on K if

$$\|Tx - Ty\| \leq \|x - y\|$$

for all $x, y \in K$. Let $F(T) = \{x \in K : Tx = x\}$ be denoted as the set of fixed points of a mapping T.

The first nonlinear ergodic theorem was proved by Baillon [1] for general nonexpansive mappings in Hilbert space \mathcal{H}: if K is a closed and convex subset of \mathcal{H} and T has a fixed point, then for every $x \in K$, $\{T^n x\}$ is weakly almost convergent, as $n \to \infty$, to a fixed point of T. It was also shown by Pazy [7] that if \mathcal{H} is a real Hilbert space and $(1/n) \sum_{i=0}^{n-1} T^i x$ converges weakly, as $n \to \infty$, to $y \in K$, then $y \in F(T)$.

The concept of a quasi-nonexpansive mapping was initiated by Tricomi in 1941 for real functions. Diaz and Metcalf [2] and Dotson [3] studied quasi-nonexpansive mappings in Banach spaces. Recently, this concept was given by Kirk [5] in metric spaces which we adapt to a normed space as follows: T is called a quasi-nonexpansive mapping provided

$$\|Tx - f\| \leq \|x - f\|$$

for all $x \in K$ and $f \in F(T)$.

Remark 1.1. From the above definitions it is easy to see that if $F(T)$ is nonempty, a nonexpansive mapping must be quasi-nonexpansive, and linear quasi-nonexpansive mappings are nonexpansive. But it is easily seen that there exist nonlinear continuous quasi-nonexpansive mappings which are not nonexpansive.
2 Convergence theorems for I-nonexpansive mapping

There are many results on fixed points on nonexpansive and quasi-nonexpansive mappings in Banach spaces and metric spaces. For example, the strong and weak convergence of the sequence of certain iterates to a fixed point of quasi-nonexpansive maps was studied by Petryshyn and Williamson [8]. Their analysis was related to the convergence of Mann iterates studied by Dotson [3]. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces was discussed by Ghosh and Debnath [4]. In [10], the weakly convergence theorem for I-asymptotically quasi-nonexpansive mapping defined in Hilbert space was proved. In [11], convergence theorems of iterative schemes for nonexpansive mappings have been presented and generalized.

In this paper, we consider T and I self-mappings of K, where T is an I-nonexpansive mapping. We establish the weak convergence of the sequence of Mann iterates to a common fixed point of T and I.

Let X be a normed linear space, let K be a nonempty convex subset of X, and let $T : K \to K$ be a given mapping. The Mann iterative scheme $\{x_n\}$ is defined by $x_0 = x \in K$ and

$$x_{n+1} = (1 - k_n)x_n + k_nTx_n$$

(1.3)

for every $n \in \mathbb{N}$, where k_n is a sequence in $(0, 1)$.

Recall that a Banach space X is said to satisfy Opial’s condition [6] if, for each sequence $\{x_n\}$ in X, the condition $x_n \rightharpoonup x$ implies that

$$\lim_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \|x_n - y\|$$

(1.4)

for all $y \in X$ with $y \neq x$. It is well known from [6] that all l_p spaces for $1 < p < \infty$ have this property. However, the L_p spaces do not, unless $p = 2$.

The following definitions and statements will be needed for the proof of our theorem.

Let K be a subset of a normed space $X = (X, \| \cdot \|)$ and T and I self-mappings of K. Then T is called I-nonexpansive on K if

$$\|Tx - Ty\| \leq \|Ix - Iy\|$$

(1.5)

for all $x, y \in K$ [9].

T is called I-quasi-nonexpansive on K if

$$\|Tx - f\| \leq \|Ix - f\|$$

(1.6)

for all $x \in K$ and $f \in F(T) \cap F(I)$.

2. The main result

Theorem 2.1. Let K be a closed convex bounded subset of uniformly convex Banach space X, which satisfies Opial’s condition, and let T, I self-mappings of K with T an I-nonexpansive mapping, I a nonexpansive on K. Then, for $x_0 \in K$, the sequence $\{x_n\}$ of Mann iterates converges weakly to common fixed point of $F(T) \cap F(I)$.
Proof. If \(F(T) \cap F(I) \) is nonempty and a singleton, then the proof is complete. We will assume that \(F(T) \cap F(I) \) is nonempty and that \(F(T) \cap F(I) \) is not a singleton.

\[
\|x_{n+1} - f\| = \|(1-k_n)x_n + k_nTx_n - (1-k_n+k_n)f\| \\
= \|(1-k_n)(x_n - f) + k_n(Tx_n - f)\| \\
\leq (1-k_n)\|x_n - f\| + k_n\|Tx_n - f\| \\
\leq (1-k_n)\|x_n - f\| + k_n\|x_n - f\| \\
= \|x_n - f\|,
\]

where \(\{k_n\} \) is a sequence in \((0,1)\).

Thus, for \(k_n \neq 0 \), \(\{\|x_n - f\|\} \) is a nonincreasing sequence. Then, \(\lim_{n \to \infty} \|x_n - f\| \) exists.

Now we show that \(\{x_n\} \) converges weakly to a common fixed point of \(T \) and \(I \). The sequence \(\{x_n\} \) contains a subsequence which converges weakly to a point in \(K \). Let \(\{x_{n_k}\} \) and \(\{x_{m_j}\} \) be two subsequences of \(\{x_n\} \) which converge weakly to \(f \) and \(q \), respectively. We will show that \(f = q \). Suppose that \(X \) satisfies Opial’s condition and that \(f \neq q \) is in weak limit set of the sequence \(\{x_n\} \). Then \(\{x_{n_k}\} \to f \) and \(\{x_{m_j}\} \to q \), respectively. Since \(\lim_{n \to \infty} \|x_n - f\| \) exists for any \(f \in F(T) \cap F(I) \), by Opial’s condition, we conclude that

\[
\lim_{n \to \infty} \|x_n - f\| = \lim_{k \to \infty} \|x_{n_k} - f\| < \lim_{k \to \infty} \|x_{n_k} - q\| \\
= \lim_{n \to \infty} \|x_n - q\| = \lim_{j \to \infty} \|x_{m_j} - q\| \\
< \lim_{j \to \infty} \|x_{m_j} - f\| = \lim_{n \to \infty} \|x_n - f\|. \tag{2.2}
\]

This is a contradiction. Thus \(\{x_n\} \) converges weakly to an element of \(F(T) \cap F(I) \). \(\square \)

References

4 Convergence theorems for I-nonexpansive mapping

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA

E-mail address: rhoades@indiana.edu

Seyit Temir: Department of Mathematics, Art and Science Faculty, Harran University, Sanliurfa 63200, Turkey

E-mail address: temirseyit@harran.edu.tr