We prove that the sequence \(\{ b_n^{-1} \sum_{i=1}^{n} (X_i - EX_i) \}_{n \geq 1} \) converges a.e. to zero if \(\{ X_n, n \geq 1 \} \) is an associated sequence of random variables with \(\sum_{n=1}^{\infty} b_n^{-2} \text{Var}(\sum_{i=k_n}^{k_{n+1}} X_i) < \infty \) where \(\{ b_n, n \geq 1 \} \) is a positive nondecreasing sequence and \(\{ k_n, n \geq 1 \} \) is a strictly increasing sequence, both tending to infinity as \(n \) tends to infinity and \(0 < a = \inf_{n \geq 1} b_n b_{n+1} \leq \sup_{n \geq 1} b_n b_{n+1} = c < 1. \)

1. Introduction

Let \((\Omega, F, P)\) be a probability space and \(\{ X_n, n \geq 1 \} \) a sequence of random variables defined on \((\Omega, F, P)\). We start with definitions. A finite sequence \(\{ X_1, \ldots, X_n \} \) is said to be associated if for any two componentwise nondecreasing functions \(f \) and \(g \) on \(\mathbb{R}^n \),

\[
\text{Cov}(f(X_1, \ldots, X_n), g(X_1, \ldots, X_n)) \geq 0,
\]

assuming of course that the covariance exists. The infinite sequence \(\{ X_n, n \geq 1 \} \) is said to be associated if every finite subfamily is associated. The concept of association was introduced by Esary et al. [1]. There are some results on the strong law of large numbers for associated sequences. Rao [4] developed the Hajek-Renyi inequality for associated sequences and proved the following theorem. Let \(\{ X_n, n \geq 1 \} \) be an associated sequence of random variables with

\[
\sum_{j=1}^{\infty} \frac{\text{Var}(X_j)}{b_j^2} + \sum_{1 \leq j \neq k}^{\infty} \frac{\text{Cov}(X_j, X_k)}{b_j b_k} < \infty,
\]

where \(\{ b_n, n \geq 1 \} \) is a positive nondecreasing sequence of real numbers. Then \(b_n^{-1} \sum_{j=1}^{n} (X_j - EX_j) \) converges to zero almost everywhere as \(n \to \infty \). In this note we will prove the strong law of large numbers for associated sequences with new conditions.
2. Result

Theorem 2.1. Let \(\{X_n, n \geq 1\} \) be an associated sequence of random variables. If

\[
\sum_{n=1}^{\infty} b_n^{-2} \text{Var} (S_{kn} - S_{kn-1}) < \infty,
\]

where \(S_n = \sum_{i=1}^{n} X_i \) and \(\{b_n, n \geq 1\} \) is a positive nondecreasing sequence and \(\{k_n, n \geq 1\} \) is a strictly increasing sequence, both tending to infinity as \(n \) tends to infinity and

\[
0 < a = \inf_{n \geq 1} b_k b_{kn+1}^{-1} \leq \sup_{n \geq 1} b_k b_{kn+1}^{-1} = c < 1.
\]

Then

\[
\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^{n} (X_k - EX_k) = 0 \quad \text{a.e.}
\]

Proof. We set \(k_0 = 0, b_0 = 0, \) and \(T_n = b_k^{-1} \sum_{j=k_n+1}^{k_{n+1}} Y_j, \) where \(Y_j = X_j - EX_j. \) For any positive integer \(n, \) there exists a positive integer \(m \) such that \(k_{m-1} < n \leq k_m. \) Note that \(m \to \infty \) as \(n \to \infty. \) Without loss of generality, we assume that \(n > k_1 \) and, therefore, \(k_{m-1} \geq 1 \) and \(b_n \geq b_{k_{m+1}} > 0. \) We can show that

\[
\frac{1}{b_n} \sum_{j=1}^{n} Y_j = \frac{b_{k_m}}{b_n} \sum_{j=1}^{m-1} \frac{b_{k_j} T_j + \frac{1}{b_n} \sum_{j=k_{m+1}+1}^{n} Y_j}{b_{k_m+1}}.
\]

Since \(b_{k_{m+1}} \geq ab_{k_m}, \) we conclude that

\[
\left| \frac{1}{b_n} \sum_{j=1}^{n} Y_j \right| \leq \left| \sum_{j=1}^{m-1} \frac{b_{k_j} T_j}{b_{k_m+1}} \right| + \frac{1}{b_n} \sum_{j=k_{m+1}+1}^{n} \left| Y_j \right|.
\]

In order to prove (2.3) it suffices to demonstrate that each of the two terms in the right-hand side of (2.5) converges to zero almost everywhere as \(n \to \infty. \) The first term on the right-hand side does so due to the Toeplitz lemma (see Loève [2]) provided that

\[
\lim_{j \to \infty} T_j = 0 \quad \text{a.e.,} \quad \sup_{m \geq 2} \sum_{j=1}^{m-1} \frac{b_{k_j}}{b_{k_m+1}} < \infty, \quad \lim_{n \to \infty} \frac{b_{k_j}}{b_{k_{m+1}}} = 0 \quad \text{for every } j.
\]

The third condition is satisfied because by the hypothesis the sequence \(\{b_n, n \geq 1\} \) monotonically increases without bounds. The second condition holds because

\[
\frac{b_{k_j}}{b_{k_{m+1}}} = \prod_{i=j}^{m-1} \frac{b_{k_i}}{b_{k_{i+1}}} \leq c^{m-j-1},
\]

\[
\sum_{j=1}^{m-1} \frac{b_{k_j}}{b_{k_{m+1}}} \leq \sum_{j=1}^{m-1} c^{m-j-1} = \frac{1 - c^m}{1 - c} < \frac{1}{1 - c}.
\]
since by the hypothesis $b_{kj} \leq cb_{kj+1}, c \in (0, 1)$. Thus, the first term in the right-hand side of (2.5) converges to zero almost everywhere as $m \to \infty$ if the sequence $\{T_n, n \geq 1\}$ also does so. By the hypothesis, let ϵ be an arbitrary positive number. With the use of the Markov inequality, we obtain

$$
\epsilon^2 \sum_{n=2}^{\infty} P(|T_n| > \epsilon) \leq \sum_{n=2}^{\infty} E|T_n|^2 \leq \sum_{n=2}^{\infty} b_{n}^2 \text{Var} (S_{kn} - S_{kn-1}) < \infty. \tag{2.8}
$$

The finiteness of the last series in the right-hand side is guaranteed by condition (2.1). In view of the Borel-Cantelli lemma, the sequence $\{T_n, n \geq 1\}$ converges to zero a.e. Let us turn to the second term in the right-hand side of (2.5). Applying Chebyshev’s inequality, we get that, for any $\epsilon > 0$,

$$
\epsilon^2 P\left(\frac{1}{b_{km}} \max_{k_{m-1}+1 \leq k \leq km} \sum_{j=k_{m-1}+1}^{l} Y_j > \epsilon \right) \leq \frac{1}{b_{km}^2} E\left(\max_{k_{m-1}+1 \leq k \leq km} \sum_{j=k_{m-1}+1}^{l} Y_j \right)^2. \tag{2.9}
$$

We now apply the Kolmogorov-type inequality, valid for partial sums of associated random variables $\{Y_j, k_{m-1}+1 \leq j \leq km\}$ with mean zero (cf. Newman and Wright [3, Theorem 2]). Hence, from (2.1), we have

$$
\epsilon^2 \sum_{m=2}^{\infty} P\left(\frac{1}{b_{km}} \max_{k_{m-1}+1 \leq k \leq km} \sum_{j=k_{m-1}+1}^{l} Y_j > \epsilon \right) \leq \sum_{m=2}^{\infty} \frac{1}{b_{km}^2} E\left(\frac{1}{b_{km}} \sum_{j=k_{m-1}+1}^{km} Y_j \right)^2 \leq \sum_{m=2}^{\infty} \frac{\text{Var} (\sum_{j=k_{m-1}+1}^{km} Y_j)}{b_{km}^2} \leq \sum_{m=2}^{\infty} \frac{\text{Var} (S_{km} - S_{km-1})}{b_{km}^2} < \infty. \tag{2.10}
$$

By virtue of the Borel-Cantelli lemma, the sequence

$$
\left\{ \left(\frac{1}{b_{km}} \max_{k_{m-1}+1 \leq k \leq km} \sum_{j=k_{m-1}+1}^{l} Y_j \right) \right\}_{m \geq 1}
$$

converges to zero almost everywhere. Thus, the theorem is proved. \hfill \Box

Theorem 2.2. Let $\{X_n, n \geq 1\}$ be an associated sequence of random variables with

$$
\text{Var} (X_j) + \sum_{1 \leq k \neq j}^{\infty} \text{Cov}(X_j, X_k) = O(1), \tag{2.12}
$$

for all $j \geq 1$. Then

$$
\frac{\sum_{j=1}^{n} (X_j - EX_j)}{(n \log n)^{1/2} \log \log n} \to 0 \quad \text{a.e. as } n \to \infty. \tag{2.13}
$$
Proof. Under condition (2.12), there exists the constant of B such that

$$\text{Var} \left(S_{k_n} - S_{k_{n-1}} \right) \leq B(k_n - k_{n-1}) \leq Bk_n. \quad (2.14)$$

The sequence $b_n = (n \log n)^{1/2} \log \log n$ and $k_n = 2^{n+1}$, $n = 1, 2, \ldots$, satisfy the hypotheses of Theorem 2.1, which proves Theorem 2.2. \hfill \Box

Example 2.3. Let $\{X_n, n \geq 1\}$ be an associated sequence with $\text{Var}(X_i) = 1$ and $\text{Cov}(X_i,X_j) = \rho |i-j|$, $0 < \rho < 1$ for every i and j. Then

$$\text{Var}(X_i) + \sum_{1 \leq j \not= i}^{\infty} \text{Cov}(X_i,X_j) \leq 1 + 2 \sum_{k=1}^{\infty} \rho^k < \infty. \quad (2.15)$$

Therefore, we can apply Theorem 2.2.

Acknowledgment

This note was supported by the Shahrood University of Technology in 2004.

References

A. Nezakati: Faculty of Mathematics, Shahrood University of Technology, Shahrood, P.O. Box 36155-316, Iran

E-mail address: nezakati@shahrood.ac.ir