We give a new Hilbert-type integral inequality with the best constant factor by estimating the weight function. And the equivalent form is considered.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

If f, g are real functions such that $0 < \int_0^\infty f^2(x)\,dx < \infty$ and $0 < \int_0^\infty g^2(x)\,dx < \infty$, then we have (see [1])

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}\,dx\,dy < \pi \left\{ \int_0^\infty f^2(x)\,dx \int_0^\infty g^2(x)\,dx \right\}^{1/2}, \quad (1.1)$$

where the constant factor π is the best possible. Inequality (1.1) is the well-known Hilbert’s inequality. And inequality (1.1) had been generalized by Hardy in 1925 as follows.

If $f, g \geq 0, p > 1, 1/p + 1/q = 1, 0 < \int_0^\infty f^p(x)\,dx < \infty$, and $0 < \int_0^\infty g^q(x)\,dx < \infty$, then

$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y}\,dx\,dy < \frac{\pi}{\sin(\pi/p)} \left\{ \int_0^\infty f^p(x)\,dx \right\}^{1/p} \left\{ \int_0^\infty g^q(x)\,dx \right\}^{1/q}, \quad (1.2)$$

$$\int_0^\infty \left(\int_0^\infty \frac{f(x)}{x+y}\,dx \right)^p \,dy < \left[\frac{\pi}{\sin(\pi/p)} \right]^p \int_0^\infty f^p(x)\,dx, \quad (1.3)$$

where the constant factor $\pi/\sin(\pi/p)$ is the best possible. When $p = q = 2$, (1.2) reduces to (1.1), inequality (1.2) is named of Hardy-Hilbert integral inequality, which is important in analysis and its applications. It has been studied and generalized in many directions by a number of mathematicians.
A new Hilbert-type integral inequality

In this paper, we give a new type of Hilbert’s integral inequality as follows:

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y+\max\{x,y\}} \, dx \, dy < c \left\{ \int_0^\infty f^2(x) \, dx \int_0^\infty g^2(x) \, dx \right\}^{1/2},
\]

(1.4)

where \(c = \sqrt{2}(\pi - 2 \arctan \sqrt{2}) = 1.7408 \ldots \).

2. Main results

Lemma 2.1. Suppose \(\varepsilon > 0 \), then

\[
\int_1^{x^{-\varepsilon-1}} \int_0^{x^{-1}} \frac{1}{1 + t + \max\{1,t\}} t^{(-1-\varepsilon)/2} \, dt \, dx = O(1) (\varepsilon \to 0^+). \tag{2.1}
\]

Proof. There exists \(n \in \mathbb{N} \) which is large enough, such that \(1 + (1 - \varepsilon)/2 > 0 \) for \(\varepsilon \in (0,1/n] \), we have

\[
\int_0^{x^{-1}} \frac{1}{1 + t + \max\{1,t\}} t^{(-1-\varepsilon)/2} \, dt < \int_0^{x^{-1}} t^{(-1-\varepsilon)/2} \, dt = \frac{1}{1 + (1 - \varepsilon)/2} \left(\frac{1}{x} \right)^{1+(1-\varepsilon)/2}. \tag{2.2}
\]

Since for \(a \geq 1 \) the function \(g(y) = (1/ya^y) (y \in (0,\infty)) \) is decreasing, we find

\[
\frac{1}{1 + (1 - \varepsilon)/2} \left(\frac{1}{x} \right)^{1+(1-\varepsilon)/2} \leq \frac{1}{1 + ((1 - 1)/n)/2} \left(\frac{1}{x} \right)^{1+((1-1)/n)/2}, \tag{2.3}
\]

so

\[
0 < \int_1^{x^{-\varepsilon-1}} \int_0^{x^{-1}} \frac{1}{1 + t + \max\{1,t\}} t^{(-1-\varepsilon)/2} \, dt \, dx
\]

\[
< \int_1^{x^{-1}} \frac{1}{1 + ((1 - 1)/n)/2} \left(\frac{1}{x} \right)^{1+((1-1)/n)/2} \, dx \tag{2.4}
\]

\[
= \left(\frac{1}{1 + ((1 - 1)/n)/2} \right)^2.
\]

Hence the relation (2.1) is valid. The lemma is proved.

Now we study the following inequality.

Theorem 2.2. Suppose \(f(x), g(x) \geq 0, 0 < \int_0^\infty f^2(x) \, dx < \infty, 0 < \int_0^\infty g^2(x) \, dx < \infty \). Then

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y+\max\{x,y\}} \, dx \, dy < c \left\{ \int_0^\infty f^2(x) \, dx \int_0^\infty g^2(x) \, dx \right\}^{1/2}, \tag{2.5}
\]

where the constant factor \(c = \sqrt{2}(\pi - 2 \arctan \sqrt{2}) = 1.7408 \ldots \) is the best possible.
Proof. By Hölder’s inequality, we have

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}} \, dx \, dy
\]

\[
= \int_0^\infty \int_0^\infty \left[\frac{f(x)}{(x + y + \max\{x, y\})^{1/2}} \left(\frac{x}{y} \right)^{1/4} \right] \times \left[\frac{g(y)}{(x + y + \max\{x, y\})^{1/2}} \left(\frac{y}{x} \right)^{1/4} \right] \, dx \, dy
\]

\[
\leq \int_0^\infty \int_0^\infty \frac{f^2(x)}{x + y + \max\{x, y\}} \left(\frac{x}{y} \right)^{1/2} \, dx \, dy
\]

\[
\times \int_0^\infty \int_0^\infty \frac{g^2(y)}{x + y + \max\{x, y\}} \left(\frac{y}{x} \right)^{1/2} \, dx \, dy.
\]

(2.6)

Define the weight function \(\varpi(u) \) as

\[
\varpi(u) := \int_0^\infty \frac{1}{u + v + \max\{u, v\}} \left(\frac{u}{v} \right)^{1/2} \, dv,
\]

(2.7)

then the above inequality yields

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}} \, dx \, dy
\]

\[
\leq \left[\int_0^\infty \varpi(x) f^2(x) \, dx \right]^{1/2} \left[\int_0^\infty \varpi(y) g^2(y) \, dy \right]^{1/2}.
\]

(2.8)

For fixed \(u \), let \(v = ut \), we have

\[
\varpi(u) := \int_0^\infty \frac{1}{1 + t + \max\{1, t\}} \left(\frac{1}{t} \right)^{1/2} \, dt
\]

\[
= \int_0^1 \frac{1}{2t + \left(\frac{1}{t} \right)} \left(\frac{1}{t} \right)^{1/2} \, dt + \int_1^\infty \frac{1}{1 + 2t} \left(\frac{1}{t} \right)^{1/2} \, dt
\]

\[
= \sqrt{2}(\pi - 2\arctan \sqrt{2}).
\]

(2.9)

Thus

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}} \, dx \, dy
\]

\[
\leq \sqrt{2}(\pi - 2\arctan \sqrt{2}) \left\{ \int_0^\infty f^2(x) \, dx \right\}^{1/2} \left\{ \int_0^\infty g^2(x) \, dx \right\}^{1/2}.
\]

(2.10)
4 A new Hilbert-type integral inequality

If (2.10) takes the form of the equality, then there exist constants \(a\) and \(b\), such that they are not all zero and

\[
a \frac{f^2(x)}{x + y + \max\{x, y\}} \left(\frac{x}{y}\right)^{1/2} = b \frac{g^2(y)}{x + y + \max\{x, y\}} \left(\frac{y}{x}\right)^{1/2}
\]

a.e. on \((0, \infty) \times (0, \infty)\).

Then we have

\[
ax^2(x) = byg^2(y) \quad \text{a.e. on } (0, \infty) \times (0, \infty).
\]

Hence we have

\[
ax^2(x) = byg^2(y) = \text{constant} = d \quad \text{a.e. on } (0, \infty) \times (0, \infty).
\]

Without losing the generality, suppose \(a \neq 0\), then we obtain \(f^2(x) = d/ax\), a.e. on \((0, \infty)\), which contradicts the fact that \(0 < \int_0^\infty f^2(x)dx < \infty\). Hence (2.10) takes the form of strict inequality; we get (2.5).

For \(0 < \varepsilon < 1\), set \(f_\varepsilon(x) = x^{(-\varepsilon-1)/2}\), for \(x \in [1, \infty)\); \(f_\varepsilon(x) = 0\), for \(x \in (0, 1)\). \(g_\varepsilon(y) = y^{(-\varepsilon-1)/2}\), for \(y \in [1, \infty)\); \(g_\varepsilon(y) = 0\), for \(y \in (0, 1)\). Assume that the constant factor \(c = \sqrt{2(\pi - 2 \arctan \sqrt{2})}\) in (2.2) is not the best possible, then there exists a positive number \(K\) with \(K < c\), such that (2.5) is valid by changing \(c\) to \(K\). We have

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}} dxdy < K \left\{ \int_0^\infty f^2(x)dx \right\}^{1/2} \left\{ \int_0^\infty g^2(y)dx \right\}^{1/2} = \frac{K}{\varepsilon},
\]

since

\[
\int_0^\infty \frac{1}{1 + t + \max\{1, t\}} t^{(-1-\varepsilon)/2} dt = \sqrt{2(\pi - 2 \arctan \sqrt{2})} + o(1) \quad (\varepsilon \to 0^+).
\]

Setting \(y = tx\), by (2.1), we find

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x, y\}} dxdy
\]

\[
= \int_1^\infty \int_1^\infty \frac{x^{(-\varepsilon-1)/2} y^{(-\varepsilon-1)/2}}{x + y + \max\{x, y\}} dxdy
\]

\[
= \int_1^\infty \int_1^\infty \frac{x^{(-\varepsilon-1)/2} (tx)^{(-\varepsilon-1)/2}}{1 + t + \max\{1, t\}} dxdt
\]

\[
= \int_1^\infty x^{(-\varepsilon-1)} \left(\int_0^\infty \frac{1}{1 + t + \max\{1, t\}} t^{(-1-\varepsilon)/2} dt - \int_0^{x^{-1}} 1 \frac{1}{1 + t + \max\{1, t\}} t^{(-1-\varepsilon)/2} dt \right) dx
\]

\[
= \frac{1}{\varepsilon} \left[\sqrt{2(\pi - 2 \arctan \sqrt{2})} + o(1) \right].
\]
Since, for $\varepsilon > 0$ small enough, we have
\[\sqrt{2}(\pi - 2 \arctan \sqrt{2}) + o(1) < K, \] (2.17)
thus we get $\sqrt{2}(\pi - 2 \arctan \sqrt{2}) \leq K$, then $c \leq K$, which contradicts the hypothesis. Hence the constant factor c in (2.5) is the best possible. \(\square\)

Theorem 2.3. Suppose $f \geq 0$ and $0 < \int_0^\infty f^2(x) \, dx < \infty$. Then
\[\int_0^\infty \left[\int_0^\infty \frac{f(x)}{x + y + \max\{x,y\}} \, dx \right]^2 \, dy < c^2 \int_0^\infty f^2(x) \, dx, \] (2.18)
where the constant factor $c^2 = 2(\pi - 2 \arctan \sqrt{2})^2 = 3.0305\ldots$ is the best possible. Inequality (2.18) is equivalent to (2.5).

Proof. Setting $g(y)$ as
\[\int_0^\infty \frac{f(x)}{x + y + \max\{x,y\}} \, dx, \quad y \in (0,\infty), \] (2.19)
then by (2.5), we find
\[
0 < \int_0^\infty g^2(y) \, dy = \int_0^\infty \left[\int_0^\infty \frac{f(x)}{x + y + \max\{x,y\}} \, dx \right]^2 \, dy \\
= \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x,y\}} \, dx \, dy \\
\leq \sqrt{2}(\pi - 2 \arctan \sqrt{2}) \left\{ \int_0^\infty f^2(x) \, dx \right\}^{1/2} \left\{ \int_0^\infty g^2(y) \, dy \right\}^{1/2}. \] (2.20)
Hence we obtain
\[0 < \int_0^\infty g^2(y) \, dy \leq 2(\pi - 2 \arctan \sqrt{2})^2 \int_0^\infty f^2(x) \, dx < \infty. \] (2.21)
By (2.5), both (2.20) and (2.21) take the form of strict inequality, so we have (2.18).

On the other hand, suppose that (2.18) is valid. By Hölder’s inequality, we find
\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x + y + \max\{x,y\}} \, dx \, dy = \int_0^\infty \left[\int_0^\infty \frac{f(x)}{x + y + \max\{x,y\}} \, dx \right] g(y) \, dy \\
\leq \left\{ \int_0^\infty \left[\int_0^\infty \frac{f(x)}{x + y + \max\{x,y\}} \, dx \right]^2 \, dy \right\}^{1/2} \left\{ \int_0^\infty g^2(y) \, dy \right\}^{1/2}. \] (2.22)
Then by (2.18), we have (2.5). Thus (2.5) and (2.18) are equivalent.
6 A new Hilbert-type integral inequality

If the constant \(c^2 = 2(\pi - 2 \arctan \sqrt{2})^2 \) in (2.18) is not the best possible, by (2.22), we may get a contradiction that the constant factor \(c \) in (2.5) is not the best possible. Thus we complete the proof of the theorem.

Acknowledgment

The authors would like to thank the anonymous referees for their suggestions and corrections.

References