ON STARLIKENESS AND CLOSE-TO-CONVEXITY
OF CERTAIN ANALYTIC FUNCTIONS

OH SANG KWON and NAK EUN CHO

Received 20 January 2004

Our purpose is to derive some sufficient conditions for starlikeness and close-to-convexity of order \(\alpha \) of certain analytic functions in the open unit disk.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let \(A_n \) be the class of functions of the form

\[
f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \quad (n \in \mathbb{N} = \{1, 2, 3, \ldots\})
\]

(1.1)

which are analytic in the open unit disk \(U = \{z : |z| < 1\} \). A function \(f \in A_n \) is said to be in the class \(S_n^* (\alpha) \) if it satisfies

\[
\text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U)
\]

(1.2)

for some \(\alpha \) \((0 \leq \alpha < 1)\). A function in the class \(S_n^* (\alpha) \) is starlike of order \(\alpha \) in \(U \). We also write \(A_1 = A \) and \(S_1^* (\alpha) = S^* (\alpha) \).

Let \(C_n(\alpha) \) be the subclass of \(A_n \) consisting of functions \(f(z) \) which satisfy

\[
\text{Re}\left\{ f'(z) \right\} > \alpha \quad (z \in U)
\]

(1.3)

for some \(\alpha \) \((0 \leq \alpha < 1)\). A function \(f(z) \) in \(C_n(\alpha) \) is close-to-convex of order \(\alpha \) in \(U \) (cf. Duren [1]).

Let \(f(z) \) and \(g(z) \) be analytic in \(U \). Then the function \(f(z) \) is said to be subordinate to \(g \), written \(f \prec g \) or \(f(z) \prec g(z) \), if there exists an analytic function \(w(z) \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) \((z \in U) \) such that \(f(z) = g(w(z)) \) for \(z \in U \). If \(g(z) \) is univalent in \(U \), then \(f(z) \prec g(z) \) is equivalent to \(f(0) = g(0) \) and \(f(U) \subset g(U) \).

Let \(H(p(z), zp'(z)) \prec h(z) \) be a first-order differential subordination. Then a univalent function \(q(z) \) is called its dominant if \(p(z) \prec q(z) \) for all analytic functions \(p(z) \) that satisfy the differential subordination. A dominant \(\tilde{q}(z) \) is called the best dominant if \(\tilde{q}(z) \prec q(z) \) for all dominants \(q(z) \). For the general theory of first-order differential subordination and its applications, we refer to [3].

Recently, Xu and Yang [5] obtained some results on starlikeness and close-to-convexity of certain meromorphic functions. In the present note, we investigate some
sufficient conditions for starlikeness and close-to-convexity of order \(\alpha \) of certain analytic functions in \(U \) by using the subordination principle, and obtain some useful corollaries as special cases. Furthermore, we extend the results given by Owa et al. [4].

2. Main results. To derive our results, we need the following lemmas.

Lemma 2.1 [6]. Let \(g(z) = b_0 + b_n z^n + b_{n+1} z^{n+1} + \cdots \) \((n \in \mathbb{N})\) be analytic in \(U \) and let \(h(z) \) be analytic and starlike (with respect to the origin), univalent in \(U \) with \(h(0) = 0 \). If \(zg'(z) < h(z) \) \((z \in U)\), then

\[
g(z) < b_0 + \frac{1}{n} \int_0^z \frac{h(t)}{t} dt. \tag{2.1}
\]

Lemma 2.2 [3]. Let \(g(z) \) be analytic and univalent in \(U \) and let \(\theta(w) \) and \(\varphi(w) \) be analytic in a domain \(D \) containing \(g(U) \), with \(\varphi(w) \neq 0 \) when \(w \in g(U) \). Set

\[
Q(z) = zg'(z) \varphi(g(z)), \quad h(z) = \theta(g(z)) + Q(z) \tag{2.2}
\]

and suppose that

(i) \(Q(z) \) is univalent and starlike in \(U \);
(ii) \(\text{Re}\{zh'(z)/Q(z)\} = \text{Re}\{\theta'(g(z))/\varphi(g(z)) + zQ'(z)/Q(z)\} > 0 \) \((z \in U)\).

If \(p(z) \) is analytic in \(U \), with \(p(0) = g(0) \), \(p(U) \subset D \), and

\[
\theta(p(z)) + zp'(z)\varphi(p(z)) < \theta(g(z)) + zg'(z)\varphi(g(z)) = h(z), \tag{2.3}
\]

then \(p(z) < g(z) \) and \(g(z) \) is the best dominant of (2.3).

Lemma 2.3 [2]. Let \(g(z) = b_0 + b_n z^n + b_{n+1} z^{n+1} + \cdots \) \((n \in \mathbb{N})\) be analytic in \(U \) with \(g(z) \neq b_0 \). If \(0 < |z_0| < 1 \) and \(\text{Re}\{g(z_0)\} = \min_{z|z| < |z_0|} \text{Re}\{g(z)\} \), then

\[
z_0g'(z_0) \leq -\frac{n|b_0 - g(z_0)|^2}{2\text{Re}\{b_0 - g(z_0)\}}. \tag{2.4}
\]

Applying Lemma 2.1, we now derive the following.

Theorem 2.4. Let \(f \in A_n \) satisfy \(f(z)f''(z) \neq 0 \) for \(z \in U \setminus \{0\} \) and

\[
-\alpha \frac{zf''(z)}{f'(z)} + \frac{zf'''(z)}{f'(z)} + \alpha < \frac{az}{1-bz} \quad (z \in U), \tag{2.5}
\]

where \(\alpha, a, \) and \(b \) are real numbers with \(a \neq 0 \) and \(b \leq 1 \).

(i) If \(0 < a \leq n \) and \(0 < b \leq 1 \), then

\[
\text{Re}\left\{\frac{z^\alpha f'(z)}{f'(z)}\right\} > \left(\frac{1}{1+b}\right)^{a/nb} \quad (z \in U). \tag{2.6}
\]

(ii) If \(0 < a \leq n \) and \(b = 0 \), then

\[
\text{Re}\left\{\frac{z^\alpha f'(z)}{f'(z)}\right\} > e^{-a/n} \quad (z \in U). \tag{2.7}
\]
(iii) If \(a \neq 0 \) and \(0 < b \leq 1 \), then
\[
\left| \left(\frac{z^\alpha f'(z)}{f^\alpha(z)} \right)^{-nb/a} - 1 \right| < b \quad (z \in U).
\] (2.8)

(iv) If \(a > 0 \) and \(b = 0 \), then
\[
\left| \frac{z^\alpha f''(z)}{f^\alpha(z)} - 1 \right| < e^{a/n} - 1 \quad (z \in U).
\] (2.9)

Proof. Let \(f \in A_n \) with \(f(z)f'(z) \neq 0 \) for \(z \in U \setminus \{0\} \) and define
\[
g(z) = -\alpha \left(\frac{zf'(z)}{f(z)} - 1 \right) + \frac{zf''(z)}{f'(z)}.
\] (2.10)

Then \(g(z) = b_n z^n + b_{n+1} z^{n+1} + \cdots \) is analytic in \(U \) and (2.5) can be rewritten as
\[
g(z) < h(z),
\] (2.11)

where \(h(z) = az/(1-bz) \) is analytic and starlike in \(U \). Applying Lemma 2.1 to (2.11), we have
\[
\int_0^z \frac{g(t)}{t} dt < \frac{1}{n} \int_0^z \frac{h(t)}{t} dt,
\] (2.12)

that is,
\[
-\alpha \int_0^z \left(\frac{f'(t)}{f(t)} - \frac{1}{t} \right) dt + \int_0^z \frac{f''(t)}{f'(t)} dt < \frac{a}{n} \int_0^z \frac{dt}{1-bt}. \tag{2.13}
\]

(i) If \(0 < a \leq n \) and \(0 < b \leq 1 \), then from (2.13) we deduce that
\[
\frac{z^\alpha f'(z)}{f^\alpha(z)} < \left(\frac{1}{1-bz} \right)^{a/nb} \equiv h_1(z).
\] (2.14)

The function \(h_1(z) \) is analytic and convex univalent in \(U \) because
\[
\text{Re} \left\{ 1 + \frac{zh_1''(z)}{h_1(z)} \right\} = \text{Re} \left\{ 1 + \frac{(a/n)z}{1-bz} \right\} \geq \frac{1-a/n}{1+b} > 0 \quad (z \in U).
\] (2.15)

Also, \(h_1(U) \) is symmetric with respect to the real axis. Hence \(\text{Re} \{h_1(z)\} > h_1(-1) \) in \(U \) and it follows from (2.14) that
\[
\text{Re} \left\{ \frac{z^\alpha f''(z)}{f^\alpha(z)} \right\} > \left(\frac{1}{1+b} \right)^{a/nb} \quad (z \in U). \tag{2.16}
\]

(ii) If \(0 < a \leq n \) and \(b = 0 \), then from (2.13) we obtain
\[
\frac{z^\alpha f'(z)}{f^\alpha(z)} < e^{(a/n)z} \equiv h_2(z).
\] (2.17)
Since \(h_2(z) \) is analytic and convex univalent in \(U \) and \(h_2(U) \) is symmetric with respect to the real axis, it follows from (2.17) that
\[
\Re \left\{ \frac{z^\alpha f'(z)}{f^\alpha(z)} \right\} > e^{-a/n} \quad (z \in U). \tag{2.18}
\]

(iii) If \(a \neq 0 \) and \(0 < b \leq 1 \), then by (2.14) we have
\[
\frac{z^\alpha f'(z)}{f^\alpha(z)} = \left(\frac{1}{1 - bw(z)} \right)^{a/nb} (z \in U), \tag{2.19}
\]
where \(w(z) \) is analytic in \(U \) with \(|w(z)| \leq |z| \) \((z \in U)\). Therefore we have
\[
\left| \left(\frac{z^\alpha f'(z)}{f^\alpha(z)} \right)^{-nb/a} - 1 \right| < | -bw(z) | < b \quad (z \in U). \tag{2.20}
\]

(iv) If \(a > 0 \) and \(b = 0 \), then from (2.17) we get
\[
\frac{z^\alpha f'(z)}{f^\alpha(z)} = e^{(a/n)w(z)} \quad (z \in U), \tag{2.21}
\]
where \(w(z) \) is analytic in \(U \) with \(|w(z)| \leq |z| \) \((z \in U)\). Thus
\[
\left| \frac{z^\alpha f'(z)}{f^\alpha(z)} - 1 \right| = | e^{(a/n)w(z)} - 1 | \leq e^{(a/n)|w(z)|} - 1 < e^{a/n} - 1 \quad (z \in U). \tag{2.22}
\]

Therefore the proof of Theorem 2.4 is completed. \(\Box \)

By specifying the values of the parameters appearing in Theorem 2.4, we can obtain several useful corollaries.

Taking \(0 < a = 2(\alpha - \beta) \leq n \) and \(b = 1 \), Theorem 2.4(i) reduces to the following.

Corollary 2.5. Let \(f \in A_n \) satisfy \(f(z)f'(z) \neq 0 \) for \(z \in U \setminus \{ 0 \} \) and
\[
\Re \left\{ \frac{zf''(z)}{f'(z)} - \frac{zf''(z)}{f'(z)} \right\} < 2\alpha - \beta \quad (z \in U), \tag{2.23}
\]
where \(\alpha \) is a real number and \(\alpha - n/2 \leq \beta < \alpha \), then
\[
\Re \left\{ \frac{z^\alpha f'(z)}{f^\alpha(z)} \right\} > \frac{1}{2^{2(\alpha - \beta)/n}} \quad (z \in U). \tag{2.24}
\]

Remark 2.6. Owa et al. [4] proved that if \(f \in A_n \) satisfies \(f(z)f'(z) \neq 0 \) for \(z \in U \setminus \{ 0 \} \) and (2.23) for \(\alpha \geq 0 \) and \(\alpha - n/2 \leq \beta < \alpha \), then
\[
\Re \left\{ \frac{z^\alpha f'(z)}{f^\alpha(z)} \right\} > \frac{n}{n + 2\alpha - 2\beta} \quad (z \in U). \tag{2.25}
\]

In view of \(2^x < 1 + x \) \((0 < x < 1)\), Corollary 2.5 is better than the main theorem of [4].

Corollary 2.7. If \(f \in A_n \) satisfies \(f(z)f'(z) \neq 0 \) for \(z \in U \setminus \{ 0 \} \) and
\[
\Re \left\{ \frac{zf''(z)}{f'(z)} - \frac{zf''(z)}{f'(z)} \right\} < 1 + \frac{a}{2} \quad (z \in U) \tag{2.26}
\]
for some \(a \) \((0 < a \leq n)\), then \(f \in S_n^*(2^{-a/n}) \) and the order \(2^{-a/n} \) is sharp.
PROOF. Letting $\alpha = b = 1$ in Theorem 2.4(i) and using (2.26), we see that $f \in S_n^*(2^{-a/n})$. To show that the order $2^{-a/n}$ cannot be increased, we consider

$$f(z) = \exp \int_0^z \frac{(1+t^n)^{-a/n}}{t} \, dt \in A_n.$$

(2.27)

It is easy to verify that the function $f(z)$ defined by (2.27) satisfies (2.26) and

$$\Re \left\{ \frac{zf''(z)}{f'(z)} \right\} = \Re \left\{ \left(\frac{1}{1+z^n} \right)^{a/n} \right\} - \left(\frac{1}{2} \right)^{a/n}$$

(2.28)

as $z \to 1$. Therefore the proof is completed.

Putting $\alpha = 0$ and $b = 1$ in Theorem 2.4(i), we have the following.

Corollary 2.8. If $f \in A_n$ satisfies $f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$-\Re \left\{ \frac{zf''(z)}{f'(z)} \right\} < \frac{a}{2}$$

(2.29)

for some a ($0 < a \leq n$), then $f \in C_n(2^{-a/n})$ and the order $2^{-a/n}$ is sharp.

Remark 2.9. Corollary 2.7 (with $0 < a = 2(1-\beta) \leq n$) and Corollary 2.8 (with $0 < a = 2\beta < n$) are better than the corresponding results in [4].

Setting $\alpha = 0$ and 1 in Theorem 2.4(ii), we have the following two corollaries.

Corollary 2.10. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left| \frac{zf''(z)}{f'(z)} \right| < a$$

(2.30)

for some a ($0 < a \leq n$), then $f \in C_n(e^{-a/n})$.

Corollary 2.11. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left| 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right| < a$$

(2.31)

for some a ($0 < a \leq n$), then $f \in S_n^*(e^{-a/n})$ and the order $e^{-a/n}$ is sharp with the extremal function

$$f(z) = \exp \int_0^z \frac{e^{-(a/n)t^n}}{t} \, dt.$$

(2.32)

For $\alpha = 1$ and $a = -nb$ ($0 < b \leq 1$) in Theorem 2.4(iii), we have the following.

Corollary 2.12. If $f \in A_n$ satisfies $f(z)f'(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} < -\frac{-nbz}{1-bz}$$

(2.33)

for some b ($0 < b \leq n$), then $f \in S_n^*(1-b)$ and the order $1-b$ is sharp with the extremal function $f(z) = ze^{(b/n)z^n}$.

Next, applying Lemma 2.2, we obtain the following two results.

Theorem 2.13. Let \(f \in A \) satisfy \(f(z) \neq 0 \) for \(z \in U \setminus \{0\} \) and

\[
\frac{zf'(z)}{f(z)} + \frac{z^2f''(z)}{f(z)} < h(z) \quad (z \in U),
\]

where

\[
h(z) = \frac{(1-2\alpha)^2z^2 + 2(2-3\alpha) + 1}{(1-z)^2} \quad (0 \leq \alpha < 1; \ z \in U),
\]

then \(f \in S^*(\alpha) \) and the order \(\alpha \) is sharp.

Proof. We put

\[
\frac{zf'(z)}{f(z)} = (1-\alpha)p(z) + \alpha
\]

for \(0 \leq \alpha < 1 \). Then \(p(z) \) is analytic in \(U \) and \(p(0) = 1 \). Differentiating (2.36) logarithmically, we find that

\[
\frac{zf'(z)}{f(z)} + \frac{z^2f''(z)}{f(z)} = (1-\alpha)zp'(z) + ((1-\alpha)p(z) + \alpha)^2.
\]

From (2.34) and (2.37), we have

\[
(1-\alpha)zp'(z) + (1-\alpha)^2p^2(z) + 2\alpha(1-\alpha)p(z) + \alpha^2 < h(z).
\]

Now we choose

\[
g(z) = \frac{1+z}{1-z}, \quad \theta(w) = (1-\alpha)^2w^2 + 2(1-\alpha)w + \alpha^2, \quad \varphi(w) = 1-\alpha.
\]

Then \(g(z) \) is analytic and univalent in \(U \), \(\text{Re}\{g(z)\} > 0 \ (z \in U) \), and \(\theta(w) \) and \(\varphi(w) \) are analytic with \(\varphi(w) \neq 0 \) in the \(w \)-plane.

The function

\[
Q(z) = zg'(z)\varphi(z) = 2(1-\alpha)\frac{z}{(1-z)^2}
\]

is univalent and starlike in \(U \). Further,

\[
\theta(g(z)) + Q(z) = (1-\alpha)^2\left(\frac{1+z}{1-z}\right)^2 + 2\alpha(1-\alpha)\left(\frac{1+z}{1-z}\right) + \alpha^2 + 2(1-\alpha)\frac{z}{1-z}
\]

\[
= \frac{(1-2\alpha)^2z^2 + 2(2-3\alpha)z + 1}{(1-z)^2} = h(z),
\]

\[
\text{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} = \text{Re}\left\{2(1-\alpha)g(z) + 2\alpha + \frac{zQ'(z)}{Q(z)}\right\}
\]

\[
= (3-2\alpha)\text{Re}\left\{\frac{1+z}{1-z}\right\} + 2\alpha > 0
\]
for \(z \in U \). In view of (2.38)-(2.42), we see that
\[
\theta(p(z)) + z p'(z) \varphi(p(z)) < \theta(g(z)) + z g'(z) \varphi(g(z)) = h(z).
\]
(2.43)

Therefore, Lemma 2.2 leads to \(p(z) < g(z) \), which implies that \(f \in S^*(\alpha) \). Next, we consider
\[
f(z) = \frac{z}{(1-z)^{1-\alpha}} \in A.
\]
(2.44)

It is easy to see that
\[
\frac{zf'(z)}{f(z)} + 2 \alpha \frac{z^2 f''(z)}{f(z)} = h(z),
\]
\[
\text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} = \frac{1 + (1 - 2 \alpha)z}{1-z} \quad \rightarrow \quad \alpha
\]
as \(z \rightarrow -1 \). The proof of the theorem is completed.

Theorem 2.14. If \(f \in A \) satisfies \(f(z) \neq 0 \) for \(z \in U \setminus \{0\} \) and
\[
\frac{zf'(z)}{f(z)} + 2 \alpha \frac{z^2 f''(z)}{f(z)} < h(z),
\]
(2.46)

where
\[
h(z) = \frac{(2 \alpha - 1)^3 z^2 + 2 \alpha (3 - 4 \alpha) z + 1}{(1-z)^2} \quad (0 \leq \alpha < 1; \ z \in U),
\]
(2.47)

then \(f \in S^*(\alpha) \) and the order \(\alpha \) is sharp.

Proof. It suffices to prove the theorem for \(0 < \alpha < 1 \). We define the function \(p(z) \) by (2.36). Then \(p(z) \) is analytic in \(U \) and \(p(0) = 1 \). By a simple calculation, we find that
\[
\frac{zf'(z)}{f(z)} + 2 \alpha \frac{z^2 f''(z)}{f(z)} = 2 \alpha (1-\alpha) z p'(z) + 2 \alpha (1-\alpha)^2 p^2(z) + (1-\alpha) (1-2 \alpha + 4 \alpha^2) p(z)
\]
\[
+ \alpha (1-2 \alpha + 2 \alpha^2).
\]
(2.48)

Thus the subordination (2.46) becomes
\[
2 \alpha (1-\alpha) z p'(z) + 2 \alpha (1-\alpha)^2 p^2(z) + (1-\alpha) (1-2 \alpha + 4 \alpha^2) p(z)
\]
\[
+ \alpha (1-2 \alpha + 2 \alpha^2) < h(z).
\]
(2.49)

Set \(g(z) = (1+z)/(1-z) \), \(\theta(w) = 2 \alpha (1-\alpha)^2 w^2 + (1-\alpha) (1-2 \alpha + 4 \alpha^2) w + (1-2 \alpha + 2 \alpha^2) \), and \(\varphi(w) = 2 \alpha (1-\alpha) \). Then \(g(z) \), \(\theta(w) \), and \(\varphi(w) \) satisfy the conditions of Lemma 2.2. The function
\[
Q(z) = z g'(z) \varphi(g(z)) = 4 \alpha (1-\alpha) \frac{z}{(1-z)^2}
\]
(2.50)
is univalent and starlike in U. Further,

$$\theta(g(z)) + Q(z) = 2\alpha(1-\alpha)^2 \left(\frac{1+z}{1-z}\right)^2 + (1-\alpha)(1-2\alpha + 4\alpha^2) \left(\frac{1+z}{1-z}\right)$$

$$+ \alpha(1-2\alpha+2\alpha^2) + 4\alpha(1-\alpha) \frac{z}{(1-z)^2}$$

$$= \frac{(2\alpha-1)^3 z^2 + 2\alpha(3-4\alpha)z + 1}{(1-z)^2} = h(z), \quad (2.51)$$

for $z \in U$. Note that

$$\theta(p(z)) + zp'(z)\varphi(p(z)) < \theta(g(z)) + zg'(z)\varphi(g(z)) = h(z). \quad (2.52)$$

Hence, an application of Lemma 2.2 yields that $p(z) < g(z)$, that is, $f \in S^*(\alpha)$. For the function $f(z)$ defined by (2.44), we have

$$\frac{zf'(z)}{f(z)} + 2\alpha z^2 f'''(z) = h(z), \quad (2.53)$$

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \to \alpha \quad \text{as} \quad z \to -1.$$

Therefore we complete the proof of Theorem 2.14. \qed

Finally, by using Lemma 2.3, we prove the following.

Theorem 2.15. Let $f \in A_n$ satisfy $f(z) \neq 0$ for $z \in U \setminus \{0\}$ and

$$\left| \arg \left\{ (1-\lambda) \frac{z^2 (f'(z))^2}{f^2(z)} + \lambda \left(\frac{zf'(z)}{f(z)} + \frac{z^2 f'''(z)}{f(z)} \right) + \frac{n\lambda}{2} \right\} \right| < \pi \quad (z \in U) \quad (2.54)$$

for some λ ($\lambda > 0$). Then $f \in S_n^*(0)$ and the order 0 is sharp.

Proof. The function $g(z)$ defined by

$$g(z) = \frac{zf'(z)}{f(z)} = 1 + b_n z^n + b_{n+1} z^{n+1} + \cdots \quad (2.55)$$

is analytic in U and it is easily verified that

$$(1-\lambda) \frac{z^2 (f'(z))^2}{f^2(z)} + \lambda \left(\frac{zf'(z)}{f(z)} + \frac{z^2 f'''(z)}{f(z)} \right) = g^2(z) + \lambda zg'(z) \quad (\lambda > 0; \ z \in U). \quad (2.56)$$

Suppose that there exists a point $z_0 \in U \setminus \{0\}$ such that

$$\text{Re} \{g(z)\} > 0 \quad (|z| < |z_0|), \quad g(z_0) = i\beta, \quad (2.57)$$
where β is a real number. Then, applying Lemma 2.3, we have

$$z_0 g'(z_0) \leq -\frac{n(1+\beta^2)}{2}. \quad (2.58)$$

Thus it follows from (2.56), (2.57), and (2.58) that

$$\begin{align*}
(1-\lambda)\frac{z_0^2 (f'(z_0))^2}{f(z_0)} + \lambda \left(\frac{zf'(z_0)}{f(z_0)} + \frac{z_0^2 f''(z_0)}{f(z_0)} \right) + \frac{n\lambda}{2} \\
= (g(z_0))^2 + \lambda z_0 g'(z_0) + \frac{n\lambda}{2}
\end{align*} \quad (2.59)$$

$$\leq -\beta^2 - \frac{n\lambda(1+\beta^2)}{2} + \frac{n\lambda}{2} \leq 0$$

for $\lambda > 0$, which contradicts (2.54). Hence $\text{Re} \{g(z)\} > 0 \ (z \in U)$, that is $f \in S^{n^*}_n(0)$. If we let

$$f_n(z) = \frac{z}{(1-z^n)^{1/n}} \in A_n, \quad (2.60)$$

then

$$\begin{align*}
(1-\lambda)\frac{f_n'(z)^2}{f_n(z)} + \lambda \left(\frac{zf_n'(z)}{f_n(z)} + \frac{z^2 f_n''(z)}{f_n(z)} \right) + \frac{n\lambda}{2} \\
= \left(1 + \frac{n\lambda}{2}\right) \left(\frac{1+z^n}{1-z^n} \right)^2 \quad (z \in U),
\end{align*} \quad (2.61)$$

and so the function $f_n(z)$ satisfies (2.54). Noting that

$$\text{Re} \frac{z f_n'(z)}{f_n(z)} = \text{Re} \frac{1+z^n}{1-z^n} \to 0 \quad (2.62)$$
as $z \to e^{i\pi/n}$, we conclude that the order 0 is the best possible.

Acknowledgment. The authors would like to express their gratitude to the referee for his valuable suggestions.

References

Oh Sang Kwon: Department of Mathematics, Kyungsung University, Pusan 608-736, Korea
E-mail address: oskwon@star.kyungsung.ac.kr

Nak Eun Cho: Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea
E-mail address: necho@pknu.ac.kr