COMMON FIXED POINTS OF SINGLE-VALUED AND MULTIVALUED MAPS

YICHENG LIU, JUN WU, AND ZHIXIANG LI

Received 19 June 2005 and in revised form 1 September 2005

We define a new property which contains the property (EA) for a hybrid pair of single- and multivalued maps and give some new common fixed point theorems under hybrid contractive conditions. Our results extend previous ones. As an application, we give a partial answer to the problem raised by Singh and Mishra.

1. Introduction and preliminaries

Let \((X, d)\) be a metric space. Then, for \(x \in X, A \subset X, d(x, A) = \inf\{d(x, y), y \in A\}. \) We denote \(CB(X)\) as the class of all nonempty bounded closed subsets of \(X.\) Let \(H\) be the Hausdorff metric with respect to \(d,\) that is,

\[
H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A) \right\},
\]

for every \(A, B \in CB(X).\) A self-map \(T\) defined on \(X\) satisfies Rhoades’ contractive definition in following sense: (see [19]) for all \(x, y \in X, x \neq y,\)

\[
d(Tx, Ty) < \max \{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}.
\]

The fixed points theorems for Rhoades-type contraction mapping were investigated by many authors [1, 5, 8, 10, 13, 16, 22] and the more results on this fields can be found in [2, 4, 9, 11, 15, 23]. Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a new development in the domain of contraction-type multivalued theory (see [3, 7, 10, 12, 14, 17, 18, 20] and references therein). In 1998, Jungck and Rhoades [12] introduced the notion of weak compatibility to the setting of single-valued and multivalued maps. In [21], Singh and Mishra introduced the notion of (IT)-commutativity for hybrid pair of single-valued and multivalued maps which need not be weakly compatible. Recently, Aamri and El Moutawakil [1] defined a property (EA) for self-maps which contained the class of noncompatible maps. More recently, Kamran [13] extended the property (EA) for a hybrid pair of single- and multivalued maps and generalized the notion of (IT)-commutativity for such pair.
The aim of this paper is to define a new property which contains the property (EA) for a hybrid pair of single- and multivalued maps and give some new common fixed point theorems under hybrid contractive conditions. As an application, we give an affirmative (half-) answer (Theorem 2.8) to the open problem in [21].

Now we state some known definitions and facts.

Definition 1.1 [12]. Maps $f: X \to X$ and $T: X \to CB(X)$ are weakly compatible if they commute at their coincidence points, that is, if $fTx = Tf x$ whenever $fx \in Tx$.

Definition 1.2 [21]. Maps $f: X \to X$ and $T: X \to CB(X)$ are said to be (IT)-commuting at $x \in X$ if $fTx \subset Tfx$ whenever $fx \in Tx$.

Definition 1.3 [1]. Maps $f, g: X \to X$ are said to satisfy the property (EA) if there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} g x_n = t \in X$.

Definition 1.4 [13]. Maps $f: X \to X$ and $T: X \to CB(X)$ are said to satisfy the property (EA) if there exist a sequence $\{x_n\}$ in X, some t in X, and A in $CB(X)$ such that

$$\lim_{n \to \infty} fx_n = t \in A = \lim_{n \to \infty} Tx_n.$$ \hspace{1cm} (1.3)

Definition 1.5 [13]. Let $T: X \to CB(X)$. The map $f: X \to X$ is said to be T-weakly commuting at $x \in X$ if $ffx \in Tfx$.

For the rest of the introduction, we state the following theorem as the prototype in this paper.

Theorem 1.6 (see [13]). Let f be a self-map of the metric space (X, d) and let F be a map from X into $CB(X)$ such that

1. (f, F) satisfies the property (EA);
2. for all $x \neq y$ in X,

$$H(Fx, Fy) < \max \left\{ d(fx, fy), \frac{d(fx, Fx) + d(fy, Fy)}{2}, \frac{d(fx, Fy) + d(fy, Fx)}{2} \right\}. \hspace{1cm} (1.4)$$

If fX is closed subset of X, then

(a) f and F have a coincidence point;

(b) f and F have a common fixed point provided that f is F-weakly commuting at v and $ffv = fv$ for $v \in C(f, F)$, where $C(f, F) = \{ x : x$ is a coincidence point of f and $F \}$.

2. **Main results**

We begin with the following definition.

Definition 2.1. (1) Let $f, g, F, G: X \to X$. The maps pair (f, F) and (g, G) are said to satisfy the common property (EA) if there exist two sequences $\{x_n\}$, $\{y_n\}$ in X and some t in X such that

$$\lim_{n \to \infty} Gy_n = \lim_{n \to \infty} Fx_n = \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = t \in X.$$ \hspace{1cm} (2.1)
Let $f, g : X \to X$ and $F, G : X \to CB(X)$. The maps pair (f, F) and (g, G) are said to satisfy the common property (EA) if there exist two sequences $\{x_n\}, \{y_n\}$ in X, some t in X, and A, B in $CB(X)$ such that

$$\lim_{n \to \infty} Fx_n = A, \quad \lim_{n \to \infty} Gy_n = B, \quad \lim_{n \to \infty} f x_n = \lim_{n \to \infty} g y_n = t \in A \cap B. \quad (2.2)$$

Example 2.2. Let $X = [1, +\infty)$ with the usual metric. Define $f, g : X \to X$ and $F, G : X \to CB(X)$ by $f(x) = 2 + x/3$, $g(x) = 2 + x/2$, and $F(x) = [1, 2 + x]$, $G(x) = [3, 3 + x/2]$ for all $x \in X$. Consider the sequences $\{x_n\} = \{3 + 1/n\}$, $\{y_n\} = \{2 + 1/n\}$. Clearly, $\lim_{n \to \infty} Fx_n = [1, 5] = A$, $\lim_{n \to \infty} Gy_n = [3, 4] = B$, $\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g y_n = 3 \in A \cap B$. Therefore, (f, F) and (g, G) are said to satisfy the common property (EA).

Theorem 2.3. Let f, g be two self-maps of the metric space (X, d) and let F, G be two maps from X into $CB(X)$ such that

1. (f, F) and (g, G) satisfy the common property (EA);
2. for all $x \neq y$ in X,

$$H(Fx, Gy) < \max \left\{ \frac{d(fx, gy) + d(gy, Fx)}{2}, \frac{d(fx, Gy) + d(gy, Fx)}{2} \right\}. \quad (2.3)$$

If FX and $G X$ are closed subsets of X, then

(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $fv = f v$ for $v \in C(f, F)$;
(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $gv = Gv$ for $v \in C(g, G)$;
(e) $f, g, F,$ and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since (f, F) and (g, G) satisfy the common property (EA), there exist two sequences $\{x_n\}, \{y_n\}$ in X and $u \in X, A, B \in CB(X)$ such that

$$\lim_{n \to \infty} Fx_n = A, \quad \lim_{n \to \infty} Gy_n = B, \quad \lim_{n \to \infty} f x_n = \lim_{n \to \infty} g y_n = u \in A \cap B. \quad (2.4)$$

By virtue of FX and $G X$ being closed, we have $u = fv$ and $u = gw$ for some $v, w \in X$. We claim that $fv \in Fv$ and $gw \in Gw$. Indeed, condition (2) implies that

$$H(Fx_n, Gw) < \max \left\{ \frac{d(fx_n, gw) + d(gw, Fx_n)}{2}, \frac{d(fx_n, Gw) + d(gw, Fx_n)}{2} \right\}. \quad (2.5)$$
Taking the limit as \(n \to \infty \), we obtain

\[
H(A, G_w) < \max \left\{ d(f_v, g_w), \frac{d(f_v, A) + d(g_w, G_w)}{2}, \frac{d(f_v, G_w) + d(g_w, A)}{2} \right\}
\]

\[(2.6)\]

\[
= \frac{d(g_w, G_w)}{2}.
\]

Since \(g_w = f_v \in A \), it follows from the definition of Hausdorff metric that

\[
d(g_w, G_w) \leq H(A, G_w) \leq \frac{d(g_w, G_w)}{2},
\]

\[(2.7)\]

which implies that \(g_w \in G_w \).

On the other hand, by condition (2) again, we have

\[
H(F_v, G_{y_n}) < \max \left\{ d(f_v, g_{y_n}), \frac{d(f_v, F_v) + d(g_{y_n}, G_{y_n})}{2}, \frac{d(f_v, G_{y_n}) + d(g_{y_n}, F_v)}{2} \right\}.
\]

\[(2.8)\]

Similarly, we obtain

\[
d(f_v, F_v) \leq H(F_v, B) \leq \frac{d(f_v, F_v)}{2}.
\]

\[(2.9)\]

Hence \(f_v \in F_v \). Thus \(f \) and \(F \) have a coincidence point \(v \), \(g \) and \(G \) have a coincidence point \(w \). This ends the proofs of part (a) and part (b).

Furthermore, by virtue of condition (c), we obtain \(f f_{v} = f v \) and \(f f_v \in F f v \). Thus \(u = f u \in F u \). This proves (c). A similar argument proves (d). Then (e) holds immediately.

Remark 2.4. In Theorem 2.3, if \(F, G \) are two maps from \(K \) into \(CB(X) \), where \(K \) is a closed subset of \(X \). In this case, it is necessary to assume that \((X, d) \) is a metrically convex metric space. In this direction, many excellent works have appeared (see [5, 21]).

Corollary 2.5 (see [13, Theorem 3.10]). Let \(f \) be a self-map of the metric space \((X, d) \) and let \(F \) be a map from \(X \) into \(CB(X) \) such that

1. \((f, F)\) satisfies the property (EA);
2. for all \(x \neq y \) in \(X \),

\[
H(F_x, F_y) < \max \left\{ d(x, y), \frac{d(f_x, F_y) + d(f_y, F_x)}{2}, \frac{d(f_x, F_y) + d(f_y, F_x)}{2} \right\}.
\]

\[(2.10)\]

If \(f X \) is closed subset of \(X \), then

1. \(f \) and \(F \) have a coincidence point;
2. \(f \) and \(F \) have a common fixed point provided that \(f \) is \(F \)-weakly commuting at \(v \) and \(f f v = f v \) for \(v \in C(f, F) \).
Proof. Let $F = G$ and $f = g$, then the results follow from Theorem 2.3 immediately. \qed

If $f = g$, we can conclude the following corollary.

Corollary 2.6. Let f be a self-map of the metric space (X,d) and let F, G be two maps from X into $CB(X)$ such that
1. (f, F) and (f, G) satisfy the common property (EA);
2. for all $x \neq y$ in X,
 \[H(Fx, Gy) < \max \left\{ \frac{d(fx, fy) + d(fy, Gy)}{2}, \frac{d(fx, Gy) + d(fy, Fx)}{2} \right\}. \] (2.11)

If fX is closed subset of X, then
(a) f, G and F have a coincidence point;
(b) f, G and F have a common fixed point provided that f is both F-weakly commuting and G-weakly commuting at v and $ffv = fv$ for $v \in C(f, F)$.

If both F and G are single-valued maps in Theorem 2.3, then we have the following corollary.

Corollary 2.7. Let f, g, F, G be four self-maps of the metric space (X,d) such that
1. (f, F) and (g, G) satisfy the common property (EA);
2. for all $x \neq y$ in X,
 \[d(Fx, Gy) < \max \left\{ \frac{d(fx, gy) + d(gy, Gy)}{2}, \frac{d(fx, Gy) + d(gy, Fx)}{2} \right\}. \] (2.12)

If fX and gX are closed subsets of X, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $ffv = fv$ for $v \in C(f, F)$;
(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $ggv = gv$ for $v \in C(g, G)$;
(e) f, g, F, G have a common fixed point provided that both (c) and (d) are true.

Theorem 2.8. Let f, g be two self-maps of the complete metric space (X,d), let $\lambda \in (0,1)$ be a constant, and let F, G be two maps from X into $CB(X)$ such that for all $x \neq y$ in X,
\[H(Fx, Gy) \leq \lambda \max \left\{ d(fx, gy), d(fx, Fx), d(gy, Gy), \frac{d(fx, Gy) + d(gy, Fx)}{2} \right\}. \] (2.13)

If fX and gX are closed subsets of X and $FX \subset gX$, $GX \subset fX$, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $ffv = fv$ for $v \in C(f, F)$;
Hence, we obtain

\[d(y_1, y_2) \leq H(Fx_0, Gx_1) + \lambda. \] (2.14)

Since \(GX \subset fX \), there exists \(x_2 \) such that \(f(x_2) = y_2 \in Gx_1 \), then we choose \(y_3 \in Fx_2 \) satisfying

\[d(y_2, y_3) \leq H(Gx_1, Fx_2) + \lambda^2, \] (2.15)

and \(y_3 = gx_3 \) for some \(x_3 \in X \).

We continue this process to obtain a sequence \(\{y_n\} \) in \(X \) such that

\[
y_{2n} = f(x_{2n}) \in Gx_{2n-1}, \quad y_{2n+1} = g(x_{2n+1}) \in Fx_{2n},
\]

\[
d(y_{2n}, y_{2n+1}) \leq H(Gx_{2n-1}, Fx_{2n}) + \lambda^{2n}, \] (2.16)

\[
d(y_{2n-1}, y_{2n}) \leq H(Fx_{2n-2}, Gx_{2n-1}) + \lambda^{2n-1}, \quad n = 1, 2, \ldots.
\]

Let \(a_n = d(y_n, y_{n+1}) \), then

\[
a_{2n} = d(y_{2n}, y_{2n+1}) \leq H(Gx_{2n-1}, Fx_{2n}) + \lambda^{2n}
\]

\[
\leq \lambda \max \left\{ d(fx_{2n}, gx_{2n-1}), d(fx_{2n}, Fx_{2n}), d(gx_{2n-1}, Gx_{2n-1}), \right. \]

\[
\left. \frac{d(fx_{2n}, Gx_{2n-1}) + d(gx_{2n-1}, Fx_{2n})}{2} \right\} + \lambda^{2n}.
\] (2.17)

By \(fx_{2n} \in Gx_{2n-1} \), we have

\[
d(gx_{2n-1}, Gx_{2n-1}) \leq d(gx_{2n-1}, fx_{2n}), \quad d(fx_{2n}, Fx_{2n}) \leq H(Gx_{2n-1}, Fx_{2n}).
\] (2.18)

Thus, we rewrite (2.17) as

\[
a_{2n} \leq \lambda \max \left\{ d(fx_{2n}, gx_{2n-1}), \frac{d(gx_{2n-1}, Fx_{2n})}{2} \right\} + \lambda^{2n}.
\] (2.19)

Hence, we obtain

\[
a_{2n} \leq \lambda \max \left\{ a_{2n-1}, \frac{a_{2n-1} + a_{2n}}{2} \right\} + \lambda^{2n}.
\] (2.20)

If \(a_{2n-1} \leq a_{2n} \) for some \(n \), we have \(a_{2n} \leq \lambda^{2n}/(1 - \lambda) \). Otherwise, we get

\[
a_{2n} \leq \lambda a_{2n-1} + \lambda^{2n}.
\] (2.21)
Therefore, by (2.20), we achieve
\[a_{2n} \leq \max \left\{ \lambda a_{2n-1} + \lambda^{2n}, \frac{\lambda^{2n}}{1 - \lambda} \right\}. \tag{2.22} \]

On the other hand,
\[a_{2n-1} \leq H(Gx_{2n-1}, Fx_{2n-2}) + \lambda^{2n-1} \]
\[\leq \lambda \max \left\{ d(fx_{2n-2}, gx_{2n-1}), d(fx_{2n-2}, Fx_{2n-2}), d(gx_{2n-1}, Gx_{2n-1}) \right\}, \tag{2.23} \]
\[+ \frac{d(fx_{2n-2}, Gx_{2n-1}) + d(gx_{2n-1}, Fx_{2n-2})}{2} + \lambda^{2n-1}. \]

Since \(gx_{2n-1} \in Fx_{2n-2} \), we have
\[d(gx_{2n-1}, Gx_{2n-1}) \leq H(Gx_{2n-1}, Fx_{2n-2}), \]
\[d(fx_{2n-2}, Fx_{2n-2}) \leq d(gx_{2n-1}, fx_{2n-2}). \tag{2.24} \]

Thus, we obtain
\[a_{2n-1} \leq \lambda \max \left\{ a_{2n-2}, \frac{a_{2n-2} + a_{2n-1}}{2} \right\} + \lambda^{2n-1}. \tag{2.25} \]

Similarly, we get
\[a_{2n-1} \leq \max \left\{ \lambda a_{2n-2} + a_{2n-1}, \frac{\lambda^{2n-1}}{1 - \lambda} \right\}. \tag{2.26} \]

By (2.22) and (2.26), we obtain
\[a_n \leq \max \left\{ \lambda a_{n-1} + \lambda^n, \frac{\lambda^n}{1 - \lambda} \right\}, \quad n = 1, 2, \ldots \tag{2.27} \]

It is easy to see that
\[a_n \leq \max \left\{ \lambda^n(a_0 + n), \frac{\lambda^n}{1 - \lambda} \right\}, \quad n = 1, 2, \ldots \tag{2.28} \]

Thus, there exists \(n_0 > 0 \) such that for \(n \geq n_0 \),
\[a_n \leq \lambda^n(a_0 + n). \tag{2.29} \]

Hence \(\lim_{n \to \infty} a_n = 0. \)

In order to prove that \(\{ y_n \} \) is Cauchy sequence, for any \(\varepsilon > 0 \), we choose a sufficiently large number \(N \) such that
\[\lambda^N(a_0 + N) \leq \frac{\varepsilon(1 - \lambda)}{2}, \quad \lambda^N \leq \frac{\varepsilon(1 - \lambda)^2}{4}. \tag{2.30} \]
Thus, for any positive integer k, we obtain
\[
d(y_N, y_{N+k}) \leq \sum_{i=0}^{k-1} a_{N+i} \leq \sum_{i=0}^{k-1} \lambda^{N+i}(a_0 + N + i)
\]
\[
< \lambda^N (a_0 + N) \frac{1}{1-\lambda} + \lambda^N \left(\sum_{i=0}^{k-1} i\lambda^i \right)
\]
\[
< \lambda^N (a_0 + N) \frac{1}{1-\lambda} + \lambda^N \frac{2}{(1-\lambda)^2} \leq \epsilon.
\]

This implies that $\{y_n\}$ is a Cauchy sequence. Thus there is u satisfying
\[
\lim_{n \to \infty} y_n = u = \lim_{n \to \infty} f x_{2n} = \lim_{n \to \infty} g x_{2n+1}.
\]
Since FX and GX are closed, there exist a, b such that $fa = u = gb$. A similar argument proves that
\[
\lim_{n \to \infty} Fx_{2n} = \lim_{n \to \infty} Gx_{2n+1},
\]
\[
u \in \lim_{n \to \infty} Fx_{2n} = \lim_{n \to \infty} Gx_{2n+1}.
\]

Then (f, F) and (g, G) satisfy the common property (EA). The rest of the proof follows Theorem 2.3 immediately, then the proof of Theorem 2.8 is complete. \square

Corollary 2.9. Let f, g be two self-maps of the complete metric space (X, d), let $\lambda \in (0, 1)$ be a constant, and let F, G be two maps from X into $CB(X)$ such that for all $x \neq y$ in X,
\[
H(Fx, Gy) \leq \alpha d(fx, gy) + \beta \max \{d(fx, Fx), d(gy, Gy)\}
\]
\[
+ \gamma \max \{d(fx, Gy) + d(gy, Fx), d(fx, Fx) + d(gy, Gy)\},
\]
and $\alpha + \beta + 2\gamma < 1$. If FX and GX are closed subsets of X and $FX \subset GX, GX \subset Fx$, then
(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $fv = f v$ for $v \in C(f,F)$;
(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $gv = gv$ for $v \in C(g,G)$;
(e) $f, g, F, and G$ have a common fixed point provided that both (c) and (d) are true.

Proof. Let $\lambda = \alpha + \beta + 2\gamma$. Following (2.34) and $\max \{d(fx, Fx), d(gy, Gy)\} \geq (d(fx, Fx) + d(gy, Gy))/2$, it is easy to see that
\[
H(Fx, Gy) \leq \lambda \max \left\{ d(fx, gy), d(fx, Fx), d(gy, Gy), \frac{d(fx, Gy) + d(gy, Fx)}{2} \right\}.
\]
(2.35)

Thus by Theorem 2.8, we arrive to the conclusion in Corollary 2.9. \square
The next theorem involves a function ϕ. Various conditions on ϕ have been investigated by different authors [4, 6, 15, 16]. Let $\phi: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ continue and satisfy the following conditions:

(A1) ϕ is nondecreasing on \mathbb{R}^+,
(A2) $0 < \phi(t) < t$, for each $t \in (0, +\infty)$.

Theorem 2.10. Let f, g be two self-maps of the metric space (X, d) and let $F, G: X \rightarrow X$ be two maps from X into $\text{CB}(X)$ such that

1. (f, F) and (g, G) satisfy the common property (EA);
2. for all $x \neq y$ in X,
\[
H(Fx, Gy) \leq \phi\left(\max\{d(fx, gy), d(fx, Fx), d(gy, Gy), d(fx, Gy), d(gy, Fx)\}\right). \tag{2.36}
\]

If fX and gX are closed subsets of X, then

(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that f is F-weakly commuting at v and $ffv = fFv$ for $v \in C(f, F)$;
(d) g and G have a common fixed point provided that g is G-weakly commuting at v and $ggv = gGv$ for $v \in C(g, G)$;
(e) f, g, F, and G have a common fixed point provided that both (c) and (d) are true.

Proof. Since (f, F) and (g, G) satisfy the common property (EA), there exist two sequences $\{x_n\}, \{y_n\}$ in X and $u \in X, A, B \in \text{CB}(X)$ such that
\[
\lim_{n \to \infty} Fx_n = A, \lim_{n \to \infty} Gy_n = B, \quad \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = u \in A \cap B. \tag{2.37}
\]

By virtue of fX and gX being closed, we have $u = fv$ and $u = gw$ for some $v, w \in X$. We claim that $fv \in Fv$ and $gw \in Gw$. Indeed, condition (2) implies that
\[
H(Fx_n, Gw) \leq \phi\left(\max\{d(fx_n, gw), d(fx_n, Fx_n), d(gw, Gw), d(fx_n, Gw), d(gw, Fx_n)\}\right). \tag{2.38}
\]

Taking the limit as $n \to \infty$, we obtain
\[
H(A, Gw) \leq \phi\left(\max\{d(fv, gw), d(fv, A), d(gw, Gw), d(fv, Gw), d(gw, A)\}\right) \leq \phi(d(gw, Gw)) < d(gw, Gw). \tag{2.39}
\]

Since $gw = fv \in A$, it follows from the definition of Hausdorff metric that
\[
d(gw, Gw) \leq H(A, Gw) < d(gw, Gw), \tag{2.40}
\]

which implies that $gw \in Gw$.

\[\text{}\]
On the other hand, by condition (2) again, we have

$$H(Fv, Gy_n) \leq \varphi(\max\{d(fv, gy_n), d(fv, Fv), d(gy_n, Gy_n), d(fv, Gy_n), d(gy_n, Fv)\}).$$

(2.41)

Similarly, we obtain

$$d(fv, Fv) \leq H(Fv, B) < d(fv, Fv).$$

(2.42)

Hence $fv \in Fv$. Thus f and F have a coincidence point v, g and G have a coincidence point w. This ends the proofs of part (a) and part (b). The rest of proof is similar to the argument of Theorem 2.3.

□

References

Yicheng Liu: Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha 410073, China
E-mail address: liuyc2001@hotmail.com

Jun Wu: College of Mathematics and Econometrics, Hunan University, Changsha 410082, China
E-mail address: junwmath@hotmail.com

Zhixiang Li: Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha 410073, China
E-mail address: zhxli02@yahoo.com.cn