We establish the characterizations of metric spaces under compact-covering (resp., pseudo-sequence-covering, sequence-covering) \(\pi \)-s-maps by means of cfp-covers (resp., sfp-covers, cs-covers) and \(\sigma \)-strong networks.

1. Introduction and definitions

In 1966, Michael [11] introduced the concept of compact-covering maps. Since many important kinds of maps are compact-covering, such as closed maps on paracompact spaces, much work has been done to seek the characterizations of metric spaces under various compact-covering maps, for example, compact-covering (open) \(s \)-maps, pseudo-sequence-covering (quotient) \(s \)-maps, sequence-covering (quotient) \(s \)-maps, and compact-covering (quotient) \(s \)-maps, see [3, 9, 12, 15, 16]. \(\pi \)-map is another important map which was introduced by Ponomarev [13] in 1960 and correspondingly, many spaces, including developable spaces, weak Cauchy spaces, \(g \)-developable spaces, and semimetrizable spaces, were characterized as the images of metric spaces under certain quotient \(\pi \)-maps, see [1, 4, 6, 7].

The purpose of this paper is to establish the characterizations of metric spaces under compact-covering (resp., pseudo-sequence-covering, sequence-covering) \(\pi \)-s-maps by means of cfp-covers (resp., sfp-covers, cs-covers) and \(\sigma \)-strong networks.

In this paper, all spaces are Hausdorff, and all maps are continuous and surjective. \(\mathbb{N} \) denotes the set of all natural numbers. \(\omega \) denotes \(\mathbb{N} \cup \{0\} \). \(\tau (X) \) denotes a topology on \(X \). For a collection \(\mathcal{P} \) of subsets of a space \(X \) and a map \(f : X \to Y \), denote \(\{ f(P) : P \in \mathcal{P} \} \) by \(f(\mathcal{P}) \). For the usual product space \(\prod_{i \in \mathbb{N}} X_i \), \(\pi_i \) denotes the projective \(\prod_{i \in \mathbb{N}} X_i \) onto \(X_i \). For a sequence \(\{ x_n \} \) in \(X \), denote \(\langle x_n \rangle = \{ x_n : n \in \mathbb{N} \} \).

Definition 1.1. Let \(f : X \to Y \) be a map.

1. \(f \) is called a compact-covering map [11] if each compact subset of \(Y \) is the image of some compact subset of \(X \).
2. \(f \) is called a sequence-covering map [14] if whenever \(\{ y_n \} \) is a convergent sequence in \(Y \), then there exists a convergent sequence \(\{ x_n \} \) in \(X \) such that each \(x_n \in f^{-1}(y_n) \).
(3) f is called a pseudo-sequence-covering map [3] if each convergent sequence (including its limit point) of Y is the image of some compact subset of X.

(4) f is called an s-map, if $f^{-1}(y)$ is separable in X for any $y \in Y$.

(5) f is called a π-map [13], if (X,d) is a metric space, and for each $y \in Y$ and its open neighborhood V in Y, $d(f^{-1}(y), M \setminus f^{-1}(V)) > 0$.

(6) f is called a π-s-map, if f is both π-map and s-map.

It is easy to check that compact maps on metric spaces are π-s-maps.

Definition 1.2. Let $\{P_n\}$ be a sequence of covers of a space X such that P_{n+1} refines P_n for each $n \in \mathbb{N}$.

1. $\bigcup\{P_n : n \in \mathbb{N}\}$ is called a σ-strong network [5] for X if for each $x \in X$, $\{st(x, P_n)\}$ is a local network of x in X. If every P_n satisfies property P, then $\bigcup\{P_n : n \in \mathbb{N}\}$ is called a σ-strong network consisting of P-covers.

2. $\{P_n\}$ is called a weak development for X if for each $x \in X$, $\{st(x, P_n)\}$ is a weak neighborhood base of x in X.

Definition 1.3 [2]. Let X be a space.

1. Let $\{x_n\}$ be a convergent sequence in X, and $P \subset X$. $\{x_n\}$ is eventually in P if whenever $\{x_n\}$ converges to x, then $\{x\} \cup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$.

2. Let $x \in P \subset X$. P is called a sequential neighborhood of x in X if whenever a sequence $\{x_n\}$ in X converges to x, then $\{x_n\}$ is eventually in P.

3. Let $P \subset X$. P is called a sequentially open subset in X if P is a sequential neighborhood of x in X for any $x \in P$.

4. X is called a sequential space if each sequentially open subset in X is open.

Definition 1.4 [10]. Let \mathcal{P} be a collection of subsets of a space X.

1. \mathcal{P} is called a cfp-cover (i.e., compact-finite-partition cover) of compact subset K in X if there are a finite collection $\{K_\alpha : \alpha \in J\}$ of closed subsets of K and $\{P_\alpha : \alpha \in J\} \subset \mathcal{P}$ such that $K = \bigcup\{K_\alpha : \alpha \in J\}$ and each $K_\alpha \subset P_\alpha$.

2. \mathcal{P} is called a cfp-cover for X if for any compact subset K of X, there exists a finite subcollection $\mathcal{P}^* \subset \mathcal{P}$ such that \mathcal{P}^* is a cfp-cover of K in X.

3. \mathcal{P} is called an sfp-cover (i.e., sequence-finite-partition cover) for X if for any convergent sequence (including its limit point) K in X, there exists a finite subcollection $\mathcal{P}^* \subset \mathcal{P}$ such that \mathcal{P}^* is a cfp-cover of K in X.

4. \mathcal{P} is called a cs-cover for X, if every convergent sequence in X is eventually in some element of \mathcal{P}.

2. Results

Theorem 2.1. A space X is the compact-covering π-s-image of a metric spaces if and only if X has a σ-strong network consisting of point-countable cfp-covers.

Proof. To prove the only if part, suppose $f : (M,d) \rightarrow X$ is a compact-covering π-s-map, where (M,d) is a metric space. For each $n \in \mathbb{N}$, put $\mathcal{F}_n = \{f(B(z,1/n)) : z \in M\}$, where $B(z,1/n) = \{y \in M : d(z,y) < 1/n\}$. Obviously, \mathcal{F}_n refines \mathcal{F}_n. We claim that $\bigcup\{\mathcal{F}_n : n \in \mathbb{N}\}$ is a σ-strong network for X. In fact, for each $x \in X$, and its open neighborhood U, since f is a π-map, then there exists $n \in \mathbb{N}$ such that $d(f^{-1}(x), M \setminus f^{-1}(U)) > 1/n$.

We can pick $m \in \mathbb{N}$ such that $m \geq 2n$. If $z \in M$ with $x \in f(B(z, 1/m))$, then
\[f^{-1}(x) \cap B(z, 1/m) \neq \emptyset. \] (2.1)

If $B(z, 1/m) \notin f^{-1}(U)$, then
\[d(f^{-1}(x), M \setminus f^{-1}(U)) \leq \frac{2}{m} \leq \frac{1}{n}, \] (2.2)

which is a contradiction. Thus $B(z, 1/m) \subset f^{-1}(U)$, so $f(B(z, 1/m)) \subset U$. Hence $\text{st}(x, \mathcal{F}_m) \subset U$. Therefore $\bigcup \{\mathcal{F}_n : n \in \mathbb{N}\}$ is a σ-strong network for X.

For each $n \in \mathbb{N}$, let \mathcal{B}_n be a locally finite open refinement of $\{B(z, 1/n) : z \in M\}$. Since locally finite collections are closed under finite intersections, we can assume that \mathcal{B}_{n+1} refines \mathcal{B}_n for each $n \in \mathbb{N}$. Put $\mathcal{P}_n = f(\mathcal{B}_n)$. Obviously, \mathcal{P}_{n+1} refines \mathcal{P}_n. Since f is an s-map, each \mathcal{P}_n is point-countable in X. Because \mathcal{P}_n refines \mathcal{F}_n for each $n \in \mathbb{N}$, then $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is also a σ-strong network for X.

We now show that each \mathcal{P}_n is a cfp-cover for X. Suppose K is compact in X, since f is compact-covering, then $f(L) = K$ for some compact subset L of M. Since \mathcal{B}_n is an open cover of L in M, \mathcal{B}_n have a finite subcover $\mathcal{B}_{n,L}^n$. Thus $\mathcal{B}_{n,L}^n$ can be precisely refined by some finite cover of L consisting of closed subsets of L, denoted by $\{L_n : \alpha \in \mathcal{J}_n\}$. Put $\mathcal{P}_n^K = f(\mathcal{B}_{n,L}^n)$, since \mathcal{P}_n^K is precisely refined by closed cover $\{f(L_n) : \alpha \in \mathcal{J}_n\}$ of K, then \mathcal{P}_n^K is a cfp-cover of K in X. Hence each \mathcal{P}_n is a cfp-cover for X.

To prove the if part, suppose $\bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}$ is a σ-strong network for X consisting of point-countable cfp-covers. For each $i \in \mathbb{N}$, \mathcal{P}_i is a point-countable cfp-cover for X. Let $\mathcal{P}_i = \{P_\alpha : \alpha \in \Lambda_i\}$, endow Λ_i with the discrete topology, then Λ_i is a metric space. Put
\[M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Lambda_i : \langle P_\alpha \rangle \text{ forms a local network at some point } x_\alpha \text{ in } X \right\}, \] (2.3)

and endow M with the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}$ of metric spaces, then M is a metric space. Since X is Hausdorff, x_α is unique in X. For each $\alpha \in M$, we define $f : M \to X$ by $f(\alpha) = x_\alpha$. For each $x \in X$ and $i \in \mathbb{N}$, there exists $\alpha_i \in \Lambda_i$ such that $x \in P_{\alpha_i}$. Since $\bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}$ is a σ-strong network for X, then $\{P_{\alpha_i} : i \in \mathbb{N}\}$ is a local network of x in X. Put $\alpha = (\alpha_i)$, then $\alpha \in M$ and $f(\alpha) = x$. Thus f is surjective. Suppose $\alpha = (\alpha_i) \in M$ and $f(\alpha) = x \in U \in \tau(X)$, then there exists $n \in \mathbb{N}$ such that $P_{\alpha_n} \subset U$. Put
\[V = \{\beta \in M : \text{the } n\text{th coordinate of } \beta \text{ is } x_{\alpha_n}\}, \] (2.4)

then V is an open neighborhood of α in M, and $f(V) \subset P_{\alpha_n} \subset U$. Hence f is continuous. For each $\alpha, \beta \in M$, we define
\[d(\alpha, \beta) = \begin{cases} 0, & \alpha = \beta, \\ \max \{1/k : \pi_k(\alpha) \neq \pi_k(\beta)\}, & \alpha \neq \beta, \end{cases} \] (2.5)

then d is a distance on M. Because the topology of M is the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}$ of discrete spaces, thus d
is a metric on M. For each $x \in U \in \tau(X)$, there exists $n \in \mathbb{N}$ such that $st(x, \mathcal{P}_n) \subset U$. For $\alpha \in f^{-1}(x)$, $\beta \in M$, if $d(\alpha, \beta) < 1/n$, then $\pi_i(\alpha) = \pi_i(\beta)$ whenever $i \leq n$. So $x \in P_{\pi_i(\alpha)} = P_{\pi_i(\beta)}$. Thus,

$$f(\beta) \in \bigcap_{i \in \mathbb{N}} P_{\pi_i(\beta)} \subset P_{\pi(\beta)} \subset U. \quad (2.6)$$

Hence

$$d(f^{-1}(x), M \setminus f^{-1}(U)) \geq \frac{1}{n}. \quad (2.7)$$

Therefore f is a π-map.

For each $x \in X$, it follows from the point-countable property of \mathcal{P}_n that $\{\alpha \in \Lambda_i : x \in P_{\alpha} \}$ is countable. Put

$$L = \left(\bigcap_{i \in \mathbb{N}} \{ \alpha \in \Lambda_i : x \in P_{\alpha} \} \right) \bigcap M, \quad (2.8)$$

then L is a hereditarily separable subspace of M, and $f^{-1}(x) \subset L$. Thus $f^{-1}(x)$ is separable in M, that is, f is an s-map.

We will prove that f is compact-covering. Suppose K is compact in X. Since each \mathcal{P}_n is a cfp-cover for X, there exists finite subcollection \mathcal{P}_n^K such that it is a cfp-cover of K in X. Thus there are a finite collection $\{K_\alpha : \alpha \in J_n\}$ of closed subsets of K and $\{P_\alpha : \alpha \in J_n\} \subset \mathcal{P}_n^K$ such that $K = \bigcup \{K_\alpha : \alpha \in J_n\}$ and each $K_\alpha \subset P_\alpha$. Obviously, each K_α is compact in X. Put

$$L = \left\{ (\alpha_i) : \alpha_i \in J_i, \bigcap_{i \in \mathbb{N}} K_{\alpha_i} \neq \emptyset \right\}, \quad (2.9)$$

then

(i) L is compact in M.
In fact, for all $(\alpha_i) \notin L$, $\bigcap_{i \in \mathbb{N}} K_{\alpha_i} = \emptyset$. From $\bigcap_{i \in \mathbb{N}} K_{\alpha_i} = \emptyset$, there exists $n_0 \in \mathbb{N}$ such that $\bigcap_{i = 1}^{n_0} K_{\alpha_i} = \emptyset$. Put

$$W = \{ (\beta_i) : \beta_i \in J_i, \beta_i = \alpha_i, 1 \leq i \leq n_0 \}, \quad (2.10)$$

then W is an open neighborhood of (α_i) in $\prod_{i \in \mathbb{N}} J_i$, and $W \bigcap L = \emptyset$. Thus L is closed in $\prod_{i \in \mathbb{N}} J_i$. Since $\prod_{i \in \mathbb{N}} J_i$ is compact in $\prod_{i \in \mathbb{N}} \Lambda_i$, L is compact in M.

(ii) $L \subset M$, $f(L) = K$.
In fact, for all $(\alpha_i) \in L$, $\bigcap_{i \in \mathbb{N}} K_{\alpha_i} \neq \emptyset$. Pick $x \in \bigcap_{i \in \mathbb{N}} K_{\alpha_i}$, then (P_{α_i}) is a local network of x in X, so $(\alpha_i) \in M$. This implies $L \subset M$.

For all $x \in K$, for each $i \in \mathbb{N}$, pick $\alpha_i \in J_i$ such that $x \in K_{\alpha_i}$. Thus $f((\alpha_i)) = x$, so $K \subset f(L)$. Obviously, $f(L) \subset K$. Hence $f(L) = K$.

In a word, f is compact-covering. \qed

Corollary 2.2. A space X is the compact-covering, quotient, and π-s-image of a metric space if and only if X has a weak-development consisting of point-countable cfp-covers.
Proof. To prove the only if part, suppose \(X \) is the compact-covering, quotient, and \(\pi \)-image of a metric space \(M \). From Theorem 2.1, \(X \) has a \(\sigma \)-strong network consisting of point-countable \(\text{cfp} \)-covers \(\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \). For each \(x \in X \), \(\text{st}(x, \mathcal{P}_n) \) is a sequential neighborhood of \(x \) in \(X \). Obviously, \(X \) is a sequential space. Thus \(\text{st}(x, \mathcal{P}_n) \) is a weak neighborhood base of \(x \) in \(X \). Hence \(\{ \mathcal{P}_n \} \) is a weak-development for \(X \).

To prove the if part, suppose \(X \) has a weak development consisting of point-countable \(\text{cfp} \)-covers. From Theorem 2.1, \(X \) is the image of a metric space under a compact-covering \(\pi \)-map \(f \). Obviously, \(X \) is sequential. By [8, Proposition 2.1.16], \(f \) is quotient.

Similar to the proofs of Theorem 2.1 and Corollary 2.2, we have the following theorem.

Theorem 2.3. A space \(X \) is the pseudo-sequence-covering \(\pi \)-image of a metric space if and only if \(X \) has a \(\sigma \)-strong network consisting of point-countable \(\text{sfp} \)-covers.

Corollary 2.4. A space \(X \) is the pseudo-sequence-covering, quotient, and \(\pi \)-image of a metric space if and only if \(X \) has a weak-development consisting of point-countable \(\text{sfp} \)-covers.

Theorem 2.5. A space \(X \) is the sequence-covering \(\pi \)-image of a metric space if and only if \(X \) has a \(\sigma \)-strong network consisting of point-countable \(\text{cs} \)-covers.

Proof. To prove the only if part, suppose \(f : (M, d) \rightarrow X \) is a sequence-covering \(\pi \)-map, where \((M, d)\) is a metric space. Similar to the proof of Theorem 2.1, we can show that \(\bigcup \{ \mathcal{P}_n : n \in \mathbb{N} \} \) is a \(\sigma \)-strong network consisting of point-countable covers. It suffices to show that each \(\mathcal{P}_n \) is a \(\text{cs} \)-cover for \(X \). Suppose \(\{ x_n \} \) converges to \(x \in X \). Since \(f \) is sequence-covering, then there exists a convergent sequence \(\{ z_i \} \) such that each \(z_i \in f^{-1}(x_i) \). Suppose \(\{ z_i \} \rightarrow z \), then \(z \in f^{-1}(x) \) and \(z \in B \) for some \(B \in \mathcal{B}_n \). Thus \(\{ z_i \} \) is eventually in \(B \), so \(\{ x_i \} \) is eventually in \(f(B) \in \mathcal{P}_n \). Hence each \(\mathcal{P}_n \) is a \(\text{cs} \)-cover for \(X \).

To prove the if part, suppose \(\bigcup \{ \mathcal{P}_i : i \in \mathbb{N} \} \) is a \(\sigma \)-strong network consisting of point-countable \(\text{cs} \)-covers for \(X \). For each \(i \in \mathbb{N} \), \(\mathcal{P}_i \) is a point-countable \(\text{cs} \)-cover for \(X \). Let \(\mathcal{P}_i = \{ \alpha_\alpha : \alpha \in \Lambda_i \} \). Similar to the proof of Theorem 2.1, we can show that \(f \) is a \(\pi \)-map. It suffices to show that \(f \) is sequence-covering. Suppose \(\{ x_n \} \) converges to \(x \) in \(X \). For each \(i \in \mathbb{N} \), since \(\mathcal{P}_i \) is a \(\text{cs} \)-cover for \(X \), then there exists \(P_{\alpha_i} \in \mathcal{P}_i \) such that \(\{ x_n \} \) is eventually in \(P_{\alpha_i} \). For each \(n \in \mathbb{N} \), if \(x_n \in P_{\alpha_i} \), let \(\alpha_{i_n} = \alpha_i \); if \(x_n \notin P_{\alpha_i} \), pick \(\alpha_{i_n} \in \Lambda_i \) such that \(x_n \in P_{\alpha_{i_n}} \). Thus there exists \(n_i \in \mathbb{N} \) such that \(\alpha_{i_n} = \alpha_i \) for all \(n > n_i \). So \(\{ \alpha_{i_n} \} \) converges to \(\alpha_i \). For each \(n \in \mathbb{N} \), put

\[
\beta_n = (\alpha_{i_n}) \in \prod_{i \in \mathbb{N}} \Lambda_i,
\] (2.11)

then \((\beta_n) \in f^{-1}(x_n) \) and \(\{ \beta_n \} \) converges to \(x \). Thus \(f \) is sequence-covering.

Similar to the proof of Corollary 2.2, we have the following corollary.

Corollary 2.6. A space \(X \) is the sequence-covering, quotient, and \(\pi \)-image of a metric space if and only if \(X \) has a weak-development consisting of point-countable \(\text{cs} \)-covers.

We give examples to illustrate the theorems of this paper.
Example 2.7. Let Z be the topological sum of the unit interval $[0,1]$, and the collection
$\{S(x) : x \in [0,1]\}$ of 2^ω convergent sequence $S(x)$. Let X be the space obtained from Z
by identifying the limit point of $S(x)$ with $x \in [0,1]$, for each $x \in [0,1]$. Then, from [8,
Example 2.9.27], or see [3, Example 9.8], we have the following facts.

(1) X is the compact-covering, quotient compact image of a locally compact metric
space.

(2) X has no point-countable cs-network.

The above facts together with [9, Theorem 1] yield the following conclusion: compact-
covering (quotient) π-s-images of metric spaces are not sequence-covering (quotient)
π-s-images of metric spaces.

Example 2.8. Let X be a sequential fan S_ω (see [8, Example 1.8.7]), then X is a Fréchet
and \aleph_0-space. So X is the sequence-covering s-image of a metric space. Because X is
not g-first countable, thus X is not the pseudo-sequence-covering π-image of a metric
space. Hence the following holds: sequence-covering (resp., pseudo-sequence-covering)
s-images of metric spaces are not sequence-covering (resp., pseudo-sequence-covering)
π-s-images of metric spaces.

Example 2.9. Let X be a Gillman-Jerison space $\psi(\mathbb{N})$ (see [8, Example 1.8.4]). Since X is
developable, then X is the sequence-covering, quotient π-image of a metric space by [10,
Corollary 3.1.12]. But X has no point-countable cs*-networks. Then, it follows from [8,
Theorem 2.7.5] that X is not the pseudo-sequence-covering s-image of a metric space. Thus,

(1) sequence-covering (quotient) π-images of metric spaces are not sequence-
covering (quotient) π-s-images of metric spaces,

(2) pseudo-sequence-covering (quotient) π-images of metric spaces are not pseudo-
sequence-covering (quotient) π-s-images of metric spaces.

Acknowledgments

The author would like to thank the referee for valuable suggestions. This work is sup-
ported by the NSF of Hunan Province in China (No. 04JJ6028) and the NSF of Education
Department of Hunan Province in China (No. 03A002).

References

Zhaowen Li: Department of Information, Hunan Business College, Changsha, Hunan 410205, China

E-mail address: lizhaowen8846@163.com