ON HORIZONTAL AND COMPLETE LIFTS FROM A MANIFOLD WITH $f_{\lambda}(7,1)$-STRUCTURE TO ITS COTANGENT BUNDLE

LOVEJOY S. DAS, RAM NIVAS, AND VIRENDRA NATH PATHAK

Received 1 August 2003

The horizontal and complete lifts from a manifold M^n to its cotangent bundles $T^*(M^n)$ were studied by Yano and Ishihara, Yano and Patterson, Nivas and Gupta, Dambrowski, and many others. The purpose of this paper is to use certain methods by which $f_{\lambda}(7,1)$-structure in M^n can be extended to $T^*(M^n)$. In particular, we have studied horizontal and complete lifts of $f_{\lambda}(7,1)$-structure from a manifold to its cotangent bundle.

1. Introduction

Let M be a differentiable manifold of class c^∞ and of dimension n and let C_{TM} denote the cotangent bundle of M. Then C_{TM} is also a differentiable manifold of class c^∞ and dimension $2n$.

The following are notations and conventions that will be used in this paper.

(1) $\mathcal{S}^r_\chi(M)$ denotes the set of tensor fields of class c^∞ and of type (r,s) on M. Similarly, $\mathcal{S}^r_\chi(C_{TM})$ denotes the set of such tensor fields in C_{TM}.

(2) The map Π is the projection map of C_{TM} onto M.

(3) Vector fields in M are denoted by X, Y, Z, \ldots and Lie differentiation by L_X. The Lie product of vector fields X and Y is denoted by $[X, Y]$.

(4) Suffixes $a, b, c, \ldots, h, i, j, \ldots$ take the values 1 to n and $\tilde{a} = i + n$. Suffixes A, B, C, \ldots take the values 1 to $2n$.

If A is a point in M, then $\Pi^{-1}(A)$ is fiber over A. Any point $p \in \Pi^{-1}(A)$ is denoted by the ordered pair (A, p_A), where p is 1-form in M and p_A is the value of p at A. Let U be a coordinate neighborhood in M such that $A \in U$. Then U induces a coordinate neighborhood $\Pi^{-1}(U)$ in C_{TM} and $p \in \Pi^{-1}(U)$.

2. Complete lift of $f_{\lambda}(7,1)$-structure

Let $f(\neq 0)$ be a tensor field of type $(1,1)$ and class c^∞ on M such that

$$f^2 + \lambda^2 f = 0,$$ \hspace{1cm} (2.1)
1292 Horizontal and complete lifts of \(f_{\lambda}(7,1) \)-structure

where \(\lambda \) is any complex number not equal to zero. We call the manifold \(M \) satisfying (2.1) as \(f_{\lambda}(7,1) \)-structure manifold. Let \(f_i^h \) be components of \(f \) at \(A \) in the coordinate neighborhood \(U \) of \(M \). Then the complete lift \(f^c \) of \(f \) is also a tensor field of type \((1,1)\) in \(C^{\text{TM}} \) whose components \(\tilde{f}_A^B \) in \(\Pi^{-1}(U) \) are given by [2]

\[
\begin{align*}
\tilde{f}_i^h &= f_i^h; & f_{ij} \equiv 0, \quad (2.2) \\
\tilde{f}_i^h &= \rho_d \left(\frac{\partial f_a^i}{\partial x^i} \frac{\partial f_a^h}{\partial x^h} \right); & \tilde{f}_i^h = f_i^h, \quad (2.3)
\end{align*}
\]

where \((x^1,x^2,\ldots,x^n)\) are coordinates of \(A \) relative to \(U \) and \(p_A \) has a component \((p_1,p_2,\ldots,p_n)\).

Thus we can write

\[
f^C = (\tilde{f}_B^A) = \begin{pmatrix} f_i^h & 0 \\ \rho_d(i) f_a^i - \rho_d(j) f_a^j & f_i^j \end{pmatrix}, \quad (2.4)
\]

where \(\partial_i = \partial / \partial x^i \).

If we put

\[
\partial_i f_a^i - \partial_h f_a^h = 2\partial[i f_a^a], \quad (2.5)
\]

then we can write (2.4) in the form

\[
f^C = (\bar{f}_B^A) = \begin{pmatrix} f_i^h & 0 \\ 2\rho_d(i) f_a^i & f_i^j \end{pmatrix}, \quad (2.6)
\]

Thus we have

\[
\begin{pmatrix} f_i^h & 0 \end{pmatrix} \begin{pmatrix} f_j^i & 0 \end{pmatrix}, \quad (2.7)
\]

or

\[
\begin{pmatrix} f_i^h f_j^i & 0 \end{pmatrix} \begin{pmatrix} 2\rho_d(i) f_a^i & f_i^j \end{pmatrix}, \quad (2.8)
\]

If we put

\[
2\rho_d(i) f_a^i \partial[i f_a^a] + 2\rho_d(j) f_a^j \partial[j f_a^a] = L_{ij}, \quad (2.9)
\]

then (2.8) takes the form

\[
\begin{pmatrix} f_i^h f_j^i & 0 \end{pmatrix} \begin{pmatrix} L_{ij} & f_i^j f_i^j \end{pmatrix}, \quad (2.10)
\]
Thus we have

$$(f^C)^4 = \begin{pmatrix} f^h_i f^j_i & 0 \\ L_{hj} & f^j_i f^k_i \end{pmatrix} \begin{pmatrix} f^k_i f^l_i & 0 \\ L_{jl} & f^l_i f^m_i \end{pmatrix},$$ \hspace{1cm} (2.11)

or

$$(f^C)^4 = \begin{pmatrix} f^h_i f^j_i f^k_i & 0 \\ f^j_i f^k_i f^l_i L_{hj} + f^j_i f^h_i L_{jl} & f^j_i f^k_i f^l_i f^m_i \end{pmatrix}.$$ \hspace{1cm} (2.12)

Putting again

$$f^j_i f^k_i L_{hj} + f^j_i f^h_i L_{jl} = P_{hl},$$ \hspace{1cm} (2.13)

then we can put (2.12) in the form

$$(f^C)^4 = \begin{pmatrix} f^h_i f^j_i f^k_i & 0 \\ P_{hl} & f^j_i f^k_i f^l_i f^m_i \end{pmatrix}.$$ \hspace{1cm} (2.14)

Thus,

$$(f^C)^6 = \begin{pmatrix} f^h_i f^j_i f^k_i f^l_i f^m_i & 0 \\ P_{hl} & f^j_i f^k_i f^l_i f^m_i \end{pmatrix} \begin{pmatrix} f^m_i f^m_i & 0 \\ f^l_i f^m_i f^m_i & L_{ln} \end{pmatrix},$$ \hspace{1cm} (2.15)

$$(f^C)^6 = \begin{pmatrix} f^h_i f^j_i f^k_i f^l_i f^m_i f^m_i & 0 \\ P_{hl} f^j_i f^m_i f^m_i + L_{ln} f^j_i f^k_i f^l_i f^m_i & f^m_i f^m_i f^m_i f^m_i f^m_i f^m_i \end{pmatrix}.$$ \hspace{1cm} (2.16)

Putting again

$$P_{hl} f^j_i f^m_i f^m_i + L_{ln} f^j_i f^k_i f^l_i f^m_i f^m_i = Q_{hn},$$ \hspace{1cm} (2.17)

then (2.16) takes the form

$$(f^C)^6 = \begin{pmatrix} f^h_i f^j_i f^k_i f^l_i f^m_i f^m_i & 0 \\ Q_{hn} & f^m_i f^m_i f^m_i f^m_i f^m_i f^m_i \end{pmatrix}.$$ \hspace{1cm} (2.18)
Thus,\[(f^C)^7 = \left(\begin{array}{ccc} f^h f_j f_k f^i f_m f_n & 0 \\ Q_{hn} f^m f^i f_k f_j f_i f_h & 0 \end{array} \right) \left(\begin{array}{c} f^p_n \\ 2 p_r \partial [p f^r_n] \\ f^p_r \end{array} \right), \] (2.19)

\[(f^C)^7 = \left(\begin{array}{ccc} f^h f_j f_k f^i f_m f_n f^p & 0 \\ Q_{hn} f^p_n + 2 p_r \partial [p f^r_n] f^m f^i f_k f_j f_i f_h & f^p_n f^m f^i f_k f_j f_i f_h \end{array} \right). \] (2.20)

In view of (2.1), we have\[f_i^h f_j f_k f^i f_m f_n f^p = - \lambda^2 f^h_p, \] (2.21)

and also putting
\[Q_{hn} f^p_n + 2 p_r \partial [p f^r_n] f^m f^i f_k f_j f_i f_h = - \lambda^2 p_s \partial [p f^s_h], \] (2.22)

then (2.20) can be given by
\[(f^C)^7 = \left(\begin{array}{ccc} - \lambda^2 f^p_n \\ - \lambda^2 p_r \partial [p f^r_n] & - \lambda^2 f^p_r \end{array} \right), \] (2.23)

In view of (2.6) and (2.23), it follows that
\[(f^C)^7 + \lambda^2 (f^C) = 0. \] (2.24)

Hence the complete lift f^C of f admits an $f^\lambda(7,1)$-structure in the cotangent bundle C_{TM}.

Thus we have the following theorem.

Theorem 2.1. In order that the complete lift of f^C of a $(1,1)$ tensor field f admitting $f^\lambda(7,1)$-structure in M may have the similar structure in the cotangent bundle C_{TM}, it is necessary and sufficient that
\[Q_{hn} f^p_n + 2 p_r \partial [p f^r_n] f^m f^i f_k f_j f_i f_h = - \lambda^2 p_s \partial [p f^s_h]. \] (2.25)

3. Horizontal lift of $f^\lambda(7,1)$-structure

Let f, g be two tensor fields of type $(1,1)$ on the manifold M. If f^H denotes the horizontal lift of f, we have
\[f^H g^H + g^H f^H = (f g + g f)^H. \] (3.1)

Taking f and g identical, we get
\[(f^H)^2 = (f^2)^H. \] (3.2)
Multiplying both sides by \(f^H \) and making use of the same (3.2), we get

\[
(f^H)^3 = (f^3)^H
\]
(3.3)

and so on. Thus it follows that

\[
(f^H)^4 = (f^4)^H, \quad (f^H)^5 = (f^5)^H,
\]
(3.4)

and so on. Thus,

\[
(f^H)^7 = (f^7)^H.
\]
(3.5)

Since \(f \) gives on \(M \) the \(f_\lambda(7,1) \)-structure, we have

\[
f^7 + \lambda^2 f = 0.
\]
(3.6)

Taking horizontal lift, we obtain

\[
(f^7)^H + \lambda^2 (f^H) = 0.
\]
(3.7)

In view of (3.5) and (3.7), we can write

\[
(f^H)^7 + \lambda^2 (f^H) = 0.
\]
(3.8)

Thus the horizontal lift \(f^H \) of \(f \) also admits a \(f_\lambda(7,1) \)-structure. Hence we have the following theorem.

Theorem 3.1. Let \(f \) be a tensor field of type \((1,1)\) admitting \(f_\lambda(7,1) \)-structure in \(M \). Then the horizontal lift \(f^H \) of \(f \) also admits the similar structure in the cotangent bundle \(C_{TM} \).

4. Nijenhuis tensor of complete lift of \(f^7 \)

The Nijenhuis tensor of a \((1,1)\) tensor field \(f \) on \(M \) is given by

\[
N_{f,f}(X,Y) = [fX, fY] - f[fX,Y] - f[X,fY] + f^2[X,Y].
\]
(4.1)

Also for the complete lift of \(f^7 \), we have

\[
N(f^7)^C, (f^7)^C(X^C,Y^C) = \left((f^7)^C X^C, (f^7)^C Y^C \right) - (f^7)^C \left[(f^7)^C X^C, Y^C \right] - (f^7)^C \left[X^C, (f^7)^C Y^C \right] + (f^7)^C (f^7)^C \left[X^C, Y^C \right].
\]
(4.2)

In view of (2.1), the above (4.2) takes the form

\[
N(f^7)^C, (f^7)^C(X^C,Y^C)
\]

\[
= \left[(-\lambda^2 f)^C X^C, (-\lambda^2 f)^C Y^C \right] - (-\lambda^2 f)^C \left[(-\lambda^2 f)^C X^C, Y^C \right] - (-\lambda^2 f)^C \left[X^C, (-\lambda^2 f)^C Y^C \right] + (-\lambda^2 f)^C (-\lambda^2 f)^C \left[X^C, Y^C \right],
\]
(4.3)
or
\[
N(f^7)^C, (f^7)^C(X^C, Y^C) = \lambda^4 \left\{ \left[(f)^C X^C, (f)^C Y^C \right] - (f)^C \left[(f)^C X^C, Y^C \right] \right\}.
\]

(4.4)

We also know that
\[
(f)^C X^C = (fX)^C + \nu(\mathcal{L}_X f),
\]

(4.5)

where \(\nu f \) has components
\[
\nu f = \begin{pmatrix} O^a \\ p_a f_i \end{pmatrix}.
\]

(4.6)

In view of (4.5), (4.4) takes the form
\[
N(f^7)^C, (f^7)^C(X^C, Y^C)
\]

= \lambda^4 \left\{ \left[(fX)^C, (fY)^C \right] + \nu(\mathcal{L}_X f), (fY)^C \right\] - \left[(fX)^C, Y^C \right] \right\}.

(4.7)

We now suppose that
\[
\mathcal{L}_X f = \mathcal{L}_Y f = 0.
\]

(4.8)

Then from (4.7), we have
\[
N(f^7)^C, (f^7)^C(X^C, Y^C) = \lambda^4 \left\{ \left[(fX)^C, (fY)^C \right] - (f)^C \left[(fX)^C, Y^C \right] \right\}.
\]

(4.9)

Further, if \(f \) acts as an identity operator on \(M \), that is,
\[
fX = X \quad \forall X \in \mathcal{S}_0(M),
\]

(4.10)

then we have from (4.9)
\[
N(f^7)^C, (f^7)^C(X^C, Y^C) = \lambda^8 \left\{ [X^C, Y^C] - [X^C, Y^C] - [X^C, Y^C] + [X^C, Y^C] \right\} = 0.
\]

(4.11)

Hence we have the following theorem.

Theorem 4.1. The Nijenhuis tensor of the complete lift of \(f^7 \) vanishes if the Lie derivatives of the tensor field \(f \) with respect to \(X \) and \(Y \) are both zero and \(f \) acts as an identity operator on \(M \).
References

Lovejoy S. Das: Department of Mathematics, Kent State University Tuscarawas, New Philadelphia, OH 44663, USA

E-mail address: ldas@kent.edu

Ram Nivas: Lucknow University, Lucknow, UP 226007, India

E-mail address: rnivas@sify.com

Virendra Nath Pathak: Lucknow University, Lucknow, UP 226007, India