ON f-DERIVATIONS OF BCI-ALGEBRAS

JIANMING ZHAN AND YONG LIN LIU

Received 14 December 2004 and in revised form 16 May 2005

The notion of left-right (resp., right-left) f-derivation of a BCI-algebra is introduced, and some related properties are investigated. Using the idea of regular f-derivation, we give characterizations of a p-semisimple BCI-algebra.

1. Introduction and preliminaries

In the theory of rings and near-rings, the properties of derivations are an important topic to study, see [2, 3, 7, 10]. In [6], Jun and Xin applied the notions in rings and near-rings theory to BCI-algebras, and obtained some related properties. In this paper, the notion of left-right (resp., right-left) f-derivation of a BCI-algebra is introduced, and some related properties are investigated. Using the idea of regular f-derivation, we give characterizations of a p-semisimple BCI-algebra.

By a BCI-algebra we mean an algebra $(X; *, 0)$ of type (2,0) satisfying the following conditions:

(I) $((x * y) * (x * z)) * (z * y) = 0$;
(II) $(x * (x * y)) * y = 0$;
(III) $x * x = 0$;
(IV) $x * y = 0$ and $y * x = 0$ imply that $x = y$;
for all $x, y, z \in X$.

In any BCI-algebra X, one can define a partial order “\leq” by putting $x \leq y$ if and only if $x * y = 0$.

A subset S of a BCI-algebra X is called subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a BCI-algebra X is called an ideal of X if it satisfies (i) $0 \in I$; (ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

A mapping f of a BCI-algebra X into itself is called an endomorphism of X if $f(x * y) = f(x) * f(y)$ for all $x, y \in X$. Note that $f(0) = 0$. Especially, f is monic if for any $x, y \in X$, $f(x) = f(y)$ implies that $x = y$.

A BCI-algebra X has the following properties:

1. $x * 0 = x$;
2. $(x * y) * z = (x * z) * y$;
On f-derivations of BCI-algebras

(3) $x \leq y$ implies that $x \ast z \leq y \ast z$ and $z \ast y \leq z \ast x$;
(4) $x \ast (x \ast (x \ast y)) = x \ast y$;
(5) $(x \ast z) \ast (y \ast z) \leq x \ast y$;
(6) $0 \ast (x \ast y) = (0 \ast x) \ast (0 \ast y)$;
(7) $x \ast 0 = 0$ implies that $x = 0$.

For a BCI-algebra X, denote by X_+ (resp., $G(X)$) the BCK-part (resp., the BCI-G part) of X, that is, $X_+ = \{x \in X \mid 0 \leq x\}$ (resp., $G(X) = \{x \in X \mid 0 \ast x = x\}$). Note that $G(X) \cap X_+ = \{0\}$. If $X_+ = \{0\}$, then X is called a p-semisimple BCI-algebra.

In a p-semisimple BCI-algebra X, the following hold:

(8) $(x \ast z) \ast (y \ast z) = x \ast y$;
(9) $0 \ast (0 \ast x) = x$;
(10) $x \ast (0 \ast y) = y \ast (0 \ast x)$;
(11) $x \ast y = 0$ implies that $x = y$;
(12) $x \ast a = x \ast b$ implies that $a = b$;
(13) $a \ast x = b \ast x$ implies that $a = b$;
(14) $a \ast (a \ast x) = x$.

Let X be a p-semisimple BCI-algebra. We define addition “+” as $x + y = x \ast (0 \ast y)$ for all $x, y \in X$. Then $(X, +)$ is an abelian group with identity 0 and $x - y = x \ast y$. Conversely, let $(X, +)$ be an abelian group with identity 0 and let $x \ast y = x - y$. Then X is a p-semisimple BCI-algebra and $x + y = x \ast (0 \ast y)$ for all $x, y \in X$ (see [5]).

For a BCI-algebra X, we denote $x \land y = y \ast (y \ast x)$, in particular, $0 \ast (0 \ast x) = a_x$, and $L_p(X) = \{a \in X \mid x \ast a = 0 \Rightarrow x = a\}$ for any $x \in X$. We call the elements of $L_p(X)$ the p-atoms of X. For any $a \in X$, let $V(a) = \{x \in X \mid a \ast x = 0\}$, which is called the branch of X with respect to a. It follows that $x \land y \in V(a \ast b)$ whenever $x \in V(a)$ and $y \in V(b)$ for all $x, y \in X$ and $a, b \in L_p(X)$. Note that $L_p(X) = \{x \in X \mid a_x = x\}$, which is the p-semisimple part of X, and X is a p-semisimple BCI-algebra if and only if $L_p(X) = X$ (see [6]). Note also that $a_x \in L_p(X)$, that is, $0 \ast (0 \ast a_x) = a_x$, which implies that $a_x \ast y \in L_p(X)$ for all $y \in X$. It is clear that $G(X) \subseteq L_p(X), x \land (x \ast a) = a$, and $a \ast x \in L_p(X)$ for all $a \in L_p(X)$ and $x \in X$. For more details, refer to [1, 8, 11].

Definition 1.1 [9]. A BCI-algebra X is said to be **commutative** if $x = x \land y$ whenever $x \leq y$ for all $x, y \in X$.

Definition 1.2 [4]. A BCI-algebra X is said to be **branchwise commutative** if $x \land y = y \land x$ for all $x, y \in V(a)$ and all $a \in L_p(X)$.

Lemma 1.3 [6]. A BCI-algebra X is commutative if and only if it is branchwise commutative.

Definition 1.4 [6]. Let X be a BCI-algebra. By a **left-right derivation** (briefly, (l, r)-derivation) of X, a self-map d of X satisfying the identity $d(x \ast y) = (d(x) \ast y) \land (x \ast d(y))$ for all $x, y \in X$ is meant. If d satisfies the identity $d(x \ast y) = (x \ast d(y)) \land (d(x) \ast y)$ for all $x, y \in X$, then it is said that d is a **right-left derivation** (briefly, (r, l)-derivation) of X. Moreover, if d is both an (r, l)- and an (l, r)-derivation, it is said that d is a **derivation**.

2. f-derivations

In what follows, let f be an endomorphism of X unless otherwise specified.
Definition 2.1. Let X be a BCI-algebra. By a left-right f-derivation (briefly, (l,r)-f-derivation) of X, a self-map d_f of X satisfying the identity $d_f(x \ast y) = (d_f(x) \ast f(y)) \land (f(x) \ast d_f(y))$ for all $x, y \in X$ is meant, where f is an endomorphism of X. If d_f satisfies the identity $d_f(x \ast y) = (f(x) \ast d_f(y)) \land (d_f(x) \ast f(y))$ for all $x, y \in X$, then it is said that d_f is a right-left f-derivation (briefly, (r,l)-f-derivation) of X. Moreover, if d_f is both an (r,l)- and an (l,r)-f-derivation, it is said that d_f is an f-derivation.

Example 2.2. Let $X = \{0,1,2,3,4,5\}$ be a BCI-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $d_f : X \to X$ by

$$d_f(x) = \begin{cases} 2 & \text{if } x = 0, 1, \\ 0 & \text{otherwise}, \end{cases} \quad (2.1)$$

and define an endomorphism f of X by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, 1, \\ 2 & \text{otherwise}. \end{cases} \quad (2.2)$$

Then it is easily checked that d_f is both derivation and f-derivation of X.

Example 2.3. Let X be a BCI-algebra as in Example 2.2. Define a map $d_f : X \to X$ by

$$d_f(x) = \begin{cases} 2 & \text{if } x = 0, 1, \\ 0 & \text{otherwise}. \end{cases} \quad (2.3)$$

Then it is easily checked that d_f is a derivation of X.

Define an endomorphism f of X by

$$f(x) = 0, \quad \forall x \in X. \quad (2.4)$$

Then d_f is not an f-derivation of X since

$$d_f(2 \ast 3) = d_f(0) = 2, \quad (2.5)$$

but

$$(d_f(2) \ast f(3)) \land (f(2) \ast d_f(3)) = (0 \ast 0) \land (0 \ast 0) = 0 \land 0 = 0, \quad (2.6)$$

and thus $d_f(2 \ast 3) \neq (d_f(2) \ast f(3)) \land (f(2) \ast d_f(3))$.

From Example 2.3, we know that there is a derivation of X which is not an f-derivation of X.

Example 2.5. Let $X = \{0,1,2,3,4,5\}$ be a BCI-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Define a map $d_f : X \rightarrow X$ by

$$d_f(x) = \begin{cases}
0 & \text{if } x = 0,1, \\
2 & \text{if } x = 2,4, \\
3 & \text{if } x = 3,5,
\end{cases} \quad (2.7)$$

and define an endomorphism f of X by

$$f(x) = \begin{cases}
0 & \text{if } x = 0,1, \\
2 & \text{if } x = 2,4, \\
3 & \text{if } x = 3,5.
\end{cases} \quad (2.8)$$

Then it is easily checked that d_f is both derivation and f-derivation of X.

Example 2.6. Let X be a BCI-algebra as in Example 2.5. Define a map $d_f : X \rightarrow X$ by

$$d_f(x) = \begin{cases}
0 & \text{if } x = 0,1, \\
2 & \text{if } x = 2,4, \\
3 & \text{if } x = 3,5.
\end{cases} \quad (2.9)$$

Then it is easily checked that d_f is a derivation of X.

Define an endomorphism f of X by

$$f(0) = 0, \quad f(1) = 1, \quad f(2) = 3, \quad f(3) = 2, \quad f(4) = 5, \quad f(5) = 4. \quad (2.10)$$

Then d_f is not an f-derivation of X since

$$d_f(2 * 3) = d_f(3) = 3, \quad (2.11)$$

but

$$(d_f(2) * f(3)) \land (f(2) * d_f(3)) = (2 * 2) \land (3 * 3) = 0 \land 0 = 0, \quad (2.12)$$

and thus $d_f(2 * 3) \neq (d_f(2) * f(3)) \land (f(2) * d_f(3))$.

Example 2.7. Let X be a BCI-algebra as in Example 2.5. Define a map $d_f : X \rightarrow X$ by

$$
d_f(0) = 0, \quad d_f(1) = 1, \quad d_f(2) = 3, \quad d_f(3) = 2, \quad d_f(4) = 5, \quad d_f(5) = 4. \quad (2.13)
$$

Then d_f is not a derivation of X since

$$
d_f(2 \ast 3) = d_f(3) = 2, \quad \text{but} \quad (d_f(2) \ast 3) \land (2 \ast d_f(3)) = (3 \ast 3) \land (2 \ast 2) = 0 \land 0 = 0, \quad (2.15)
$$

and thus $d_f(2 \ast 3) \neq (d_f(2) \ast 3) \land (2 \ast d_f(3))$.

Define an endomorphism f of X by

$$
f(0) = 0, \quad f(1) = 1, \quad f(2) = 3, \quad f(3) = 2, \quad f(4) = 5, \quad f(5) = 4. \quad (2.16)
$$

Then it is easily checked that d_f is an f-derivation of X.

Remark 2.8. From Example 2.7, we know that there is an f-derivation of X which is not a derivation of X.

For convenience, we denote $f_x = 0 \ast (0 \ast f(x))$ for all $x \in X$. Note that $f_x \in L_p(X)$.

Theorem 2.9. Let d_f be a self-map of a BCI-algebra X defined by $d_f(x) = f_x$ for all $x \in X$. Then d_f is an (l, r)-f-derivation of X. Moreover, if X is commutative, then d_f is an (r, l)-f-derivation of X.

Proof. Let $x, y \in X$.

Since

$$
0 \ast (0 \ast (f_x \ast f(y))) = 0 \ast (0 \ast ((0 \ast (0 \ast f(x))) \ast f(y))) \\
= 0 \ast (0 \ast ((0 \ast f(y)) \ast (0 \ast f(x)))) \\
= 0 \ast (0 \ast (0 \ast f(y \ast x))) = 0 \ast f(y \ast x) \\
= 0 \ast (f(y) \ast f(x)) = (0 \ast f(y)) \ast (0 \ast f(x)) \\
= (0 \ast (0 \ast f(x))) \ast f(y) = f_x \ast f(y),
$$

we have $f_x \ast f(y) \in L_p(X)$, and thus

$$
f_x \ast f(y) = (f(x) \ast f_y) \ast ((f(x) \ast f_y) \ast (f_x \ast f(y))). \quad (2.18)
$$

It follows that

$$
d_f(x \ast y) = f_{x \ast y} = 0 \ast (0 \ast f(x \ast y)) = 0 \ast (0 \ast (f(x) \ast f(y))) \\
= (0 \ast (0 \ast f(x))) \ast (0 \ast (0 \ast f(y))) = f_x \ast f_y \\
= (0 \ast (0 \ast f_x)) \ast (0 \ast (0 \ast f(y))) = 0 \ast (0 \ast (f_x \ast f(y))) \\
= f_x \ast f(y) = (f(x) \ast f_y) \ast ((f(x) \ast f_y) \ast (f_x \ast f(y))) \\
= (f_x \ast f(y)) \land (f(x) \ast f_y) = (d_f(x) \ast f(y)) \land (f(x) \ast d_f(y)), \quad (2.19)
$$
and so \(df \) is an \((l,r)\)-\(f\)-derivation of \(X \). Now, assume that \(X \) is commutative. Using Lemma 1.3, it is sufficient to show that \(df(x) \ast f(y) \) and \(f(x) \ast df(y) \) belong to the same branch for all \(x, y \in X \), we have

\[
df(x) \ast f(y) = f_x \ast f(y) = 0 \ast (0 \ast (f_x \ast f(y)))
= (0 \ast (0 \ast f_x)) \ast (0 \ast (0 \ast f(y)))
= f_x \ast f_y \in V(f_x \ast f_y),
\]

and so \(f_x \ast f_y = (0 \ast (0 \ast f(x))) \ast (0 \ast (0 \ast f(y))) = 0 \ast (0 \ast (f(x) \ast f_y)) = 0 \ast (0 \ast f(x) \ast df(y)) \leq f(x) \ast df(y) \), which implies that \(f(x) \ast df(y) \in V(f_x \ast f_y) \). Hence, \(df(x) \ast f(y) \) and \(f(x) \ast df(y) \) belong to the same branch, and so

\[
df(x \ast y) = (df(x) \ast f(y)) \land (f(x) \ast df(y))
= (f(x) \ast df(y)) \land (df(x) \ast f(y)).
\]

This completes the proof. \(\square \)

Proposition 2.10. Let \(df \) be a self-map of a BCI-algebra \(X \). Then the following hold.

(i) If \(df \) is an \((l,r)\)-\(f\)-derivation of \(X \), then \(df(x) = df(x) \land f(x) \) for all \(x \in X \).

(ii) If \(df \) is an \((r,l)\)-\(f\)-derivation of \(X \), then \(df(x) = f(x) \land df(x) \) for all \(x \in X \) if and only if \(df(0) = 0 \).

Proof.
(i) Let \(df \) be an \((l,r)\)-\(f\)-derivation of \(X \). Then,

\[
df(x) = df(x \ast 0) = (df(x) \ast f(0)) \land (f(x) \ast df(0))
= (df(x) \ast 0) \land (f(x) \ast df(0)) = df(x) \land (f(x) \ast df(0))
= (f(x) \ast df(0)) \ast ((f(x) \ast df(0)) \ast df(x))
= (f(x) \ast df(0)) \ast (f(x) \ast df(x) \ast df(x))
\leq f(x) \ast f(x) \ast df(x) = df(x) \land f(x).
\]

But \(df(x) \land f(x) \leq df(x) \) is trivial and so (i) holds.

(ii) Let \(df \) be an \((r,l)\)-\(f\)-derivation of \(X \). If \(df(x) = f(x) \land df(x) \) for all \(x \in X \), then for \(x = 0 \), \(df(0) = f(0) \land df(0) = 0 \land df(0) = df(0) \ast (df(0) \ast 0) = 0 \).

Conversely, if \(df(0) = 0 \), then \(df(x) = df(x \ast 0) = (f(x) \ast df(0)) \land (df(x) \ast f(0)) = (f(x) \ast 0) \land (df(x) \ast 0) = f(x) \land df(x) \), ending the proof. \(\square \)

Proposition 2.11. Let \(df \) be an \((l,r)\)-\(f\)-derivation of a BCI-algebra \(X \). Then,

(i) \(df(0) \in L_p(X) \), that is, \(df(0) = 0 \ast (0 \ast df(0)) \);

(ii) \(df(a) = df(0) \ast (0 \ast f(0)) = df(0) + f(a) \) for all \(a \in L_p(X) \);

(iii) \(df(a) \in L_p(X) \) for all \(a \in L_p(X) \);

(iv) \(df(a + b) = df(a) + df(b) - df(0) \) for all \(a, b \in L_p(X) \).
Proof. (i) The proof follows from Proposition 2.10(i).

(ii) Let \(a \in L_p(X) \), then \(a = 0 \ast (0 \ast a) \), and so \(f(a) = 0 \ast (0 \ast f(a)) \), that is, \(f(a) \in L_p(X) \). Hence

\[
d_f(a) = d_f(0 \ast (0 \ast a)) \\
= (d_f(0) \ast f(0 \ast a)) \land (f(0) \ast d_f(0 \ast a)) \\
= (d_f(0) \ast f(0 \ast a)) \land (0 \ast d_f(0 \ast a)) \\
= (0 \ast d_f(0 \ast a)) \ast ((0 \ast d_f(0 \ast a)) \ast (d_f(0) \ast f(0 \ast a))) \\
= (0 \ast d_f(0 \ast a)) \ast ((0 \ast (d_f(0) \ast f(0 \ast a))) \ast d_f(0 \ast a)) \\
= 0 \ast (0 \ast (d_f(0) \ast (0 \ast f(a)))) \\
= d_f(0) \ast (0 \ast f(a)) = d_f(0) + f(a).
\]

(iii) The proof follows directly from (ii).

(iv) Let \(a, b \in L_p(X) \). Note that \(a + b \in L_p(X) \), so from (ii), we note that

\[
d_f(a + b) = d_f(0) + f(a + b) \\
= d_f(0) + f(a) + d_f(0) + f(b) - d_f(0) = d_f(a) + d_f(b) - d_f(0).
\]

\[\square\]

Proposition 2.12. Let \(d_f \) be a \((r,l)\)-\(f \)-derivation of a BCI-algebra \(X \). Then,

(i) \(d_f(a) \in G(X) \) for all \(a \in G(X) \);

(ii) \(d_f(a) \in L_p(X) \) for all \(a \in G(X) \);

(iii) \(d_f(a) = f(a) \ast d_f(0) = f(a) + d_f(0) \) for all \(a \in L_p(X) \);

(iv) \(d_f(a + b) = d_f(a) + d_f(b) - d_f(0) \) for all \(a, b \in L_p(X) \).

Proof. (i) For any \(a \in G(X) \), we have

\[
d_f(a) = d_f(0 \ast (0 \ast a)) = (f(0) \ast d_f(0)) \land (d_f(0) \ast f(a)) \\
= (d_f(0) \ast f(0 \ast a)) \ast ((0 \ast d_f(0 \ast a)) \ast (0 \ast d_f(0 \ast a))) \\
= 0 \ast d_f(0 \ast a) \in L_p(X).
\]

(ii) For any \(a \in L_p(X) \), we get

\[
d_f(a) = d_f(a \ast 0) = (f(a) \ast d_f(0)) \land (d_f(a) \ast f(0)) \\
= d_f(a) \ast (d_f(a) \ast (f(a) \ast d_f(0))) = f(a) \ast d_f(0) \\
= f(a) \ast (0 \ast d_f(0)) = f(a) + d_f(0).
\]

(iv) The proof follows from (iii). This completes the proof. \[\square\]
Using Proposition 2.12, we know there is an \((l,r)-f\)-derivation which is not an \((r,l)-f\)-derivation as shown in the following example.

Example 2.13. Let \(\mathbb{Z}\) be the set of all integers and “−” the minus operation on \(\mathbb{Z}\). Then \((\mathbb{Z},−,0)\) is a BCI-algebra. Let \(d_f : X \to X\) be defined by \(d_f(x) = f(x) − 1\) for all \(x \in \mathbb{Z}\). Then,

\[
\begin{align*}
(d_f(x) − f(y)) \land (f(x) − d_f(y)) &= (f(x) − 1 − f(y)) \land (f(x) − (f(y) − 1)) \\
&= (f(x − y) − 1) \land (f(x − y) + 1) \\
&= (f(x − y) + 1) − 2 = f(x − y) − 1 \\
&= d_f(x − y).
\end{align*}
\]

Hence, \(d_f\) is an \((l,r)-f\)-derivation of \(X\). But \(d_f(0) = f(0) − 1 = −1 \neq 1 = f(0) − d_f(0) = 0 − d_f(0)\), that is, \(d_f(0) \notin G(X)\). Therefore, \(d_f\) is not an \((r,l)-f\)-derivation of \(X\) by Proposition 2.12(i).

3. Regular \(f\)-derivations

Definition 3.1. An \(f\)-derivation \(d_f\) of a BCI-algebra \(X\) is said to be regular if \(d_f(0) = 0\).

Remark 3.2. We know that the \(f\)-derivations \(d_f\) in Examples 2.5 and 2.7 are regular.

Proposition 3.3. Let \(X\) be a commutative BCI-algebra and let \(d_f\) be a regular \((r,l)-f\)-derivation of \(X\). Then the following hold.

(i) Both \(f(x)\) and \(d_f(x)\) belong to the same branch for all \(x \in X\).

(ii) \(d_f\) is an \((l,r)-f\)-derivation of \(X\).

Proof. (i) Let \(x \in X\). Then,

\[
0 = d_f(0) = d_f(x \ast x) \\
= (f(x) \ast f(x)) \land (d(x) \ast f(x)) \\
= (d(x) \ast f(x)) \ast ((d(x) \ast f(x)) \ast (f(x) \ast d_f(x))) \\
= (d(x) \ast f(x)) \ast ((d(x) \ast f(x)) \ast (f(x) \ast d_f(x))) \\
= f_x \ast d_f(x) \quad \text{since } f_x \ast d_f(x) \in L_p(X),
\]

and so \(f_x \leq d_f(x)\). This shows that \(d_f(x) \in V(f_x)\). Clearly, \(f(x) \in V(f_x)\).

(ii) By (i), we have \(f(x) \ast d_f(y) \in V(f_x \ast f_y)\) and \(d_f(x) \ast f(y) \in V(f_x \ast f_y)\). Thus \(d_f(x \ast y) = (f(x) \ast d_f(y)) \land (d_f(x) \ast f(y)) = (d_f(x) \ast f(y)) \land (f(x) \ast d_f(y))\), which implies that \(d_f\) is an \((l,r)-f\)-derivation of \(X\).

Remark 3.4. The \(f\)-derivations \(d_f\) in Examples 2.5 and 2.7 are regular \(f\)-derivations but we know that the \((l,r)-f\)-derivation \(d_f\) in Example 2.2 is not regular. In the following, we give some properties of regular \(f\)-derivations.

Definition 3.5. Let \(X\) be a BCI-algebra. Then define \(\ker d_f = \{x \in X \mid d_f(x) = 0\ \text{for all} \ f\text{-derivations } d_f\}\).
Proposition 3.6. Let d_f be an f-derivation of a BCI-algebra X. Then the following hold:

(i) $d_f(x) \leq f(x)$ for all $x \in X$;
(ii) $d_f(x) * f(y) \leq f(x) * d_f(y)$ for all $x, y \in X$;
(iii) $d_f(x * y) = d_f(x) * f(y) \leq d_f(x) * d_f(y)$ for all $x, y \in X$;
(iv) ker d_f is a subalgebra of X. Especially, if f is monic, then ker $d_f \subseteq X_+.$

Proof. (i) The proof follows by Proposition 2.10(ii).

(ii) Since $d_f(x) \leq f(x)$ for all $x \in X$, then $d_f(x) * f(y) \leq f(x) * f(y) \leq f(x) * d_f(y)$.

(iii) For any $x, y \in X$, we have

$$d_f(x * y) = (f(x) * d_f(y)) \wedge (d_f(x) * f(y))$$

$$= (d_f(x) * f(y)) * ((d_f(x) * f(y)) * (f(x) * d_f(y)))$$

$$= (d_f(x) * f(y)) * 0 = d_f(x) * f(y) \leq d_f(x) * d_f(y),$$

which proves (iii).

(iv) Let $x, y \in ker d_f$, then $d_f(x) = 0 = d_f(y)$, and so $d_f(x * y) \leq d_f(x) * d_f(y) = 0 * 0 = 0$ by (iii), and thus $d_f(x * y) = 0$, that is, $x * y \in ker d_f$. Hence, ker d_f is a subalgebra of X. Especially, if f is monic, and letting $x \in ker d_f$, then $0 = d_f(x) \leq f(x)$ by (i), and so $f(x) \in X_+$, that is, $0 * f(x) = 0$, and thus $f(0 * x) = f(x)$, which implies that $0 * x = x$, and so $x \in X_+$, that is, ker $d_f \subseteq X_+.$

Theorem 3.7. Let f be monic of a commutative BCI-algebra X. Then X is p-semisimple if and only if ker $d_f = \{0\}$ for every regular f-derivation d_f of X.

Proof. Assume that X is p-semisimple BCI-algebra and let d_f be a regular f-derivation of X. Then $X_+ = \{0\}$, and so ker $d_f = \{0\}$ by using Proposition 3.6(iv). Conversely, let ker $d_f = \{0\}$ for every regular f-derivation d_f of X. Define a self-map d_f^* of X by $d_f^*(x) = f_x$ for all $x \in X$. Using Theorem 2.9, d_f^* is an f-derivation of X. Clearly, $d_f^*(0) = f_0 = 0 * (0 * f(0)) = 0$, and so d_f^* is a regular f-derivation of X. It follows from the hypothesis that ker $d_f^* = \{0\}$. In addition, $d_f^*(x) = f_x = 0 * (0 * f(x)) = f(0 * (0 * x)) = f(0) = 0$ for all $x \in X_+$, and thus $x \in ker d_f^*$, which shows that $X_+ \subseteq ker d_f^*$. Hence, by Proposition 3.6(iv), $X_+ = ker d_f^* = \{0\}$. Therefore X is p-semisimple.

Definition 3.8. An ideal A of a BCI-algebra X is said to be an f-ideal if $f(A) \subseteq A$.

Definition 3.9. Let d_f be a self-map of a BCI-algebra X. An f-ideal A of X is said to be d_f-invariant if $d_f(A) \subseteq A$.

Theorem 3.10. Let d_f be a regular (r,l)-derivation of a BCI-algebra X, then every f-ideal A of X is d_f-invariant.

Proof. By Proposition 2.10(ii), we have $d_f(x) = f(x) \wedge d_f(x) \leq f(x)$ for all $x \in X$. Let $y \in d_f(A)$. Then $y = d_f(x)$ for some $x \in A$. It follows that $y * f(x) = d_f(x) * f(x) = 0 \in A$. Since $x \in A$, then $f(x) \in f(A) \subseteq A$ as A is an f-ideal. It follows that $y \in A$ since A is an ideal of X. Hence $d_f(A) \subseteq A$, and thus A is d_f-invariant.

Theorem 3.11. Let d_f be an f-derivation of a BCI-algebra X. Then d_f is regular if and only if every f-ideal of X is d_f-invariant.
On f-derivations of BCI-algebras

Proof. Let d_f be a derivation of a BCI-algebra X and assume that every f-ideal of X is d_f-invariant. Then since the zero ideal $\{0\}$ is f-ideal and d_f-invariant, we have $d_f(\{0\}) \subseteq \{0\}$, which implies that $d_f(0) = 0$. Thus d_f is regular. Combining this and Theorem 3.10, we complete the proof.

Acknowledgments

This work was supported by the Education Committee of Hubei Province (2004Z002, D200529001). The authors would like to thank the Editor-in-Chief and referees for the valuable suggestions and corrections for the improvement of this paper.

References

Jianming Zhan: Department of Mathematics, Hubei Institute for Nationalities, Enshi 445000, Hubei Province, China
E-mail address: zhanjianming@hotmail.com

Yong Lin Liu: Department of Applied Mathematics, School of Science, Xidian University, Xi’an 710071, Shaanxi, China; Department of Mathematics, Nanping Teachers College, Nanping 353000, Fujian, China
E-mail address: ylliun@tom.com