SOME RESULTS ON A GENERALIZED ω-JACOBI TRANSFORM

Y. BEN NAKHI and S. L. KALLA

Received 18 July 2004 and in revised form 22 July 2004

We introduce a generalized ω-Jacobi transform and obtain images of certain functions under this transform. Moreover, we define a new probability density function (pdf) involving this new generalized ω-Jacobi function. Some basic functions associated with the pdf, such as characteristic function, moments and distribution function, are evaluated.

2000 Mathematics Subject Classification: 33C20, 33C45, 44A20.

1. Introduction. Debnath [1] introduced the Jacobi transform of a function $g(x)$ defined in $-1 < x < 1$ by the integral

$$J[g(x)] = \int_{-1}^{1} (1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x)g(x)dx,$$

where $P_{n}^{(\alpha,\beta)}$ is the Jacobi function of degree n and orders $\alpha (> -1)$ and $\beta (> -1)$. Kalla et al. [3] have studied the integral

$$I_{a,b}^{\upsilon,\alpha,\beta} = \int_{-1}^{1} (1-x)^{a}(1+x)^{b}P_{\upsilon}^{(\alpha,\beta)}(x)dx,$$

with Re $a, \text{Re} b > -1$ and $P_{\upsilon}^{(\alpha,\beta)}$ is the Jacobi function, where

$$P_{\upsilon}^{(\alpha,\beta)}(x) = \frac{(\alpha + 1)_{\upsilon}}{\Gamma(\upsilon + 1)} \, _{2}F_{1}\left(-\upsilon, \upsilon + \lambda ; \frac{1-x}{2}, \alpha + 1 \right),$$

$\lambda = \alpha + \beta + 1$, and $_{2}F_{1}$ is the classical Gauss hypergeometric function and its partial derivatives with respect to a and b. These results were extended by Sarabia [5] using the following integral,

$$I_{a,b,c,p}^{\upsilon,\alpha,\beta} = \int_{-1}^{1} (1-x)^{a}(1+x)^{b}P_{\upsilon}^{(\alpha,\beta,c,p)}(x)dx,$$

where $P_{\upsilon}^{(\alpha,\beta,c,p)}(x)$ is the generalized Jacobi function defined as

$$P_{\upsilon}^{(\alpha,\beta,c,p)}(x) = \frac{(\alpha + 1)_{\upsilon}}{\Gamma(\upsilon + 1)} \, _{3}F_{2}\left(-\upsilon, \upsilon + \lambda, c ; \frac{1-x}{2}, \alpha + 1, p \right),$$

with Re $(p - c - \beta) > 0$ and $_{3}F_{2}$ is generalized hypergeometric function [2].
Moreover, Sarabia and Kalla [6] defined and studied the generalized Jacobi transform as

$$J^{a,b,c,p}_{\alpha,\beta}[f(x),\nu] = \int_{-1}^{1} (1-x)^a(1+x)^b P_{\nu}(x) f(x) dx,$$

(1.6)

for continuous or sectionally continuous f on $[-1,1]$. A number of integral transforms and their applications are given in [1, 7].

Throughout this sequel, we will use the following relation:

$$\int_{-1}^{1} (1-t)^n(1+t)^m dt = 2^{n+m+1} \int_{0}^{1} y^n(1-y)^m dy = 2^{n+m+1} B(n+1,m+1).$$

(1.7)

Further, we consider ω-Kampe de Feriet function of two variables in the following form:

$$\omega \text{Kampe de Feriet function of two variables}.$$
where \(P_{\alpha,\beta,c,p}(x) \) is the generalized \(\omega \)-Jacobi function defined as

\[
P_{\alpha,\beta,c,p}(x) = \frac{(\alpha + 1)_{\nu}}{\Gamma(\nu + 1)} \left(1 - x \right)^{\nu} P^\omega_{\nu,\frac{\nu}{2}} \left(-\nu, \nu + \lambda, c, \frac{1 - x}{2} \right),
\]

and \(\beta_2^\omega \) is the generalized \(\omega \)-Gauss hypergeometric function defined in [4, equation (1.9)]:

\[
\beta_2^\omega \left(\frac{a_1, a_2, a_3}{b_1, b_2}; y \right) = \frac{\Gamma(b_1)}{\Gamma(a_2)} \sum_{k=0}^{\infty} \frac{\Gamma(a_2 + \omega k)(a_1)_k(a_3)_k y^k}{\Gamma(b_1 + \omega k)(b_2)_k k!},
\]

where \(a \) is defined to be \(\Gamma(a + \omega k) / \Gamma(a) \).

For \(\omega = 1 \), (2.1) reduces to (1.6) which has been studied in [6]. In addition, if \(c = p \), (2.1) reduces to usual Jacobi transform [1].

Now we obtain images of some functions under the generalized \(\omega \)-Jacobi transform.

(1) For \(f(x) = 1 \), we have

\[
J_{\omega; \alpha, \beta}^{a,b,c,p} [1, \nu] = \int_{-1}^{1} (1 - x)^a (1 + x)^b P_{\alpha,\beta,c,p}(x) dx = \frac{(\alpha + 1)_{\nu}}{\Gamma(\nu + 1)} \sum_{k=0}^{\infty} B_k \int_{-1}^{1} (1 - x)^a (1 + x)^b dx,
\]

where

\[
B_k = \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + 1 + \omega k)} \frac{\Gamma(\nu + \lambda + \omega k)}{\Gamma(\nu + \lambda)} \frac{(-\nu)_k c_k}{(p)_k k!}.
\]

Using (1.7), we get

\[
J_{\omega; \alpha, \beta}^{a,b,c,p} [1, \nu] = \frac{2^{a+b+1} B(a + 1, b + 1)(\alpha + 1)_{\nu}}{\Gamma(\nu + 1)} \beta_3^\omega \left(-\nu, \nu + \lambda, c, a + 1 \right)_{\frac{\nu}{2}, a + b + 2; 1},
\]

where

\[
\beta_3^\omega \left(-\nu, \nu + \lambda, c, a + 1 \right)_{\frac{\nu}{2}, a + b + 2; 1} = \sum_{k=0}^{\infty} \frac{(a + 1)_k B_k}{(a + b + 2)_k}.
\]

(2) For \(f(x) = \ln(1 - x) \), we have

\[
J_{\omega; \alpha, \beta}^{a,b,c,p} [\ln(1 - x), \nu] = \int_{-1}^{1} \ln(1 - x)(1 - x)^a (1 + x)^b P_{\alpha,\beta,c,p}(x) dx = \frac{\partial}{\partial a} J_{\omega; \alpha, \beta}^{a,b,c,p} [1, \nu] = (\ln 2) J_{\omega; \alpha, \beta}^{a,b,c,p} [1, \nu] + \frac{2^{a+b+1} B(a + 1, b + 1)(\alpha + 1)_{\nu}}{\Gamma(\nu + 1)} \sum_{k=0}^{\infty} D_k,
\]

where

\[
D_k = \frac{(a + 1)_k B_k}{(a + b + 2)_k} \left[\psi(a + k + 1) - \psi(a + b + k + 2) \right].
\]
In similar way we have, for \(f(x) = \ln(1 + x) \),

\[
J_{\omega;\alpha;\beta}^{a,b,c,p}[\ln(1 + x), \nu] = \int_{-1}^{1} \frac{\ln(1 + x)(1 - x)^{a}(1 + x)^{b} P_{\omega;\mu}^{(\alpha,\beta,c,p)}(x)}{dx}
\]

\[
= \frac{\partial}{\partial b} J_{\omega;\alpha;\beta}^{a,b,c,p}[1, \nu]
\]

\[
= \left[\ln 2 + \psi(b + 1) \right] J_{\omega;\alpha;\beta}^{a,b,c,p}[1, \nu]
\]

\[
- \frac{2^{a+b+1}B(a+1,b+1)(\alpha+1)\nu}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{(a+1)kB_{k}}{(a+b+2)_k} \psi(a+k+1).
\]

(2.10)

where

\[
L_k = \frac{(a+1)kB_k}{(a+b+2)_k} \psi(a+b+k+2).
\]

(2.11)

(3) For \(f(x) = \ln((1 - x)/(1 + x)) \), using (2.8) and (2.10), we have

\[
J_{\omega;\alpha;\beta}^{a,b,c,p}\left[\frac{1-x}{1+x} \right] = \psi(b + 1) \times J_{\omega;\alpha;\beta}^{a,b,c,p}[1, \nu]
\]

\[
- \frac{2^{a+b+1}B(a+1,b+1)(\alpha+1)\nu}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{(a+1)kB_{k}}{(a+b+2)_k} \psi(a+k+1).
\]

(2.12)

(4) For \(f(x) = (1 - x)^{A}(1 + x)^{B} \), we have

\[
J_{\omega;\alpha;\beta}^{a,b,c,p}[1 - x^A(1 + x)^B, \nu] = J_{\omega;\alpha;\beta}^{a+A,b+B,c,p}[1, \nu]
\]

\[
= \frac{2^{a+A+b+B+1}B(a+A+1,b+B+1)(\alpha+1)\nu}{\Gamma(\nu+1)}
\]

\[
\times R_{\nu}\left(-\nu, v+\lambda, c, a+1 \right)_{\nu}(\alpha+1, p, a+b+B+2, 1).
\]

(2.13)

(5) For \(f(x) = P_{\omega;\mu}^{y,\delta,d,q}(x) \), we have

\[
J_{\omega;\alpha;\beta}^{a,b,c,p}[P_{\omega;\mu}^{y,\delta,d,q}(x), \nu] = \frac{2^{a+b+1}B(a+1,b+1)(\alpha+1)\nu(y+1)\mu}{\Gamma(\nu+1)\Gamma(\mu+1)}
\]

\[
\times R_{1,2,3}\left(a+1, -\nu, v+\lambda, c, -\mu, \mu+\eta, d ; a+b+2, \alpha+1, p, \gamma+1, q ; 1, 1 \right)
\]

(2.14)

where \(\eta = y + \delta + 1 \) and

\[
\omega_{1,2,3;1,2,2}\left(a+1, -\nu, v+\lambda, c, -\mu, \mu+\eta, d ; a+b+2, \alpha+1, p, \gamma+1, q ; 1, 1 \right) = \sum_{n,k=0}^{\infty} \frac{(a+1)_{n+k}}{(a+b+2)_{n+k}} \times N_n \times B_k,
\]

(2.15)

with \(B_k \) given by (2.5) and

\[
N_n = \frac{\Gamma(y+1)\Gamma(\mu+\eta+\omega n)(-\mu)_{n}n!}{\Gamma(y+1+\omega n)\Gamma(\mu+\eta)(q)_n n!}, \quad \sigma_n^2 = E[X^2] - (E[X])^2.
\]

(2.16)
Remark 2.1. Letting $\omega = 1$ in previous results, we get same results presented in [6].

3. Generalized ω-Jacobi random variable. Recently statistical distributions and their generalizations have played a significant role in application of applied statistics and reliability theory. In this section we define our ω-Jacobi random variable and its pdf, then we derive some basic functions associated with this density function.

3.1. The probability density function. In a recent paper of Sarabia and Kalla [6], the following pdf has been studied:

$$h(x) = \frac{(1-x)^a(1+x)^b}{2^{a+b+1}B(a+1,b+1)} R^3 F_2 \left(\begin{array}{c} -v, u + \lambda, c \end{array} ; \begin{array}{c} 1-x \end{array} \right) \times 1[-1 \leq x \leq 1],$$ \hspace{1cm} (3.1)

where

$$R = 4 F_3 \left(\begin{array}{c} -v, u + \lambda, c + a + 1 \end{array} ; \begin{array}{c} \alpha + 1, p, a + b + 2 \end{array} \right).$$ \hspace{1cm} (3.2)

In the present paper, we introduce a generalization of (3.1) in the form given by (3.3). Using the condition $\int_{-1}^{1} g(t) \, dt = 1$, we obtained the pdf of a random variable X associated with (1.2) to be given by

$$g(x) = g_{\omega,a,b,c,p;\omega}^{a,b,c,p;\omega}(x) = \frac{(1-x)^a(1+x)^b}{2^{a+b+1}B(a+1,b+1)} R^3 F_2 \left(\begin{array}{c} -v, u + \lambda, c \end{array} ; \begin{array}{c} 1-x \end{array} \right) \times 1[-1 \leq x \leq 1],$$ \hspace{1cm} (3.3)

where

$$R = 4 R^3 \left(\begin{array}{c} -v, u + \lambda, c + a + 1 \end{array} ; \begin{array}{c} \alpha + 1, p, a + b + 2 \end{array} \right).$$ \hspace{1cm} (3.4)

3.2. Some statistical functions. The aim of this section is to obtain some basic functions associated with the pdf $g(x)$, such as the population moments, the cumulative distribution function (cdf), and the survivor function.

3.2.1. The survivor and distribution functions. We derive the cdf $G(x)$ of the random variable X after computing its survivor function $S(x)$.

Theorem 3.1. The survivor function $S(x)$ of the random variable X is given by

$$S(x) = \frac{((1-x)/2)^{a+1}}{(a+1)B(a+1,b+1)} \omega^R 1^{1,3,1} R^1_{1,2,0} \left(\begin{array}{c} a+1; -v, u + \lambda, c; -b; \frac{1-x}{2} \end{array} ; \begin{array}{c} a+2; \alpha + 1, p; -; \frac{1-x}{2} \end{array} \right).$$ \hspace{1cm} (3.5)
Proof. Using (3.3) the survivor function \(S(x) \) of \(X \) becomes

\[
S(x) \triangleq P(X \geq x) = \int_x^1 g(t) dt
\]

\[
= 2 \int_0^{(1-x)/2} g(1-2y) dy = \frac{1}{\omega} \sum_{k=0}^{\infty} B_k \times \int_0^{(1-x)/2} y^{a+k}(1-y)^b dy
\]

\[
= \frac{1}{\omega} \sum_{k=0}^{\infty} B_{(1-x)/2} (a+k+1, b+1) \times B_k,
\]

where \(B_x(a, b) \) is the incomplete beta function [2].

\[
B_x(a, b) = \int_0^x y^a (1-y)^b dy = \frac{x^a}{a} \, _2F_1 \left(\frac{a, 1-b}{a+1}; x \right), \quad a, b > 0, \ 0 < x < 1,
\]

and \(_2F_1\) is Gauss hypergeometric function. Using this and (1.8) we get

\[
S(x) = \frac{((1-x)/2)^{a+1}}{(a+1)B(a+1, b+1) \omega} \sum_{n,k=0}^{\infty} \frac{(a+1)_{n+k} (-b)_n}{(a+2)_{n+k} n!} \left(\frac{1-x}{2} \right)^{n+k} \times B_k
\]

\[
= \frac{((1-x)/2)^{a+1}}{(a+1)B(a+1, b+1) \omega} R_{1,3,1}^3 \left(\frac{a+1}{a+2}; \frac{-\nu, \nu+\lambda, c; a+1}{\alpha+1, p, a+b+b+2}; 1 \right),
\]

which completes the proof.

Using the previous result, the cdf \(G(x) \) can be expressed as

\[
G(x) \triangleq P(X \leq x) = \int_{-1}^x g(t) dt = \int_{-1}^{1} g(t) dt - \int_{1}^x g(t) dt = 1 - S(x).
\]

(3.9)

3.2.2. Population moments. In this subsection, we begin by evaluating the characteristic function, then we obtain the basic moments, such as the moment generating function, \(k \)th moment, and the mean. The following result will be used in obtaining the basic moments.

Theorem 3.2. For any \(A, B > 0 \),

\[
E[(1-X)^A(1+X)^B] = \frac{2^{A+B}B(a+1, b+1)}{B(a+1, b+1) \omega} \times \omega R_{3}^3 \left(\frac{-\nu, \nu+\lambda, c; a+1}{\alpha+1, p, a+b+b+2}; 1 \right),
\]

and, in particular,

\[
E[(1-X)^n] = \frac{2^n B(a+n+1, b+1)}{B(a+1, b+1) \omega} \times \omega R_{3}^3 \left(\frac{-\nu, \nu+\lambda, c; a+n+1}{\alpha+1, p, a+n+b+2}; 1 \right).
\]

(3.11)
PROOF. Using (1.2) and (1.4), for \(K = (2^{a+b+1} B(a+1, b+1) R)^{-1} \), we have

\[
E[(1-X)^{A}(1+X)^{B}] = \int_{-1}^{1} (1-t)^{A}(1+t)^{B} g(t) dt
\]

\[
= K \int_{-1}^{1} (1-t)^{a+A}(1+t)^{b+B} \sum_{k=0}^{\infty} C_{k} \left(\frac{-v, u + \lambda, c; 1-t}{a+1, p; 1} \right) dt
\]

\[
= K \sum_{k=0}^{\infty} C_{k} \frac{B_{k}}{2^{k}} \int_{-1}^{1} (1-t)^{a+A+k}(1+t)^{b+B} dt
\]

\[
= K \sum_{k=0}^{\infty} 2^{a+A+k+b+B} B(a+A+k+1, b+B+1) \times B_{k}
\]

\[
= \frac{2^{A+B} B(a+1, b+B+1)}{B(a+1, b+B+1) R} \sum_{k=0}^{\infty} \left(\frac{a+A}{a+1, b+B+2} \right)^{k} B_{k}
\]

\[
= \frac{2^{A+B} B(a+1, b+B+1)}{B(a+1, b+B+1) R} \times 4 R_{3} \left(\frac{-v, u + \lambda, c, a+1}{a+1, p, a+B+2} \right)
\]

which completes the proof. \(\square \)

Now we state and prove our main theorem.

Theorem 3.3. The characteristic function of \(X \), for any real \(t \), is given by

\[
\varphi_{X}(t) = e^{it} \times R_{1,2,0}^{R_{1,3,0}} \left(\frac{a+1; -v, u + \lambda, c; -1}{a+b+2; \alpha+1, p; -1, -2it} \right).
\]

(3.13)

Its moment generating function of \(X \), for any real \(\tau \), is

\[
M_{X}(\tau) = e^{\tau} \times R_{1,2,0}^{R_{1,3,0}} \left(\frac{a+1; -v, u + \lambda, c; -1}{a+b+2; \alpha+1, p; -1, -2\tau} \right),
\]

(3.14)

and its \(r \)th moment is

\[
E[X^{r}] = \frac{1}{\omega R} \sum_{n=0}^{r} \binom{r}{n} (-2)^{n} (a+1)_{n} (a+b+2)_{n} \times 4 R_{3} \left(\frac{-v, u + \lambda, c, a+n+1}{a+1, p, a+n+b+2} \right),
\]

(3.15)

\[
E[X^{r}] = \frac{1}{\omega R} \Gamma(a+1) \sum_{n=0}^{\infty} \frac{(-v, u + \lambda, c, a+n+1)}{a+b+2} \times 4 R_{3} \left(\frac{-v, u + \lambda, c, a+n+1}{a+1, p, a+n+b+2} \right).
\]

(3.16)

Special Case. The mean, expected value of the random variable \(X \) is given by

\[
E[X] = 1 - \frac{2(a+1)}{a+1} \times R_{3} \left(\frac{-v, u + \lambda, c, a+2}{a+1, p, a+b+3} \right).
\]

(3.17)
Proof. We have

\[\varphi_X(t) \triangleq E[e^{itX}] = E[e^{it(1-(1-X))}] = e^{it} \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} E[(1-X)^n]; \quad (3.18) \]

using (1.8) and (3.11),

\[\varphi_X(t) = e^{it} \frac{\omega}{R} \sum_{n=0}^{\infty} \frac{(-2it)^n}{n!} \left(\frac{(a+1)n}{(a+b+2)n} \right)^\omega \times \mathcal{R}_3 \left(\frac{-v, v+\lambda, c, a+n+1}{\alpha+1, p, a+n+b+2}; 1 \right) \]

\[= e^{it} \frac{\omega}{R} \times \sum_{n,k=0}^{\infty} \frac{(a+1)n+k}{(a+b+2)n+k} \frac{(-2it)^n}{n!} \times B_k \]

\[= e^{it} \frac{\omega}{R} \times \mathcal{R}_{1,2,0} \left(\frac{-v, v+\lambda, c; -}{a+b+2; \alpha+1, p}; -; 1, -2it \right). \quad (3.19) \]

Observing that, with \(\tau = it \) in (3.13), we get moment generating function of \(X \). Indeed

\[M_X(\tau) \triangleq E[e^{\tau X}] = e^{\tau} \frac{\omega}{R} \times \mathcal{R}_{1,2,0} \left(\frac{-v, v+\lambda, c; -}{a+b+2; \alpha+1, p}; -; 1, -2\tau \right). \quad (3.20) \]

To obtain the \(r \)th moment, we notice that for positive integer \(r \),

\[E[X^r] = E[(1-(1-X))^r] = \sum_{n=0}^{r} \binom{r}{n} (-1)^n E[(1-X)^n]; \quad (3.21) \]

using (3.11),

\[E[X^r] = \frac{1}{\omega} \sum_{n=0}^{r} \binom{r}{n} \frac{(-2)^n(a+1)n}{(a+b+2)n} \times \frac{\omega}{4} \mathcal{R}_3 \left(\frac{-v, v+\lambda, c, a+n+1}{\alpha+1, p, a+n+b+2}; 1 \right). \quad (3.22) \]

Now since the mean, expected value of the random variable \(X \) is a special case of this moment, namely, the mean is the 1st moment,

\[E[X] = 1 - E[1-X] = 1 - \frac{2(a+1)}{(a+b+2)} \times \frac{\omega}{4} \mathcal{R}_3 \left(\frac{-v, v+\lambda, c, a+2}{\alpha+1, p, a+b+3}; 1 \right), \quad (3.23) \]

which completes the proof.

Similarly, we can obtain the variance of the random variable \(X \), \(\sigma_X^2 \), using (3.15) with \(k = 2 \), besides (3.17), since it is defined as

\[\sigma_X^2 \triangleq E[X^2] - (E[X])^2. \quad (3.24) \]

Remark 3.4. Letting \(\omega = 1 \) in the previous theorem, we get the results presented in [6].
References

Y. Ben Nakhi: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: jasi@sci.kuniv.edu.kw

S. L. Kalla: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: kalla@sci.kuniv.edu.kw