A semigroup whose bi-ideals and quasi-ideals coincide is called a \mathbb{B}_2-semigroup. The full transformation semigroup on a set X and the semigroup of all linear transformations of a vector space V over a field F into itself are denoted, respectively, by $T(X)$ and $L_F(V)$. It is known that every regular semigroup is a \mathbb{B}_2-semigroup. Then both $T(X)$ and $L_F(V)$ are \mathbb{B}_2-semigroups. In 1966, Magill introduced and studied the subsemigroup $T(X, Y)$ of $T(X)$, where $\emptyset \neq Y \subseteq X$ and $T(X, Y) = \{ \alpha \in T(X) \mid Y \alpha \subseteq Y \}$. If W is a subspace of V, the subsemigroup $L_F(V, W)$ of $L_F(V)$ will be defined analogously. In this paper, it is shown that $T(X, Y)$ is a \mathbb{B}_2-semigroup if and only if $Y = X$, $|Y| = 1$, or $|X| \leq 3$, and $L_F(V, W)$ is a \mathbb{B}_2-semigroup if and only if (i) $W = V$, (ii) $W = \{0\}$, or (iii) $F = \mathbb{Z}_2$, $\dim_F V = 2$, and $\dim_F W = 1$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The cardinality of a set A is denoted by $|A|$. The image of a map α at x in the domain of α will be written by $x\alpha$.

An element a of a semigroup S is said to be regular if $a = aba$ for some $b \in S$, and S is called a regular semigroup if every element of S is regular. The set of all regular elements of S is denoted by $\text{Reg}(S)$.

The full transformation semigroup on a nonempty set X is denoted by $T(X)$, that is, $T(X)$ is the semigroup of all mappings $\alpha : X \to X$ under composition. The semigroup $T(X)$ is known to be regular [4, page 4]. Magill [9] introduced and studied the subsemigroup

$$T(X, Y) = \{ \alpha \in T(X) \mid Y \alpha \subseteq Y \}$$

(1.1)

of $T(X)$, where $\emptyset \neq Y \subseteq X$. Note that 1_X, the identity map on X, belongs to $T(X, Y)$ and $T(X, Y)$ contains $T(X, Y)$ as a subsemigroup, where $T(X, Y) = \{ \alpha \in T(X) \mid \text{ran} \alpha \subseteq Y \}$ and $\text{ran} \alpha$ denotes the range of α. The semigroup $T(X, Y)$ was introduced and studied by Symons [13].
2 On transformation semigroups which are \(\mathcal{B}_2 \)-semigroups

For a vector space \(V \) over a field \(F \), let \(L_F(V) \) be the semigroup of all linear transformations \(\alpha : V \to V \) under composition. It is known that \(L_F(V) \) is a regular semigroup [5, page 63]. For a subspace \(W \) of \(V \), we define the subsemigroup \(\mathcal{L}_F(V, W) \) of \(L_F(V) \) analogously, that is,

\[
\mathcal{L}_F(V, W) = \{ \alpha \in L_F(V) \mid W \alpha \subseteq W \}. \tag{1.2}
\]

Clearly, \(1_V \in \mathcal{L}_F(V, W) \) and 0, the zero map on \(V \), also belongs to \(\mathcal{L}_F(V, W) \). In addition, \(\mathcal{L}_F(V, W) \) contains \(L_F(V, W) = \{ \alpha \in L_F(V) \mid \text{ran} \alpha \subseteq W \} \) as a subsemigroup.

A subsemigroup \(Q \) of a semigroup \(S \) is called a quasi-ideal of \(S \) if \(SQ \cap QS \subseteq Q \), and a bi-ideal of \(S \) is a subsemigroup \(B \) of \(S \) such that \(BSB \subseteq B \). The notions of quasi-ideal and bi-ideal for semigroups were introduced by Steinfeld [11] and Good and Hughes [3], respectively. Both quasi-ideals and bi-ideals are generalizations of one-sided ideals, and bi-ideals also generalize quasi-ideals. For a nonempty subset \(A \) of \(S \), let \((A)_q \) and \((A)_b \) be the quasi-ideal and the bi-ideal of \(S \) generated by \(A \), respectively, that is, \((A)_q [(A)_b] \) is the intersection of all quasi-ideals (bi-ideals) of \(S \) containing \(A \) [12, pages 10, 12]. Observe that \((A)_b \subseteq (A)_q \).

Proposition 1.1 [2, pages 84, 85]. For a nonempty subset \(A \) of a semigroup \(S \),

(i) \((A)_q = S^1A \cap AS^1 \),

(ii) \((A)_b = AS^1A \cup A \).

Kapp [6] used \(\mathcal{B}_2 \) to denote the class of all semigroups whose bi-ideals and quasi-ideals coincide and Mielke [10] called a semigroup in \(\mathcal{B}_2 \) a \(\mathcal{B}_2 \)-semigroup. Important \(\mathcal{B}_2 \)-semigroups are the following ones.

Proposition 1.2 [8]. Every regular semigroup is a \(\mathcal{B}_2 \)-semigroup.

Proposition 1.3 [6]. Every left (right) simple semigroup or every left (right) 0-simple semigroup is a \(\mathcal{B}_2 \)-semigroup.

Recall that a semigroup \(S \) is left (right) simple if \(S \) has no proper left (right) ideal, and a semigroup \(S \) with 0 is called left (right) 0-simple if \(S^2 \neq \{0\} \) and \(S \) has no proper nonzero left (right) ideal. Kemprasit showed in [7] that if \(X \) is an infinite set, then the subsemigroup \(\{ \alpha \in T(X) \mid X \setminus \text{ran} \alpha \) is infinite \(\} \) of \(T(X) \) is a \(\mathcal{B}_2 \)-semigroup but it is neither regular nor left (right) simple. In fact, \(\mathcal{B}_2 \)-semigroups have been characterized by Calais [1] as follows.

Proposition 1.4 [1]. A semigroup \(S \) is a \(\mathcal{B}_2 \)-semigroup if and only if \((x,y)_b = (x,y)_q \) for all \(x,y \in S \).

Every bi-ideal of a regular semigroup is a \(\mathcal{B}_2 \)-semigroup. The proof is rather simple and is as follows: let \(T \) be a bi-ideal of a regular semigroup \(S \) and \(B \) a bi-ideal of \(T \). Then \(TST \subseteq T \) and \(BTB \subseteq B \). Let \(x \in TB \cap BT \). Since \(S \) is regular, \(x = xxs \) for some \(s \in S \) which implies that \(x = xxs \in BTsTB \subseteq BTSTB \subseteq BTB \subseteq B \). Thus \(TB \cap BT \subseteq B \). Hence \(B \) is a quasi-ideal of \(T \), as desired. Since \(T(X,Y) \) and \(L_F(V, W) \) are left ideals of \(T(X) \) and \(L_F(V) \), respectively, it follows that \(T(X,Y) \) and \(L_F(V, W) \) are always \(\mathcal{B}_2 \)-semigroups. However, the semigroups \(T(X,Y) \) and \(L_F(V, W) \) need not be \(\mathcal{B}_2 \)-semigroups. Notice
that if \(X \) is infinite, then the semigroup \(\{ \alpha \in T(X) \mid X \setminus \text{ran} \alpha \text{ is infinite} \} \) is a left ideal of \(T(X) \). Similarly, if \(V \) has infinite dimension over \(F \), then the semigroup \(\{ \alpha \in L_F(V) \mid \dim_F (V/\text{ran} \alpha) \text{ is infinite} \} \) is a left ideal of \(L_F(V) \).

In Section 2, we give a necessary and sufficient condition for \(\overline{T}(X,Y) \) to be a \(\mathcal{B}\mathcal{Q} \)-semigroup in terms of \(|X| \) and \(|Y| \). In Section 3, a necessary and sufficient condition for \(L_F(V,W) \) to be a \(\mathcal{B}\mathcal{Q} \)-semigroup is given in terms of \(|F|, \dim_F V, \) and \(\dim_F W \).

In the remainder, let \(X \) be a nonempty set, \(\emptyset \neq Y \subseteq X \), \(V \) a vector space over a field \(F \), and \(W \) a subspace of \(V \).

2. The semigroup \(\overline{T}(X,Y) \)

We begin this section by characterizing regular elements of the semigroup \(\overline{T}(X,Y) \). Then it is shown that \(\overline{T}(X,Y) \) is a regular semigroup if and only if \(Y = X \) or \(Y \) contains only one element.

Proposition 2.1. The following statements hold for the semigroup \(\overline{T}(X,Y) \).

(i) For \(\alpha \in \overline{T}(X,Y) \), \(\alpha \in \text{Reg}(\overline{T}(X,Y)) \) if and only if \(\text{ran} \alpha \cap Y = Y\alpha \).

(ii) The semigroup \(\overline{T}(X,Y) \) is regular if and only if either \(Y = X \) or \(|Y| = 1 \).

Proof. (i) Since \(Y\alpha \subseteq Y \), we have \(Y\alpha \subseteq \text{ran} \alpha \cap Y \). Assume that \(\alpha = a\beta\alpha \) for some \(\beta \in \overline{T}(X,Y) \). If \(x \in \text{ran} \alpha \cap Y \), then \(x \in Y \) and \(x = \alpha x \) for some \(a \in X \) which imply that \(x = \alpha x = a\beta\alpha = x\beta\alpha = Y\beta\alpha \subseteq Y\alpha \). Hence we have \(\text{ran} \alpha \cap Y = Y\alpha \).

Conversely, assume that \(\text{ran} \alpha \cap Y = Y\alpha \). Then for each \(x \in \text{ran} \alpha \cap Y \), we have \(x\alpha^{-1} \cap Y \neq \emptyset \). We choose an element \(x' \in x\alpha^{-1} \cap Y \) for each \(x \in \text{ran} \alpha \cap Y \). Also, for \(x \in \text{ran} \alpha \cup Y \), choose an element \(x' \in x\alpha^{-1} \). Then \(x'\alpha = x \) for all \(x \in \text{ran} \alpha \cap Y \) and \(x\alpha = x \) for all \(x \in \text{ran} \alpha \cup Y \). Let \(a \) be a fixed element in \(Y \) and define \(\beta : X \to X \) by a bracket notation as follows:

\[
\beta = \begin{bmatrix} x & t & X \setminus \text{ran} \alpha \\ x' & \bar{t} & a \end{bmatrix} \quad \text{if} \quad x \in \text{ran} \alpha \cap Y,
\]

(2.1)

Then \(Y\beta \subseteq \{ x' \mid x \in \text{ran} \alpha \cap Y \} \cup \{ a \} \subseteq Y \), and for \(x \in X \),

\[
x\alpha \beta \alpha = (x\alpha)\beta \alpha = \begin{cases} (x\alpha)'\alpha = x\alpha & \text{if } x\alpha \in \text{ran} \alpha \cap Y, \\ \bar{x}\alpha \bar{\alpha} = x\alpha & \text{if } x\alpha \in \text{ran} \alpha \cup Y. \end{cases}
\]

(2.2)

Hence \(\beta \in \overline{T}(X,Y) \) and \(\alpha = a\beta\alpha \).

(ii) Suppose that \(Y \subseteq X \) and \(|Y| > 1 \). Let \(a \) and \(b \) be two distinct elements of \(Y \). Define \(\alpha : X \to X \) by

\[
\alpha = \begin{bmatrix} Y & X \setminus Y \\ a & b \end{bmatrix}.
\]

(2.3)

Then \(\text{ran} \alpha = \{ a,b \} \subseteq Y \), so \(\alpha \in \overline{T}(X,Y) \) and \(\text{ran} \alpha \cap Y = \{ a,b \} \neq \{ a \} = Y\alpha \). It follows from (i) that \(\alpha \notin \text{Reg}(\overline{T}(X,Y)) \). Hence \(\overline{T}(X,Y) \) is not a regular semigroup.
4 On transformation semigroups which are $\mathcal{R}\mathcal{O}$-semigroups

If $Y = X$, then $\overline{T}(X, Y) = T(X)$ which is regular. Next, assume that $Y = \{c\}$. In this case, $\overline{T}(X, Y)$ is isomorphic to the semigroup $P(X \setminus Y)$ consisting of all partial transformations of $X \setminus Y$, via the map $P(X \setminus Y) \rightarrow \overline{T}(X, Y)$, $\alpha \rightarrow \overline{\alpha}$, where

$$\overline{\alpha} = \begin{bmatrix} x & X \setminus \text{dom } \alpha \\ x\alpha & c \end{bmatrix}_{x \in \text{dom } \alpha}. \quad (2.4)$$

It is well known that $P(X \setminus Y)$ is regular [4, page 4]. Hence $\overline{T}(X, Y)$ is a regular semigroup, as required. \hfill \square

To characterize when $\overline{T}(X, Y)$ is a $\mathcal{R}\mathcal{O}$-semigroup, Propositions 1.1, 1.2, 1.4, and 2.1 and the following three lemmas are needed.

Lemma 2.2. Let S be a semigroup. If $\emptyset \neq A \subseteq \text{Reg}(S)$, then $(A)_b = (A)_q$.

Proof. We know that $(A)_b \subseteq (A)_q$. Let $x \in (A)_q$. By Proposition 1.1(i), $x = sa = bt$ for some $s, t \in S^1$ and $a, b \in A$. Since $a \in \text{Reg}(S)$, $a = a'a$ for some $a' \in S$. Then

$$x = sa = sa'a = bta' a \in ASA \subseteq (A)_b \quad (2.5)$$

by Proposition 1.1(ii). Hence we have $(A)_b = (A)_q$, as desired. \hfill \square

Lemma 2.3. Let S be a semigroup, let $\emptyset \neq A \subseteq S$, and let $B \subseteq \text{Reg}(S)$. If $(A)_b = (A)_q$, then $(A \cup B)_b = (A \cup B)_q$.

Proof. We first show that $S^1 A \cap BS^1$ and $S^1 B \cap AS^1$ are subsets of $(A \cup B)_b$. Let $x \in S^1 A \cap BS^1$. Then $x = sa = bt$ for some $s, t \in S^1$, $a \in A$, and $b \in B$. Since $b \in \text{Reg}(S)$, $b = bb'b$ for some $b' \in S$. It follows that

$$x = bt = bb'bt = bb'sa \in BSA \subseteq (A \cup B)S(A \cup B) \subseteq (A \cup B)_b. \quad (2.6)$$

This shows that $S^1 A \cap BS^1 \subseteq (A \cup B)_b$. It can be shown similarly that $S^1 B \cap AS^1 \subseteq (A \cup B)_b$. Consequently,

$$(A \cup B)_q = S^1 (A \cup B) \cap (A \cup B)S^1$$

$$= (S^1 A \cup S^1 B) \cap (AS^1 \cup BS^1)$$

$$= (S^1 A \cap AS^1) \cup (S^1 A \cap BS^1) \cup (S^1 B \cap AS^1) \cup (S^1 B \cap BS^1)$$

$$= (A)_q \cup (S^1 A \cap BS^1) \cup (S^1 B \cap AS^1) \cup (B)_q \quad (2.7)$$

$$= (A)_b \cup (S^1 A \cap BS^1) \cup (S^1 B \cap AS^1) \cup (B)_b,$$

from the assumption and Lemma 2.2,

$$\subseteq (A)_b \cup (A \cup B)_b \cup (A \cup B)_b \cup (B)_b = (A \cup B)_b.$$

But $(A \cup B)_b \subseteq (A \cup B)_q$, so $(A \cup B)_b = (A \cup B)_q$. \hfill \square
Lemma 2.4. If \(|X| = 3\) and \(|Y| = 2\), then for all \(\alpha, \beta \in \overline{T}(X, Y)\), \((\alpha, \beta)_b = (\alpha, \beta)_q\) in \(\overline{T}(X, Y)\).

Proof. For convenience, let \(X_a\) denote the constant map whose domain and range are \(X\) and \(\{a\}\), respectively.

Assume that \(X = \{a, b, c\}\) and \(Y = \{a, b\}\). Clearly,

\[
\overline{T}(X, Y) = \left\{ 1_X, X_a, X_b, \begin{bmatrix} a & b & c \\ a & a & b \\ a & a & c \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & a & b \\ b & b & c \end{bmatrix}, \begin{bmatrix} a & b & c \\ a & a & c \\ b & a & a \end{bmatrix}, \begin{bmatrix} a & b & c \\ a & b & a \\ b & a & c \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & b & c \\ b & a & c \end{bmatrix} \right\}.
\]

(2.8)

By Proposition 2.1(i), \(\overline{T}(X, Y) \setminus \text{Reg}(\overline{T}(X, Y)) = \{[a\ b\ c], [b\ b\ a]\}\). Let \(\lambda = [a\ b\ c]\) and \(\eta = [a\ b\ c]\). Note that \(\lambda^2 = X_a = \eta\lambda\) and \(\eta^2 = X_b = \lambda\eta\). To show that \((\alpha, \beta)_b = (\alpha, \beta)_q\) for all \(\alpha, \beta \in \overline{T}(X, Y)\), by Lemma 2.3, it suffices to show that \((\lambda)_b = (\lambda)_q\), \((\eta)_b = (\eta)_q\), and \((\lambda, \eta)_b = (\lambda, \eta)_q\). By direct multiplication, we have

\[
\overline{T}(X, Y)\lambda = \{\lambda, X_a\}, \quad \lambda\overline{T}(X, Y) = \{\lambda, X_a, X_b, \eta\}, \quad \lambda\overline{T}(X, Y)\lambda = \{X_a\},
\]

(2.9)

\[
\overline{T}(X, Y)\eta = \{\eta, X_b\}, \quad \eta\overline{T}(X, Y) = \{\eta, X_a, X_b, \lambda\}, \quad \eta\overline{T}(X, Y)\eta = \{X_b\}, \quad \lambda\overline{T}(X, Y)\eta = \{X_b\}, \quad \eta\overline{T}(X, Y)\lambda = \{X_a\}.
\]

Hence

\[
(\lambda)_b = \lambda\overline{T}(X, Y)\lambda \cup \{\lambda\} = \{X_a, \lambda\} = \overline{T}(X, Y)\lambda \cap \lambda\overline{T}(X, Y) = (\lambda)_q,
\]

(2.10)

\[
(\eta)_b = \eta\overline{T}(X, Y)\eta \cup \{\eta\} = \{X_b, \eta\} = \overline{T}(X, Y)\eta \cap \eta\overline{T}(X, Y) = (\eta)_q,
\]

\[
(\lambda, \eta)_b = \{\lambda, \eta\} \overline{T}(X, Y)\{\lambda, \eta\} \cup \{\lambda, \eta\}
\]

\[
= \lambda\overline{T}(X, Y)\lambda \cup \lambda\overline{T}(X, Y)\eta \cup \eta\overline{T}(X, Y)\lambda \cup \eta\overline{T}(X, Y)\eta \cup \{\lambda, \eta\}
\]

\[
= \{X_a, X_b, \lambda, \eta\},
\]

\[
(\lambda, \eta)_q = \overline{T}(X, Y)\{\lambda, \eta\} \cap \{\lambda, \eta\} \overline{T}(X, Y)
\]

\[
= (\overline{T}(X, Y)\lambda \cup \overline{T}(X, Y)\eta) \cap (\lambda\overline{T}(X, Y) \cup \eta\overline{T}(X, Y))
\]

\[
= \{\lambda, X_a, \eta, X_b\} = (\lambda, \eta)_b.
\]

\[\square\]

Theorem 2.5. The semigroup \(\overline{T}(X, Y)\) is a \(\mathcal{B}\mathcal{D}\)-semigroup if and only if one of the following statements holds.

(i) \(Y = X\).

(ii) \(|Y| = 1\).

(iii) \(|X| \leq 3\).
On transformation semigroups which are $\mathcal{B}\mathcal{D}$-semigroups

Proof. Assume that (i), (ii), and (iii) are false. Then $X \setminus Y \neq \emptyset$, $|Y| > 1$, and $|X| > 3$.

Case 1 ($|Y| = 2$). Let $Y = \{a, b\}$. Since $|X| > 3$, $|X \setminus Y| > 1$. Let $c \in X \setminus Y$. Then $X \setminus \{a, b, c\} \neq \emptyset$. Define $\alpha, \beta, y \in T(X, Y)$ by

$$
\alpha = \begin{bmatrix}
a & b & c \\
b & b & a \\
c & a & c
\end{bmatrix}
X \setminus \{a, b, c\},
\beta = \begin{bmatrix}
c & X \\
a & X
\end{bmatrix}_{x \in X \setminus \{c\}},
y = \begin{bmatrix}
a & b & X \setminus \{a, b\} \\
b & b & c
\end{bmatrix}.
$$

(2.11)

Then $a\alpha\beta = b = a\alpha a$, $b\alpha\beta = b = b\alpha a$, $c\alpha\beta = c = c\alpha a$, and $(X \setminus \{a, b, c\})\alpha\beta = \{a\} = (X \setminus \{a, b, c\})\gamma\alpha \neq (X \setminus \{a, b, c\})\alpha$, so $\alpha \neq \alpha\beta = \gamma\alpha \in (\alpha)q$ by Proposition 1.1(i). If $\alpha\beta \in (\alpha)b$, then by Proposition 1.1(ii), $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in T(X, Y)$. Hence we have $a = c\alpha\beta = c\alpha\eta\alpha = (\alpha\eta)\alpha$. This implies that $a\eta = c$ which is contrary to $a \in Y$ and $c \in X \setminus Y$. Thus $(\alpha)b \neq (\alpha)q$, so by Proposition 1.4, $T(X, Y)$ is not a $\mathcal{B}\mathcal{D}$-semigroup.

Case 2 ($|Y| > 2$). Let a, b, c be distinct elements of Y. Let $\alpha, \beta, y \in T(X, Y)$ be defined by

$$
\alpha = \begin{bmatrix}
a & Y \setminus \{a\} \\
b & a \\
c & a
\end{bmatrix}
X \setminus \{a, b, c\},
\beta = \begin{bmatrix}
a & b & x \\
b & a & x
\end{bmatrix}_{x \in X \setminus \{a, b\}},
y = \begin{bmatrix}
a & Y \setminus \{a\} & x \\
c & a & x
\end{bmatrix}_{x \in X \setminus Y}.
$$

(2.12)

Then $a\alpha\beta = a = a\alpha a$, $(Y \setminus \{a\})\alpha\beta = \{b\} = (Y \setminus \{a\})\gamma\alpha$, and $(X \setminus Y)\alpha\beta = \{c\} = (X \setminus Y)\gamma\alpha$. Thus $\alpha \neq \alpha\beta = \gamma\alpha \in (\alpha)q$. If $\alpha\beta \in (\alpha)b$, then $\alpha\beta = \alpha\eta\alpha$ for some $\eta \in T(X, Y)$. Therefore we have for every $x \in X \setminus Y$, $c = x\alpha\beta = x\alpha\eta\alpha = (c\eta)\alpha$ which implies that $c\eta \in X \setminus Y$. This is a contradiction since $c \in Y$. Hence $(\alpha)b \neq (\alpha)q$, and so by Proposition 1.4, $T(X, Y)$ is not a $\mathcal{B}\mathcal{D}$-semigroup.

If $Y = X$ or $|Y| = 1$, then $T(X, Y)$ is regular by Proposition 2.1(ii) which implies by Proposition 1.2 that $T(X, Y)$ is a $\mathcal{B}\mathcal{D}$-semigroup. If $|X| = 3$ and $|Y| = 2$, then by Lemma 2.4 and Proposition 1.4, $T(X, Y)$ is a $\mathcal{B}\mathcal{D}$-semigroup.

Hence the theorem is completely proved.

Two direct consequences of Propositions 1.2, 2.1(ii), Theorem 2.5, and the proof of Lemma 2.4 are as follows.

Corollary 2.6. If $|X| \neq 3$, then the following statements are equivalent.

(i) $T(X, Y)$ is a $\mathcal{B}\mathcal{D}$-semigroup.

(ii) $Y = X$ or $|Y| = 1$.

(iii) $T(X, Y)$ is a regular semigroup.

Corollary 2.7. The semigroup $T(X, Y)$ is a nonregular $\mathcal{B}\mathcal{D}$-semigroup if and only if $|X| = 3$ and $|Y| = 2$. Hence for each set X with $|X| = 3$, there are exactly 3 semigroups $T(X, Y)$ which are nonregular $\mathcal{B}\mathcal{D}$-semigroups, and each of such $T(X, Y)$ contains 12 elements.

Remark 2.8. We have mentioned that $T(X, Y)$ is a left ideal of $T(X)$. But for $\alpha \in T(X, Y)$ and $\beta \in T(X, Y)$, $X\alpha\beta \subseteq Y\beta \subseteq Y$, so $T(X, Y)$ is an ideal of $T(X, Y)$. We have $1_X \in T(X, Y) \setminus T(X, Y)$ if $Y \neq X$. Hence if $Y \neq X$, then $T(X, Y)$ is neither left nor right simple.
Therefore we deduce from Corollary 2.7 that if $|X| = 3$ and $|Y| = 2$, then $\overline{T}(X, Y)$ is an example of $\mathcal{B}_2\mathcal{D}$-semigroup which is neither regular nor left (right) simple (see Propositions 1.2 and 1.3).

3. The semigroup $\overline{L}_F(V, W)$

In this section, we give a necessary and sufficient condition for $\overline{L}_F(V, W)$ to be a $\mathcal{B}_2\mathcal{D}$-semigroup. We first provide the conditions of the regularity of elements of $\overline{L}_F(V, W)$ and of the semigroup $\overline{L}_F(V, W)$. The following facts about vector spaces and linear transformations will be used. If U_1 and U_2 are subspaces of V, B_1 is a basis of the subspace $U_1 \cap U_2$, $B_2 \subseteq U_1$ and $B_3 \subseteq U_2$ are such that $B_1 \cup B_2$ and $B_1 \cup B_3$ are bases of U_1 and U_2, respectively, then $B_1 \cup B_2 \cup B_3$ is a basis of the subspace $U_1 + U_2$ of V. If $\alpha \in L_F(V)$, B_1 is a basis of $\ker \alpha$, B_2 is a basis of $\mathrm{ran} \alpha$, and choose an element $u' \in u\alpha^{-1}$ for every $u \in B_2$, then $B_1 \cup \{u' \mid u \in B_2\}$ is a basis of V.

Proposition 3.1. The following statements hold for the semigroup $\overline{L}_F(V, W)$.

(i) For $\alpha \in \overline{L}_F(V, W)$, $\alpha \in \mathrm{Reg}(\overline{L}_F(V, W))$ if and only if $\mathrm{ran} \alpha \cap W = W \alpha$.

(ii) The semigroup $\overline{L}_F(V, W)$ is regular if and only if either $W = V$ or $W = \{0\}$.

Proof. (i) The proof that $\alpha \in \mathrm{Reg}(\overline{L}_F(V, W))$ implies $\mathrm{ran} \alpha \cap W = W \alpha$ is analogous to the proof of the “only if” part of Proposition 2.1(i).

Conversely, assume that $\mathrm{ran} \alpha \cap W = W \alpha$. Let B_1 be a basis of $\mathrm{ran} \alpha \cap W$, $B_2 \subseteq \mathrm{ran} \alpha \cap B_1$, and $B_3 \subseteq W \setminus B_1$ such that $B_1 \cup B_2$ and $B_1 \cup B_3$ are bases of $\mathrm{ran} \alpha$ and W, respectively. Then $B_1 \cup B_2 \cup B_3$ is a basis of $\mathrm{ran} \alpha + W$. Let $B_4 \subseteq V \setminus (B_1 \cup B_2 \cup B_3)$ be such that $B_1 \cup B_2 \cup B_3 \cup B_4$ is a basis of V. Since $B_1 \subseteq \mathrm{ran} \alpha \cap W = W \alpha$, we have $u\alpha^{-1} \cap W \neq \emptyset$ for every $u \in B_1$. For each $u \in B_1$, choose an element $u' \in u\alpha^{-1} \cap W$. Since $B_2 \subseteq \mathrm{ran} \alpha$, for each $v \in B_2$, $v\alpha^{-1} \neq \emptyset$, so choose an element $\overline{v} \in v\alpha^{-1}$. Define $\beta \in L_F(V)$ on the basis $B_1 \cup B_2 \cup B_3 \cup B_4$ by

$$
\beta = \begin{bmatrix}
u & B_3 \cup B_4 \\
u' & 0 \end{bmatrix}_{u \in B_1, \nu \in B_2}.
$$

(3.1)

It follows that $W \beta = \langle B_1 \cup B_3 \rangle \beta = \langle \{u' \mid u \in B_1\} \rangle \subseteq W$, so $\beta \in \overline{L}_F(V, W)$. Let B_0 be a basis of $\ker \alpha$. Then $B_0 \cup \{u' \mid u \in B_1\} \cup \{\overline{v} \mid v \in B_2\}$ is a basis of V. Since

$$
B_0\alpha\beta\alpha = \{0\} = B_0\alpha, \quad u'\alpha\beta\alpha = u\beta\alpha = u'\alpha \quad \forall u \in B_1,
$$

$$
\overline{v}\alpha\beta\alpha = v\beta\alpha = \overline{v}\alpha \quad \forall v \in B_2,
$$

(3.2)

we have $\alpha = \alpha\beta\alpha$, so α is a regular element of $\overline{L}_F(V, W)$.

(ii) Assume that $\{0\} \neq W \subseteq V$. Let B_1 be a basis of W and B a basis of V containing B_1. Then $B_1 \neq \emptyset \neq B \setminus B_1$. Let $w \in B_1$ and $u \in B \setminus B_1$. Define $\alpha \in L_F(V)$ by

$$
\alpha = \begin{bmatrix}u & B \setminus \{u\} \\
w & 0 \end{bmatrix}.
$$

(3.3)
Then $W \alpha = (B_1) \alpha \subseteq (B \setminus \{u\}) \alpha = \{0\}$, so $\alpha \in \overline{L}_F(V, W)$. Since $\text{ran} \alpha \cap W = \langle w \rangle \neq \{0\} = W \alpha$, by (i), we deduce that α is not a regular element of $\overline{L}_F(V, W)$. Hence $\overline{L}_F(V, W)$ is not a regular semigroup.

Since $\overline{L}_F(V, V) = L_F(V) = L_F(V, \{0\})$, the converse holds. \qed

To prove the main theorem, the following lemma is also needed. Lemma 2.3 and Proposition 3.1(i) are useful to obtain this result.

Lemma 3.2. If $F = \mathbb{Z}_2$, $\dim_F V = 2$, and $\dim_F W = 1$, then for all $\alpha, \beta \in \overline{L}_F(V, W)$, $(\alpha, \beta)_b = (\alpha, \beta)_q$ in $\overline{L}_F(V, W)$.

Proof. Let $\{w\}$ be a basis of W and $\{w, u\}$ a basis of V. Since $F = \mathbb{Z}_2$, it follows that $W = \{0, w\}$ and $V = \{0, w, u, u + w\}$. Clearly, both $\{u, u + w\}$ and $\{w, u + w\}$ are also bases of V. Thus $\langle w \rangle \cap \langle u \rangle = \langle w \rangle \cap \langle u + w \rangle = \langle u \rangle \cap \langle u + w \rangle = \{0\}$. All elements of $\overline{L}_F(V, W)$ defined on the basis $\{w, u\}$ of V can be given as follows:

$$
\overline{L}_F(V, W) = \left\{ 0, 1, \begin{bmatrix} w & u \\ 0 & w \end{bmatrix}, \begin{bmatrix} w & u \\ 0 & u \end{bmatrix}, \begin{bmatrix} w & u \\ w & w \end{bmatrix}, \begin{bmatrix} w & u \\ w & w + u \end{bmatrix} \right\}.
$$

(3.4)

By Proposition 3.1(i), $\overline{L}_F(V, W) \setminus \text{Reg}(\overline{L}_F(V, W)) = \{ \begin{bmatrix} w & u \\ 0 & w \end{bmatrix} \}. $ Let $\lambda = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Note that $\lambda^2 = 0$. To prove the lemma, by Lemma 2.3, it suffices to show that $(\lambda)_b = (\lambda)_q$. By direct multiplication, we have

$$
\overline{L}_F(V, W) \lambda = \{0, \lambda\}, \quad \lambda \overline{L}_F(V, W) = \{0, \lambda\}, \quad \lambda \overline{L}_F(V, W) \lambda = \{0\}.
$$

(3.5)

Consequently, $(\lambda)_b = \lambda \overline{L}_F(V, W) \lambda \cup \{0, \lambda\} = \lambda \overline{L}_F(V, W) \lambda \cap \lambda \overline{L}_F(V, W) = (\lambda)_q$. \qed

Theorem 3.3. The semigroup $\overline{L}_F(V, W)$ is a \mathcal{B}_2-semigroup if and only if one of the following statements holds.

(i) $W = V$.

(ii) $W = \{0\}$.

(iii) $F = \mathbb{Z}_2$, $\dim_F V = 2$, and $\dim_F W = 1$.

Proof. Assume that (i), (ii), and (iii) are false. Then (1) $\{0\} \neq W \subset V$ and (2) $F \neq \mathbb{Z}_2$, dim$_F V > 2$, or dim$_F W > 1$. Let B_1 be a basis of W and B a basis of V containing B_1. Then $B_1 \neq \emptyset$ and $B \setminus B_1 \neq \emptyset$.

Case 1 ($F \neq \mathbb{Z}_2$). Let $a \in F \setminus \{0, 1\}$, $w \in B_1$, and $u \in B \setminus B_1$. Define $\alpha, \beta, \gamma \in L_F(V, W)$ by

$$
\alpha = \begin{bmatrix} u & B \setminus \{u\} \\ w & 0 \end{bmatrix}, \quad \beta = \begin{bmatrix} w & B \setminus \{w\} \\ aw & 0 \end{bmatrix}, \quad \gamma = \begin{bmatrix} u & B \setminus \{u\} \\ au & 0 \end{bmatrix}.
$$

(3.6)

Then we have $\alpha \beta = \begin{bmatrix} u & B \setminus \{u\} \\ aw & 0 \end{bmatrix} = \gamma \alpha$. Since $a \neq 1$, we have $\alpha \beta \neq \alpha$. By Proposition 1.1(i), $\alpha \beta \in L_F(V, W)(\alpha)_q$. Suppose that $\alpha \beta \in L_F(V, W)(\alpha)_q$. By Proposition 1.1(ii), $\alpha \beta = \alpha \eta \alpha$.
for some \(\eta \in \mathcal{L}_F(V, W) \). Then \(aw = uab = u\alpha_\eta \alpha = (w\eta)\alpha \). But \(w\eta \in W \) and \(W\alpha = \langle B_1 \rangle \alpha \subseteq \langle B \setminus \{u\} \rangle \alpha = \{0\} \), so \(aw = 0 \) which is contrary to \(a \neq 0 \). Thus \((\alpha)_q \neq (\alpha)_b \), so \(\mathcal{L}_F(V, W) \) is not a \(\mathcal{B}\mathcal{D} \)-semigroup by Proposition 1.4.

Case 2 (\((\dim_F V > 1) \)). Then \(|B_1| > 1 \). Let \(w_1, w_2 \in B_1 \) be such that \(w_1 \neq w_2 \) and \(u \in B \setminus B_1 \). Define \(\alpha, \beta, \gamma \in \mathcal{L}_F(V, W) \) by

\[
\alpha = \begin{bmatrix} w_1 & u & B \setminus \{w_1, u\} \\ w_2 & w_1 & 0 \end{bmatrix}, \quad \beta = \begin{bmatrix} w_1 & B \setminus \{w_1\} \\ w_1 & 0 \end{bmatrix}, \quad \gamma = \begin{bmatrix} u & B \setminus \{u\} \\ u & 0 \end{bmatrix}.
\]

Then \(\alpha \beta = [w_1 B \setminus \{u\}] = \gamma \alpha \neq \alpha \), so \(\alpha \beta \in (\alpha)_q \). If \(\alpha \beta \in (\alpha)_b \), then \(\alpha \beta = \alpha \eta \alpha \) for some \(\eta \in \mathcal{L}_F(V, W) \). Thus \(w_1 = uab = u\alpha_\eta \alpha = (w\eta)\alpha \). Since \(w_1 \eta \in W = \langle B_1 \rangle \), we have \(w_1 \eta = aw_1 + \nu \) for some \(a \in F \) and \(\nu \in \langle B_1 \setminus \{w_1\} \rangle \). But \(B_1 \setminus \{w_1\} \subseteq B \setminus \{w_1, u\} \), so \(\nu = 0 \). Consequently, \(w_1 = (aw_1 + \nu)\alpha = aw_2 \), which is contrary to the independence of \(w_1 \) and \(w_2 \). By Proposition 1.4, \(\mathcal{L}_F(V, W) \) is not a \(\mathcal{B}\mathcal{D} \)-semigroup.

Case 3 (\((\dim_F V > 2 \) and \(\dim_F W = 1 \)). Then \(|B_1| = 1 \) and \(|B \setminus B_1| > 1 \). Let \(B_1 = \{w\} \) and \(u_1, u_2 \in B \setminus B_1 \) be such that \(u_1 \neq u_2 \). Let \(\alpha, \beta, \gamma \in \mathcal{L}_F(V, W) \) be defined by

\[
\alpha = \begin{bmatrix} u_1 & u_2 & B \setminus \{u_1, u_2\} \\ w & u_1 & 0 \end{bmatrix}, \quad \beta = \begin{bmatrix} w & B \setminus \{w\} \\ w & 0 \end{bmatrix}, \quad \gamma = \begin{bmatrix} u_1 & B \setminus \{u_1\} \\ u_1 & 0 \end{bmatrix}.
\]

Then we have \(\alpha \beta = [w u B \setminus \{u_1\}] = \gamma \alpha \neq \alpha \), so \(\alpha \beta \in (\alpha)_q \). Suppose that \(\alpha \beta \in (\alpha)_b \). It follows that \(\alpha \beta = \alpha \eta \alpha \) for some \(\eta \in \mathcal{L}_F(V, W) \). Thus \(w = u_1 a\beta = u_1 (w\eta)\alpha \). But \(w\eta \in W = \langle w \rangle \) and \(w\alpha = 0 \), so \(w = (w\eta)\alpha = 0 \), a contradiction. Hence \((\alpha)_q \neq (\alpha)_b \), so \(\mathcal{L}_F(V, W) \) is not a \(\mathcal{B}\mathcal{D} \)-semigroup, as before.

For the converse, if (i) or (ii) holds, then \(\mathcal{L}_F(V, W) = L_F(V) \) which is a \(\mathcal{B}\mathcal{D} \)-semigroup by Proposition 1.2. If (iii) holds, then \(\mathcal{L}_F(V, W) \) is a \(\mathcal{B}\mathcal{D} \)-semigroup by Proposition 1.4 and Lemma 3.2.

The following corollaries follow directly from Propositions 1.2, 3.1(ii), Theorem 3.3, and the proof of Lemma 3.2.

Corollary 3.4. If \(F \neq \mathbb{Z}_2 \) or \(\dim F V \neq 2 \), then the following statements are equivalent.

(i) \(\mathcal{L}_F(V, W) \) is a \(\mathcal{B}\mathcal{D} \)-semigroup.

(ii) \(W = V \) or \(W = \{0\} \).

(iii) \(\mathcal{L}_F(V, W) \) is a regular semigroup.

Corollary 3.5. The semigroup \(\mathcal{L}_F(V, W) \) is a nonregular \(\mathcal{B}\mathcal{D} \)-semigroup if and only if \(F = \mathbb{Z}_2 \), \(\dim_F V = 2 \), and \(\dim_F W = 1 \). Hence if \(F = \mathbb{Z}_2 \) and \(\dim_F V = 2 \), there are exactly 3 semigroups \(\mathcal{L}_F(V, W) \) which are nonregular \(\mathcal{B}\mathcal{D} \)-semigroups, and each of such \(\mathcal{L}_F(V, W) \) contains 8 elements.

Remark 3.6. We also have that \(L_F(V, W) \) is an ideal of \(\mathcal{L}_F(V, W) \) (see Remark 2.8). Consequently, if \(\{0\} \neq W \subseteq V \), then \(\mathcal{L}_F(V, W) \) is neither left nor right 0-simple. Hence if \(F = \mathbb{Z}_2 \), \(\dim_F V = 2 \), and \(\dim_F W = 1 \), then \(\mathcal{L}_F(V, W) \) is a \(\mathcal{B}\mathcal{D} \)-semigroup which is neither regular nor left (right) 0-simple.
On transformation semigroups which are \mathcal{R}-semigroups

Acknowledgments

We wish to express our appreciation to the referees for helpful comments and suggestions on the original manuscript.

References

S. Nenthein: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: sansanee.n@student.chula.ac.th

Y. Kemprasit: Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

E-mail address: yupaporn.k@chula.ac.th