We study the action of \(A \) on \(f \in L^2(\mathbb{R}) \) and on its wavelet coefficients, where \(A = (a_{lmjk})_{lmjk} \) is a double infinite matrix. We find the frame condition for \(A \)-transform of \(f \in L^2(\mathbb{R}) \) whose wavelet series expansion is known.

2000 Mathematics Subject Classification: 42C15, 41A17, 42C40.

1. Introduction. The notation of frame goes back to Duffin and Schaeffer [7] in the early 1950s to deal with the problems in nonharmonic Fourier series. There has been renewed interest in the subject related to its role in wavelet theory. For a glance of the recent development and work on frames and related topics, see [3, 4, 5, 6, 9]. In this note, we will use the regular double infinite matrices (see [9, 10]) to obtain the frame conditions and wavelet coefficients.

2. Notations and known results. \(\mathbb{N} \) is the set of positive integers, \(\mathbb{Z} \) is the set of integers, \(\mathbb{R} \) is the set of real numbers. The space \(L^2(\mathbb{R}) \) of measurable function \(f \) is defined on the real line \(\mathbb{R} \), that satisfies

\[
\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty. \tag{2.1}
\]

The inner product of two square integrable functions \(f, g \in L^2(\mathbb{R}) \) is defined as

\[
\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) g(x) dx,
\]

\[
\|f\|^2 = (f, f)^{1/2}. \tag{2.2}
\]

Every function \(f \in L^2(\mathbb{R}) \) can be written as

\[
f(x) = \sum_{j,k \in \mathbb{Z}} C_{j,k} \psi_{j,k}(x). \tag{2.3}
\]

This series representation of \(f \) is called wavelet series. Analogous to the notation of Fourier coefficients, the wavelet coefficients \(C_{j,k} \) are given by

\[
C_{j,k} = \int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) dx = \langle f, \psi_{j,k} \rangle,
\]

\[
\psi_{j,k} = 2^{j/2} \psi(2^j x - k). \tag{2.4}
\]
Now, if we define an integral transform
\[(W_\psi f)(b,a) = |a|^{-1/2} \int_{-\infty}^{\infty} f(x) \psi \left(\frac{x-b}{a} \right) dx, \quad f \in L^2(\mathbb{R}), \quad (2.5)\]
then the wavelet coefficients become
\[C_{j,k} = (W_\psi f) \left(\frac{k}{2^j}, \frac{1}{2^j} \right), \quad (2.6)\]

A sequence \(\{x_n\}\) in a Hilbert space \(H\) is a frame if there exist constants \(c_1\) and \(c_2\), \(0 < c_1 \leq c_2 < \infty\), such that
\[c_1 \|f\|^2 \leq \sum_{n \in \mathbb{Z}} |\langle f, x_n \rangle|^2 \leq c_2 \|f\|^2, \quad (2.7)\]
for all \(f \in H\). The supremum of all such numbers \(c_1\) and infimum of all such numbers \(c_2\) are called the frame bounds of the frame. The frame is called tight frame when \(c_1 = c_2\) and is called normalized tight frame when \(c_1 = c_2 = 1\). Any orthonormal basis in a Hilbert space \(H\) is a normalized tight frame. The connection between frames and numerically stable reconstruction from discretized wavelet was pointed out by Grossmann et al. [8]. In 1985, they defined that a wavelet function \(\psi \in L^2(\mathbb{R})\), constitutes a frame with frame bounds \(c_1\) and \(c_2\), if any \(f \in L^2(\mathbb{R})\) such that
\[c_1 \|f\|^2 \leq \sum_{j,k \in \mathbb{Z}} |\langle f, \psi_{j,k} \rangle|^2 \leq c_2 \|f\|^2. \quad (2.8)\]
Again, it is said to be tight if \(c_1 = c_2\) and is said to be exact if it ceases to be frame by removing any of its elements. There are many examples proposed by Daubechies et al. [6]. For further details, one can refer to [1, 5, 6]. Chui and Shi [2] proved that \(\{\psi_{j,k}\}\) is a frame for \(L^2(\mathbb{R})\) with bounds \(c_1\) and \(c_2\), if for some \(a > 1\) and \(b > 0\), the Fourier transform \(\hat{\psi}\) satisfies
\[c_1 \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} |\hat{\psi}(a^j w)|^2 \leq c_2 \quad \text{a.e.,} \quad (2.9)\]
for some constants \(c_1\) and \(c_2\). By integrating each term in
\[\frac{c_1}{|w|} \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} \frac{|\hat{\psi}(a^j w)|^2}{|w|} \leq \frac{c_2}{|w|} \quad (2.10)\]
over \(1 \leq |w| \leq a\), we have
\[2c_1 \log a \leq \frac{1}{b} \sum_{j \in \mathbb{Z}} \int_{1 \leq |w| \leq a} \frac{|\hat{\psi}(a^j w)|^2}{|w|} dw \leq 2c_2 \log a, \quad (2.11)\]
which immediately yields
\[c_1 \leq \frac{1}{2b \log a} \int_{-\infty}^{\infty} \frac{|\hat{\psi}(a^j w)|^2}{|w|} dw \leq c_2. \quad (2.12)\]
The above condition known as compactibility condition was also observed by Daubechies [4] by using techniques from trace class operators. The above constants were given by frame bounds, see [2].

Let \(A = (a_{mnjk}) \) be a double infinite matrix of real numbers. Then, \(A \)-transform of a double sequence \(x = (x_{jk}) \) is

\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{mnjk} x_{jk},
\]

which is called \(A \)-means or \(A \)-transform of the sequence \(x = (x_{ij}) \). This definition is due to Móricz and Rhoades [9].

A double matrix \(A = (a_{mnjk}) \) is said to be regular (see [10]) if the following conditions hold:

1. \(\lim_{m,n \to \infty} \sum_{j,k=0}^{\infty} a_{mnjk} = 1 \),
2. \(\lim_{m,n \to \infty} \sum_{j=0}^{\infty} |a_{mnjk}| = 0, (k = 0, 1, 2, \ldots) \),
3. \(\lim_{m,n \to \infty} \sum_{k=0}^{\infty} |a_{mnjk}| = 0, (j = 0, 1, 2, \ldots) \),
4. \(\|A\| = \sup_{m,n>0} \sum_{j,k=0}^{\infty} |a_{m,n}| < \infty \).

Either of conditions (ii) and (iii) implies that

\[
\lim_{m,n \to \infty} a_{mnjk} = 0.
\]

In this note, we establish the frame condition by using \(A \)-transform of nonnegative regular matrix, also we find action of the matrix \(A \) on wavelet coefficients.

3. Main results. In this section, we prove the following theorems.

Theorem 3.1. Let \(A = (a_{iljk}) \) be a double nonnegative regular matrix. If

\[
f(x) = \sum_{j,k \in Z} C_{j,k} \psi_{j,k}(x)
\]

is a wavelet expansion of \(f \in L^2(\mathbb{R}) \) with wavelet coefficients

\[
C_{j,k} = \int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) dx = \langle f, \psi_{j,k} \rangle,
\]

then the frame condition for \(A \)-transform of \(f \in L^2(\mathbb{R}) \) is

\[
c_1 \|f\|^2 \leq \sum_{i,l \in Z} |\langle Af, \psi_{i,l} \rangle|^2 \leq c_2 \|f\|^2,
\]

where \(Af \) is the \(A \)-transform of \(f \) and \(0 < c_1 \leq c_2 < \infty \).

Theorem 3.2. If \(C_{j,k} \) are the wavelet coefficients of \(f \in L^2(\mathbb{R}) \), that is, \(C_{j,k} = \langle f, \psi_{j,k} \rangle \), then the \(d_{l,m} \) are the wavelet coefficients of \(Af \), where \(\{d_{l,m}\} \) is defined as the \(A \)-transform of \(\{C_{j,k}\} \) by

\[
d_{l,m} = \sum_{j,k=-\infty}^{\infty} a_{lmjk} C_{jk}.
\]
Theorem 3.3. Let $A = (a_{lm})$ be a double nonnegative matrix whose elements are $\langle \psi_{j,k}, \psi_{l,m} \rangle$. Then, $\{ \psi_{j,k} \}$ constitutes a frame of $L^2(\mathbb{R})$ if and only if $\{ \psi_{l,m} \}$ constitutes a frame of $L^2(\mathbb{R})$, where $C_{j,k} = \langle f, \psi_{j,k} \rangle$ and $d_{l,m} = \langle f, \psi_{l,m} \rangle$.

Proof of Theorem 3.1. We can write

$$f(x) = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}. \quad (3.5)$$

If we take A-transform of f, we get

$$Af(x) = \sum_{i,l \in \mathbb{Z}} \langle Af, \psi_{i,l} \rangle \psi_{i,l}, \quad (3.6)$$

and therefore

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq \sum_{i,l \in \mathbb{Z}} \int_{-\infty}^{\infty} |Af(x)|^2 |\overline{\psi_{i,l}(x)}|^2 dx \leq \|A\|^2 \|f\|_2^2 \sum_{i,l \in \mathbb{Z}} \|\psi_{i,l}\|_2^2. \quad (3.7)$$

Since A is regular matrix and $\|\psi_{i,l}\|_2 = 1$, therefore

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq c_2 \|f\|_2^2, \quad (3.8)$$

where c_2 is positive constant.

Now, for any arbitrarily $f \in L^2(\mathbb{R})$, define

$$\tilde{f} = \left[\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \right]^{-1/2} f. \quad (3.9)$$

Clearly,

$$\langle A\tilde{f}, \psi_{i,l} \rangle = \left[\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \right]^{-1/2} \langle Af, \psi_{i,l} \rangle, \quad (3.10)$$

then

$$\sum_{i,l \in \mathbb{Z}} |\langle Af, \psi_{i,l} \rangle|^2 \leq 1. \quad (3.11)$$
Hence, if there exists α a positive constant, then
\[
\|A\hat{f}\|_2^2 \leq \alpha,
\]
\[
\left[\sum_{i,l \in \mathbb{Z}} |\langle A f, \psi_{i,l} \rangle|^2 \right]^{-1} \|Af\|_2^2 \leq \alpha.
\]
(3.12)

Since A is regular, we have
\[
\left[\sum_{i,l \in \mathbb{Z}} |\langle A f, \psi_{i,l} \rangle|^2 \right]^{-1} \|f\|_2^2 \leq \alpha_1 \left(\frac{\alpha}{\|A\|^2} \right),
\]
where α_1 is another positive constant. Therefore,
\[
c_1 \|f\|_2^2 \leq \sum_{i,l \in \mathbb{Z}} |\langle A f, \psi_{i,l} \rangle|^2,
\]
(3.14)

where $c_1 = \alpha > 0$.

Combining (3.8) and (3.14), we have
\[
c_1 \|f\|_2^2 \leq \sum_{i,l \in \mathbb{Z}} |\langle A f, \psi_{i,l} \rangle|^2 \leq c_2 \|f\|_2^2.
\]
(3.15)

This completes the proof. \qed

Proof of Theorem 3.2. We can write
\[
\langle Af, \psi_{j,k} \rangle = \int_{-\infty}^{\infty} Af(x) \overline{\psi_{l,m}(x)} dx
\]
\[
= \int_{-\infty}^{\infty} \sum_{j,k=\infty}^{\infty} a_{lmj,k} \psi_{j,k}(x) \overline{\psi_{l,m}(x)} dx.
\]
(3.16)

Now,
\[
\sum_{l,m=\infty}^{\infty} \langle Af, \psi_{l,m} \rangle \psi_{l,m} = \sum_{l,m=\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{j,k=\infty}^{\infty} a_{lmj,k} \psi_{j,k}(x) \psi_{l,m}(x) \overline{\psi_{l,m}(x)} dx
\]
\[
= \sum_{l,m=\infty}^{\infty} d_{l,m} \psi_{l,m} \int_{-\infty}^{\infty} \|\psi_{l,m}(x)\|_2^2
\]
\[
= \sum_{l,m=\infty}^{\infty} d_{l,m} \psi_{l,m}.
\]
(3.17)

Therefore,
\[
\sum_{l,m=\infty}^{\infty} d_{l,m} \psi_{l,m} = \sum_{l,m=\infty}^{\infty} \langle Af, \psi_{l,m} \rangle \psi_{l,m}.
\]
(3.18)

This implies that $d_{l,m}$ are wavelet coefficients of Af.
Thus,

\[d_{l,m} = \langle f, \psi_{l,m} \rangle. \tag{3.19} \]

This completes the proof.

Proof of Theorem 3.3. We observe that

\[
\begin{align*}
\alpha_{l,m,j,k} c_{j,k} &= \langle \psi_{j,k}, \psi_{l,m} \rangle \langle f, \psi_{j,k} \rangle \\
&= \int_{-\infty}^{\infty} \psi_{j,k}(x) \overline{\psi_{l,m}(x)} dx \left[\int_{-\infty}^{\infty} f(x) \psi_{j,k}(x) dx \right] \\
&= \int_{-\infty}^{\infty} f(x) \overline{\psi_{l,m}(x)} dx \left[\int_{-\infty}^{\infty} \psi_{j,k}(x) \overline{\psi_{j,k}(x)} dx \right] \\
&= \langle f, \psi_{l,m} \rangle,
\end{align*}
\]

that is, \(\alpha_{l,m,j,k} c_{j,k} = d_{l,m} \).

Now,

\[
\begin{align*}
\sum_{l,m} |d_{l,m}|^2 &= \sum_{l,m} |\alpha_{l,m,j,k} c_{j,k}|^2 = \sum_{l,m} |\langle f, \psi_{l,m} \rangle|^2 \\
&= \frac{1}{(2\pi)^2} \sum_{l,m} |\langle \hat{f}, \psi_{l,m} \rangle|^2,
\end{align*}
\]

by Parseval’s formula for trigonometric Fourier series.

Now

\[
\begin{align*}
\frac{1}{(2\pi)^2} \sum_{l,m} \left[\left| \int_{0}^{2\pi} \sum_{p=\infty}^{\infty} \hat{f}(w + 2\pi p) \overline{\psi(w + 2\pi p)} e^{ilmw} dw \right|^2 \\
= p \\
= \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sum_{p=\infty}^{\infty} \hat{f}(w + 2\pi p) \overline{\psi(w + 2\pi p)} dw \right|^2
\end{align*}
\]

by Parseval’s formula for trigonometric Fourier series.

Let \(f(w) = \sum_{q=\infty}^{\infty} \hat{f}(w + 2\pi q) \psi(w + 2\pi q) \).
Therefore,
\[
p = \frac{1}{2\pi} \left[\int_0^{2\pi} \left| \sum_{p=-\infty}^{\infty} \hat{f}(w+2\pi p)\hat{\psi}(w+2\pi p) \right|^2 \, dw \right]
\]
\[
= \frac{1}{2\pi} \left(\int_0^{2\pi} \sum_{p=-\infty}^{\infty} \hat{f}(w+2\pi p)\hat{\psi}(w+2\pi p) \, dw \, F(w) \, dw \right)
\]
\[
= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} \hat{f}(w)\hat{\psi}(w)F(w) \, dw \right)
\]
\[
= \frac{1}{2\pi} \left\{ \sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(w)\hat{\psi}(w)\hat{f}(w+2\pi q)\hat{\psi}(w+2\pi q) \, dw \right\}
\]
\[
= \frac{1}{2\pi} \left\{ \sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 |\hat{\psi}(w)|^2 \, dw \right\}
\]
\[
= \frac{1}{2\pi} \left\{ \int_{-\infty}^{\infty} |\hat{f}(w)|^2 \, dw \right\}
\]
\[
= \|f\|^2_2,
\]
that is,
\[
\sum_{l,m} |d_{lm}|^2 = \|f\|^2_2, \quad f \in L^2(\mathbb{R}). \tag{3.24}
\]

Therefore, for a regular matrix \(A = (a_{lmj,k})\), we have
\[
c_1 \|f\|^2_2 \leq \sum_{l,m} |d_{lm}|^2 \leq c_2 \|f\|^2_2 \tag{3.25}
\]
if and only if
\[
c_1' \|f\|^2_2 \leq \sum_{j,k} |c_{jk}|^2 \leq c_2' \|f\|^2_2, \tag{3.26}
\]
where, \(0 \leq c'_1, c'_2 < \infty\). This completes the proof. □

REFERENCES

N. A. Sheikh: Department of Mathematics, National Institute of Technology, Srinagar, Kashmir 190006, Jammu and Kashmir, India
E-mail address: nayaznit@yahoo.co.in

M. Mursaleen: Department of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
Current address: Department of Mathematics, Faculty of Science, P.O. Box 80203, King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia
E-mail address: mursaleen@postmark.net