We give a necessary condition for a set in $L_p(\Omega)$ spaces ($1 < p < \infty$) to be self-extremal that partially extends our previous results to the case of L_p spaces. Examples of self-extremal sets in $L_p(\Omega)$ ($1 < p < \infty$) are also given.

In [4, 5], we introduced the notion of (self-) extremal sets of a Banach space $(X, \| \cdot \|)$. For a nonempty bounded subset A of X, we denote by $d(A)$ its diameter and by $r(A)$ the relative Chebyshev radius of A with respect to the closed convex hull $\overline{\text{co}}A$ of A, that is, $r(A) := \inf_{y \in \overline{\text{co}}A} \sup_{x \in A} \| x - y \|$. The self-Jung constant of X is defined by $J_s(X) := \sup \{ r(A) : A \subset X, \text{ with } d(A) = 1 \}$. If in this definition we replace $r(A)$ by the relative Chebyshev radius $r_X(A)$ of A with respect to the whole X, we get the Jung constant $J(X)$ of X. Recall that a bounded subset A of X consisting of at least two points is said to be extremal (resp., self-extremal) if $r_X(A) = J(X)d(A)$ (resp., $r(A) = J_s(X)d(A)$).

Throughout the note, unless otherwise mentioned, we will work with the following assumption: (Ω, μ) is a σ-finite measure space such that $L_p(\Omega)$ is infinite-dimensional. The Jung and self-Jung constants of $L_p(\Omega)$ ($1 \leq p < \infty$) were determined in [1, 3, 6, 7]:

$$J(L_p(\Omega)) = J_s(L_p(\Omega)) = \max \{ 2^{1/p-1}, 2^{-1/p} \}.$$ \hfill (1)

Theorem 1. If $1 < p < \infty$ and A is self-extremal in $L_p(\Omega)$, then $\kappa(A) = d(A)$.

Here $\kappa(A) := \inf \{ \varepsilon > 0 : A \text{ can be covered by finitely many sets of diameter } \leq \varepsilon \}$—the Kuratowski measure of noncompactness of A (for our convenience we use the notation $\kappa(A)$ in this note).

Before proving our theorem, we need the following results which for convenience we reformatulate in the form of Lemmas 2 and 3.

Lemma 2 (see [1], Theorem 1.1). Let X be a reflexive strictly convex Banach space and A a finite subset of X. Then there exists a subset $B \subset A$ such that

(i) $r(B) \geq r(A)$;

(ii) $\| x - b \| = r(B)$ for every $x \in B$, where b is the relative Chebyshev center of B, that is, $b \in \overline{\text{co}}B$ and $\sup_{x \in B} \| x - b \| = r(B)$. © 2005 Hindawi Publishing Corporation

DOI: 10.1155/IJMMS.2005.3521
Lemma 3 (see [8], Theorem 15.1). Let \((\Omega, \mu)\) be a \(\sigma\)-finite measure space, \(1 < p < \infty\), \(x_1, \ldots, x_n\) vectors in \(L_p(\Omega)\), and \(t_1, \ldots, t_n\) nonnegative numbers such that \(\sum_{i=1}^n t_i = 1\). The following inequality holds:

\[
2 \sum_{i=1}^n t_i \left\| x_i - \sum_{j=1}^n t_j x_j \right\|^{\alpha} \leq \sum_{i,j=1}^n t_i t_j \left\| x_i - x_j \right\|^{\alpha},
\]

where

\[
\alpha = \begin{cases}
\frac{p}{p-1} & \text{if } 1 < p < 2, \\
p & \text{if } p \geq 2.
\end{cases}
\]

Proof of Theorem 1. Since \(r(A)\) and \(d(A)\) remain the same with replacing \(A\) by \(\overline{A}\), we may assume that \(A\) is closed convex and \(r(A) = 1\). For each integer \(n \geq 2\), we have

\[
\bigcap_{x \in A} B\left(x, 1 - \frac{1}{n}\right) \cap A = \emptyset,
\]

where \(B(x, r)\) denotes the closed ball centered at \(x\) with radius \(r\) which is weakly compact since \(L_p(\Omega)\) is reflexive. Hence there exist \(x_{q_1-1+1}, x_{q_1-1+2}, \ldots, x_{q_n}\) in \(A\) (with convention \(q_1 = 0\)) such that

\[
\bigcap_{i=q_{n-1}+1}^{q_n} B\left(x_i, 1 - \frac{1}{n}\right) \cap A = \emptyset.
\]

Set \(A_n := \{x_{q_{n-1}+1}, x_{q_{n-1}+2}, \ldots, x_{q_n}\}\). By Lemma 2, there exists a subset \(B_n = \{y_{s_{n-1}+1}, y_{s_{n-1}+2}, \ldots, y_{s_n}\}\) of \(A_n\) satisfying properties (i)-(ii) of the lemma. Let us denote the relative Chebyshev center of \(B_n\) by \(b_n\), and let \(r_n := r(B_n)\). By what we said above, we have \(r_n > 1 - 1/n\) and \(\|y_i - b_n\| = r_n\) for every \(i \in I_n := \{s_{n-1} + 1, s_{n-1} + 2, \ldots, s_n\}\). Since \(B_n\) is a finite set, there exist non-negative numbers \(t_{s_{n-1}+1}, t_{s_{n-1}+2}, \ldots, t_{s_n}\) with \(\sum_{i \in I_n} t_i = 1\) such that \(b_n = \sum_{i \in I_n} t_i y_i\). Applying Lemma 3, one gets

\[
2 r_n^{\alpha} = 2 \sum_{i \in I_n} t_i \left\| y_i - \sum_{j \in I_n} t_j y_j \right\|^{\alpha} \leq \sum_{i,j \in I_n} t_i t_j \left\| y_i - y_j \right\|^{\alpha},
\]

where \(\alpha\) is as in (3).

Setting \(B_\infty := \{y_{s_{n-1}+1}, y_{s_{n-1}+2}, \ldots, y_{s_n}\}_{n=2}^\infty\), we claim that \(\kappa(B_\infty) = d(A)\). Evidently \(\kappa(B_\infty) \leq d(A)\) by definition. If \(\kappa(A_\infty) < d(A)\), so there exist \(\varepsilon_0 \in (0, d(A))\) satisfying \(\kappa(B_\infty) \leq d(A) - \varepsilon_0\), and subsets \(D_1, D_2, \ldots, D_m\) of \(L_p(\Omega)\) with \(d(D_i) \leq d(A) - \varepsilon_0\) for every \(i = 1, 2, \ldots, m\)
such that $B_\infty \subset \bigcup_{i=1}^m D_i$. Then one can find at least one set among D_1, D_2, \ldots, D_m, say D_1, with the property that there are infinitely many n satisfying

$$\sum_{i \in I_n} t_i \geq \frac{1}{m},$$

where

$$J_n := \{ i \in I_n : y_i \in D_1 \}. \tag{8}$$

From (1), it follows that $(d(A))^\alpha = (1/J_\alpha(L_p(\Omega)))^\alpha = 2$. In view of (6), we have, for all n satisfying (7),

$$2 \cdot r_n^\alpha \leq \sum_{i,j \in I_n} t_i t_j \|y_i - y_j\|^\alpha \leq (d(A) - \varepsilon_0)^\alpha \cdot \left(\sum_{i,j \in I_n} t_i t_j \right) + (d(A))^\alpha \cdot \left(1 - \sum_{i,j \in I_n} t_i t_j \right) \leq 2 - \left((d(A))^\alpha - (d(A) - \varepsilon_0)^\alpha \right) \cdot \frac{1}{m^2}. \tag{9}$$

On the other hand, obviously $1 - 1/n \leq r_n \leq 1$, therefore $\lim_{n \to \infty} r_n = 1$. We get a contradiction with (9) since there are infinitely many n satisfying (7).

One concludes that $\kappa(B_\infty) = d(A)$, and hence $\kappa(A) = d(A)$.

The proof of Theorem 1 is complete. \hfill \Box

Observe that no relatively compact set A in $L_p(\Omega)$ $(1 < p < \infty)$ is self-extremal by Theorem 1. Hence we obtain an immediate extension of Gulevich's result for $L_p(\Omega)$ spaces.

Corollary 4 (cf. [2]). Suppose that $1 < p < \infty$ and that A is a relatively compact set in $L_p(\Omega)$ with $d(A) > 0$. Then $r(A) < (1/\sqrt{2})d(A)$, where α is as in (3).

The following theorem gives a necessary condition for a set in $L_p(\Omega)$ $(1 < p < \infty)$ to be self-extremal.

Theorem 5. Under the assumptions of Theorem 1, for every $\varepsilon \in (0, d(A))$, every positive integer m, there exists an m-simplex $\Delta(\varepsilon, m)$ with vertices in A such that each edge of $\Delta(\varepsilon, m)$ has length not less than $d(A) - \varepsilon$.

Proof. We will assume A is closed convex and $r(A) = 1$. From the proof of Theorem 1, we derived a sequence $\{y_{s_{n-1}+1}, y_{s_{n-1}+2}, \ldots, y_{s_n}\}_{n=2}^\infty$ in A and a sequence of positive numbers $\{t_{s_{n-1}+1}, t_{s_{n-1}+2}, \ldots, t_{s_n}\}_{n=2}^\infty$ (with convention $s_1 = 0$) such that

$$2 \cdot r_n^\alpha \leq \sum_{i,j \in I_n} t_i t_j \|y_i - y_j\|^\alpha, \quad \sum_{i \in I_n} t_i = 1, \tag{10}$$

where $r_n \in (1 - 1/n, 1]$, α is as in (3), and $I_n := \{s_{n-1} + 1, s_{n-1} + 2, \ldots, s_n\}$.

We denote

\[T_{nj} := \sum_{i \in I_n} t_i \| y_i - y_j \|^a, \]

\[S_n := \left\{ j \in I_n : T_{nj} \geq 2 \cdot r_n^a \left(1 - \sqrt{1 - r_n^a} \right) \right\}, \]

\[S_n(y_j) := \left\{ i \in I_n : \| y_i - y_j \|^a \geq 2 \cdot \left(1 - \frac{1}{\sqrt{n}} \right) \right\}, \quad j \in S_n, \]

\[\hat{S}_n(y_j) := \left\{ i \in I_n : \sum_{i \in I_n} t_i \| y_i - y_j \|^a \geq 2 \cdot \left(1 - \frac{1}{4} \sqrt{n} \right) \right\}, \quad j \in S_n, \]

\[\lambda_n := \sum_{i \in I_n \setminus S_n} t_i = 1 - \sum_{i \in S_n} t_i. \]

One can proceed furthermore as follows. We have

\[2r_n^a \leq \sum_{i,j \in I_n} t_i t_j \| y_i - y_j \|^a \]

\[= \sum_{j \in S_n} t_j \sum_{i \in I_n} t_i \| y_i - y_j \|^a + \sum_{j \in I_n \setminus S_n} t_j \sum_{i \in I_n} t_i \| y_i - y_j \|^a \]

\[\leq 2 \sum_{j \in S_n} t_j + 2r_n^a \left(1 - \sqrt{1 - r_n^a} \right) \sum_{j \in I_n \setminus S_n} t_j \]

\[= 2 - 2\lambda_n \left(1 - r_n^a + r_n^a \sqrt{1 - r_n^a} \right) \]

\[\leq 2 - 2\lambda_n \sqrt{1 - r_n^a}. \] (12)

Hence \(\lambda_n \leq \sqrt{1 - r_n^a} \to 0 \), as \(n \to \infty \). Thus \(\lim_{n \to \infty} (\sum_{i \in S_n} t_i) = \lim_{n \to \infty} (1 - \lambda_n) = 1 \).

On the other hand,

\[2r_n^a \leq \sum_{i,j \in I_n} t_i t_j \| y_i - y_j \|^a \leq 2 \left(1 - \left(\sum_{i \in I_n} t_i^2 \right) \right) \leq 2(1 - t_i^2) \] (13)

for every \(i \in I_n \). Therefore \(t_i \leq \sqrt{1 - r_n^a} \to 0 \) as \(n \to \infty \). One concludes that the cardinality \(|S_n| \) of \(S_n \) tends to \(\infty \) as \(n \to \infty \). In a similar manner (cf. [5, the proof of Theorem 3.4]), for every \(\epsilon \in (0,d(A)) \) and a given positive integer \(m \), we choose \(n \) sufficiently large satisfying

\[|S_n| > m, \quad \frac{2am}{\sqrt{n}} < 1, \quad 2 \left(1 - \frac{1}{\sqrt{n}} \right) \geq (d(A) - \epsilon)^a \] (14)

such that for every \(1 \leq k \leq m \) and every choice of \(i_1, i_2, \ldots, i_k \in S_n \), we have

\[\bigcap_{\gamma=1}^{k} \hat{S}_n(y_{i_\gamma}) \neq \emptyset. \] (15)
With \(m \) and \(n \) as above and a fixed \(j \in S_n \), setting \(z_1 := y_j \), we take consecutively \(z_2 \in \hat{S}_n(z_1), z_3 \in \hat{S}_n(z_1) \cap \hat{S}_n(z_2), \ldots, z_{m+1} \in \bigcap_{k=1}^{m} \hat{S}_n(z_k) \). One sees that
\[
\|z_i - z_j\|^{a} \geq 2 \left(1 - \frac{1}{\sqrt{n}} \right) \geq (d(A) - \epsilon)^{a}
\] (16)
for all \(i \neq j \) in \(\{1, 2, \ldots, m + 1\} \), with \(n \) sufficiently large. We obtain an \(m \)-simplex formed by \(z_1, z_2, \ldots, z_{m+1} \), whose edges have length not less than \(d(A) - \epsilon \), as claimed.

The proof of Theorem 5 is complete. \(\Box \)

Remark 6. (i) Since for \(L_p(\Omega) \) spaces \(J_s = J \), the extremal sets in \(L_p(\Omega) \) are also self-extremal. Thus we obtain a similar result for extremal sets in \(L_p(\Omega) \) via Theorem 5 above.

(ii) In particular, \(\Omega = \mathbb{N}, \mu(A) := \text{card}(A), A \subset \mathbb{N} \) leads to the \(\ell_p \) space case [5, Theorem 3.4].

Example 7. (i) Let \(p \geq 2 \), consider a sequence \(\{\Omega_n\}_{n=1}^{\infty} \) consisting of measurable subsets of \(\Omega \) such that
\[
0 < \mu(\Omega_i) < \infty, \quad i = 1, 2, \ldots; \quad \Omega_i \cap \Omega_j = \emptyset \quad \forall i \neq j; \quad \bigcup_{i=1}^{\infty} \Omega_i = \Omega. \quad (17)
\]
Let \(\chi_{\Omega_i} \) denote the characteristic function of \(\Omega_i \), and set
\[
A := \{f_i\}_{i=1}^{\infty}, \quad f_i := \frac{\chi_{\Omega_i}}{[\mu(\Omega_i)]^{1/p}}. \quad (18)
\]
One can check easily that \(r(A) = 1, \ d(A) = 2^{1/p} \), hence \(A \) is a self-extremal set in \(L_p(\Omega) \).

(ii) In the case \(1 < p < 2 \), we set \(B := \{r_i\}_{i=0}^{\infty} \), where \(\{r_i\}_{i=0}^{\infty} \) is the sequence of Rademacher functions in \(L_p[0,1] \). If \(r \in \text{co}\{r_0,r_1,\ldots,r_n\} \) and \(k \geq n + 1 \), then it is easy to see that
\[
d(B) = 2^{1-1/p}
\]
and
\[
\|r - r_k\|_p^{1/p} := \left(\int_{0}^{1} |r - r_k|^p d\mu \right)^{1/p} \geq \left| \int_{0}^{1} (r - r_k) r_k d\mu \right| = 1,
\]
(19)
hence \(r(B) = 1 \). Thus \(B \) is a self-extremal set in \(L_p[0,1] \) with \(1 < p < 2 \). This is in contrast to the \(\ell_p \) case [5], where we conjectured that there are no (self)-extremal sets in \(\ell_p \) spaces with \(1 < p < 2 \).

Acknowledgment

The authors would like to thank the referees for several improvements and suggestions.

References

A note on self-extremal sets in $L_p(\Omega)$ spaces

Viet Nguyen-Khac: Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

E-mail address: nkviet@math.ac.vn

Khiem Nguyen-Van: Department of Mathematics & Informatics, Hanoi University of Education, Cau Giay District, Hanoi, Vietnam

E-mail address: nguyenvankhiem77@yahoo.com