THE STRUCTURE OF A SUBCLASS OF AMENABLE BANACH ALGEBRAS

R. EL HARTI

Received 8 January 2004

We give sufficient conditions that allow contractible (resp., reflexive amenable) Banach algebras to be finite-dimensional and semisimple algebras. Moreover, we show that any contractible (resp., reflexive amenable) Banach algebra in which every maximal left ideal has a Banach space complement is indeed a direct sum of finitely many full matrix algebras. Finally, we characterize Hermitian \(\star \)-algebras that are contractible.

2000 Mathematics Subject Classification: 46H25, 18G55, 46M20.

1. Introduction. The purpose of this note is to establish the structure of some class of amenable Banach algebras. Let \(\mathcal{A} \) be a Banach algebra over the complex field \(\mathbb{C} \). We define a Banach left \(\mathcal{A} \)-module \(\mathcal{X} \) to be a Banach space which is also a unital left \(\mathcal{A} \)-module such that the linear map \(\mathcal{A} \times \mathcal{X} \to \mathcal{X} \), \((a,x) \to ax\), is continuous. Right modules are defined analogously. A Banach \(\mathcal{A} \)-bimodule is a Banach space with a structural \(\mathcal{A} \)-bimodule such that the linear map \(\mathcal{A} \times \mathcal{X} \times A \to \mathcal{X} \), \((a \times x \times b) \to axb\), is jointly continuous, where \(\mathcal{A} \times \mathcal{X} \times \mathcal{A} \) carries the Cartesian product topology. A submodule \(\mathcal{Y} \) of a Banach \(\langle \text{left, right, bi-} \rangle \mathcal{A} \)-module \(\mathcal{X} \) is a closed subspace of \(\mathcal{X} \) with the structural Banach \(\langle \text{left, right, or bi-} \rangle \mathcal{A} \)-module. A Banach left \(\mathcal{A} \)-module morphism \(\theta : \mathcal{X} \to \mathcal{Y} \) is a continuous linear map between two left Banach \(\mathcal{A} \)-modules such that \(\theta(ax) = a\theta(x) \) for all \(a \in \mathcal{A} \) and all \(x \in \mathcal{X} \). A Banach right \(\mathcal{A} \)-module morphism and a Banach \(\mathcal{A} \)-bimodule morphism are defined analogously. For each Banach \(\langle \text{left, bi-} \rangle \mathcal{A} \)-module \(\mathcal{X} \), the dual \(\mathcal{X}^* \) is naturally a Banach \(\langle \text{left, bi-} \rangle \mathcal{A} \)-bimodule with the module actions defined by \(\langle aT(x) = T(xa) \rangle, aT(x) = T(xa) \), and \(Ta(x) = T(ax) \), for all \(a \in \mathcal{A} \), \(T \in \mathcal{X}^* \), and \(x \in \mathcal{X} \), where \(T(x) \) denotes the evaluation of \(T \) at \(x \). If \(\mathcal{X} \), \(\mathcal{Y} \), and \(\mathcal{Z} \) are Banach \(\langle \text{left, or bi-} \rangle \mathcal{A} \)-modules and \(\theta : \mathcal{X} \to \mathcal{Y} \), \(\beta : \mathcal{Y} \to \mathcal{Z} \) are \(\langle \text{left, bi-} \rangle \) module morphisms, then the sequence

\[
\Sigma : 0 \to \mathcal{X} \to \mathcal{Y} \to \mathcal{Z} \to 0
\]

(1.1)

is exact if \(\theta \) is one-to-one, \(\mathcal{Y} \beta = \mathcal{Z} \), and \(\mathcal{Y} \theta = \ker \beta \). The exact sequence \(\Sigma \) is admissible if \(\beta \) has a continuous right inverse, equivalently, \(\ker \beta \) has a Banach space complement in \(\mathcal{Y} \). The admissible exact sequence splits if the right inverse of \(\beta \) is Banach \(\langle \text{left, bi-} \rangle \) module, equivalently, \(\ker \beta \) is a Banach space complement in \(\mathcal{Y} \) which is an \(\mathcal{A} \)-submodule.

A derivation from \(\mathcal{A} \) into a Banach \(\mathcal{A} \)-bimodule \(\mathcal{X} \) is a linear operator \(D : \mathcal{A} \to \mathcal{X} \) which satisfies \(D(ab) = D(a)b + aD(b) \), for all \(a, b \in \mathcal{A} \). Recall that for any \(x \in \mathcal{X} \), the mapping \(\delta_x : \mathcal{A} \to \mathcal{X} \) defined by \(\delta_x(a) = ax - xa \), \(a \in \mathcal{A} \), is a continuous derivation,
called an inner derivation. A Banach algebra \(\mathcal{A} \) is said to be contractible if for every Banach \(\mathcal{A} \)-bimodule \(\mathcal{X} \), each continuous derivation from \(\mathcal{A} \) into \(\mathcal{X} \) is inner. We say that \(\mathcal{A} \) is amenable whenever every continuous derivation from \(\mathcal{A} \) into \(\mathcal{X}^* \) is inner for each Banach \(\mathcal{A} \)-bimodule \(\mathcal{X} \). Obviously, every contractible Banach algebra is an amenable Banach algebra and the converse is true in the finite-dimension case. It is well known that a finite-dimensional algebra is semisimple if and only if it is isomorphic to a finite Cartesian product of a family of full matrix algebras. Using Theorem 2.1, it is easy to check that a finite Cartesian product of a family of full matrix algebras is contractible.

The purpose of this note is to contribute to the study of the following questions, raised, respectively, in [2], [3, page 817], and [5, page 212].

Question 1.1. Is every contractible Banach algebra semisimple?

Question 1.2. Is every reflexive amenable Banach algebra finite-dimensional and semisimple?

Question 1.3. Is every contractible Banach algebra finite-dimensional?

Recall that a Banach algebra is called a reflexive Banach algebra if it is reflexive as a Banach space. In this note, we will present two situations in which a contractible Banach algebra is finite-dimensional. First, we will give a partial answer to the above questions, where we assume that each maximal left ideal is complemented as a Banach space. This result improves [5, Proposition IV.4.3] for contractible Banach algebras and [3, Corollary 2.3] for reflexive amenable Banach algebras, where the authors suppose only that all of their primitive ideals have finite codimensions. Second, we will show that a Hermitian Banach \(*\)-algebra is contractible if and only if it is a finite-dimensional semisimple algebra.

2. Preliminaries. In this section, we recall some facts about the structure of contractible and amenable Banach algebras. Let \(\mathcal{A} \) be a Banach algebra over the complex field \(\mathbb{C} \) and let \(\mathcal{A}^{**} \) be the bidual of \(\mathcal{A} \) with the usual multiplication defined by \(\psi \cdot \phi(f) = \psi(f)\phi(f) \) for all \(\psi, \phi \in \mathcal{A}^{**} \) and \(f \in \mathcal{A}^* \). Consider on \(\mathcal{A}^{**} \) the Banach \(\mathcal{A} \)-bimodule structure defined by \(aT = \eta(a)T, Ta = T\eta(a) \) with \(\eta: \mathcal{A} \rightarrow \mathcal{A}^{**} \) the canonical map. Notice that if a Banach algebra \(\mathcal{A} \) has a bounded approximate identity, then its bidual \(\mathcal{A}^{**} \) has an identity. It is a fact that a contractible Banach algebra has an identity and an amenable Banach algebra admits bounded right, left, bilateral approximate identities. Of course, a reflexive amenable Banach algebra must be unital. We denote the identity element of \(\mathcal{A} \) by 1 and we write \(\mathcal{A} \hat{\otimes} \mathcal{A} \) for the completed projective tensorial product (see [4]). The Banach space \(\mathcal{A} \hat{\otimes} \mathcal{A} \) is a Banach \(\mathcal{A} \)-bimodule if we define

\[
a(b \otimes c) = ab \otimes c, \quad (b \otimes c)a = b \otimes ca, \quad a, b, c \in \mathcal{A}. \tag{2.1}
\]

For a unital Banach algebra \(\mathcal{A} \), a diagonal of \(\mathcal{A} \) is an element \(d \in \mathcal{A} \hat{\otimes} \mathcal{A} \) such that \(ad = da \), for all \(a \in \mathcal{A} \), and \(\pi(d) = 1 \), where \(\pi: \mathcal{A} \hat{\otimes} \mathcal{A} \rightarrow \mathcal{A} \) is the canonical Banach \(\mathcal{A} \)-bimodule morphism. For such a Banach algebra \(\mathcal{A} \), a virtual diagonal of \(\mathcal{A} \) is an element
\(d \in (\mathcal{A} \otimes \mathcal{A})^{**} \) such that

\[
 ad = da, \quad \forall a \in \mathcal{A}, \quad \pi^{**}(d) = 1,
\]

where \(\pi^{**} : (\mathcal{A} \otimes \mathcal{A})^{**} \to \mathcal{A}^{**} \) is the bidual Banach \(\mathcal{A} \)-module morphism of \(\pi \). In the following theorems, we present characterizations of contractible (resp., amenable) Banach algebras. We recall, respectively, [1, Theorem 6.1] and [6, Theorem 1.3].

Theorem 2.1. Let \(\mathcal{A} \) be a Banach algebra. The following are equivalent:
(1) \(\mathcal{A} \) is contractible;
(2) \(\mathcal{A} \) has a diagonal.

Theorem 2.2. Let \(\mathcal{A} \) be a Banach algebra. The following are equivalent:
(1) \(\mathcal{A} \) is amenable;
(2) \(\mathcal{A} \) has a virtual diagonal.

We choose as a basis of the algebra \(M_n(\mathbb{C}) \) of all \(n \times n \) complex matrices the set of elementary matrices \(e_{ij} \). Consider \(d = \sum_{i,j} \delta_{ij} e_{ij} \otimes e_{ji} \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}) \). Then \(Md = dM \), for all \(M \in M_n(\mathbb{C}) \), and \(\pi(d) = 1 \), where \(\pi : M_n(\mathbb{C}) \otimes M_n(\mathbb{C}) \to M_n(\mathbb{C}) \) is the canonical morphism. It follows that \(M_n(\mathbb{C}) \) is contractible.

Next, the following propositions hold.

Proposition 2.3. Let \(\mathcal{A} \) be a (contractible, amenable) Banach algebra. Then, if \(\theta : \mathcal{A} \to \mathcal{B} \) is a continuous homomorphism from \(\mathcal{A} \) into another Banach algebra \(\mathcal{B} \) with dense range, then \(\mathcal{B} \) is (contractible, amenable). In particular, if \(\mathcal{I} \) is a closed two-sided ideal of a (contractible, amenable) Banach algebra \(\mathcal{A} \), then \(\mathcal{A}/\mathcal{I} \) is (contractible, amenable) too.

Proof. Assume that \(\mathcal{A} \) is contractible. Let \(\mathcal{X} \) be a Banach \(\mathcal{B} \)-bimodule. Consider on \(\mathcal{X} \) the structure of \(\mathcal{A} \)-bimodule defined by \(a \cdot x = \theta(a)x \) and \(x \cdot a = x\theta(a) \). Since \(\theta \) is continuous, \(\mathcal{X} \) is a Banach \(\mathcal{A} \)-bimodule. Now, let \(D : \mathcal{B} \to \mathcal{X} \) be a continuous derivation. It is easy to see that \(D \circ \theta \) is a continuous derivation from \(\mathcal{A} \) to the Banach \(\mathcal{A} \)-bimodule \(\mathcal{X} \), and thus it is inner. Therefore, there exists \(x \in \mathcal{X} \) such that \(D(\theta(a)) = a \cdot x - x \cdot a = \theta(a)x - x\theta(a) \) for all \(a \in \mathcal{A} \). Since \(\theta(\mathcal{A}) \) is dense in \(\mathcal{B} \), we have \(D(b) = bx - xb \) for all \(b \in \mathcal{B} \). It follows that \(D \) is inner and \(\mathcal{B} \) is contractible. If \(\mathcal{A} \) is amenable, we will consider a continuous derivation \(D : \mathcal{B} \to \mathcal{X}^* \) from \(\mathcal{B} \) to the dual of the bimodule \(\mathcal{X} \) and we use the same way to prove that \(\mathcal{B} \) is amenable. \(\square \)

Proposition 2.4 [1, Theorems 2.3 and 2.5]. Let \(\mathcal{A} \) be an amenable Banach algebra and let

\[
 \Sigma : 0 \to \mathcal{X}^* \to \mathcal{Y} \to \mathcal{X} \to 0
\]

be an admissible short exact sequence of Banach (left, right, or bi-) modules with \(\mathcal{X}^* \) a dual of \(\mathcal{X} \). Then \(\Sigma \) splits.

Proposition 2.5 [1, Theorem 6.1]. Let \(\mathcal{A} \) be a contractible Banach algebra and let

\[
 \Sigma : 0 \to \mathcal{X} \to \mathcal{Y} \to \mathcal{X} \to 0
\]

be an admissible short exact sequence of Banach (left, right, or bi-) modules. Then \(\Sigma \) splits.
Remark 2.6. Notice that for each closed two-sided ideal \mathcal{I} of a reflexive Banach algebra, \mathcal{A} and the quotient \mathcal{A}/\mathcal{I} are reflexive Banach algebras too.

Proposition 2.7. Let \mathcal{A} be a contractible or reflexive amenable Banach algebra and assume that \mathcal{I} is a closed (left, two-sided) ideal of \mathcal{A} which has a Banach space complement. Then there exists a closed (left, two-sided) ideal \mathcal{J} of \mathcal{A} such that

$$\mathcal{A} = \mathcal{I} + \mathcal{J}.$$

(2.5)

Proof. Let \mathcal{A} be an amenable Banach algebra and let \mathcal{I} be a closed (left, two-sided) ideal of \mathcal{I} which has a Banach space complement. Then the short exact sequence $\Sigma : 0 \to \mathcal{I} \to \mathcal{A} \to \mathcal{A}/\mathcal{I} \to 0$ is admissible. If \mathcal{A} is reflexive, then the space \mathcal{I} will be the same, and so it will be the dual of the Banach (left, bi-) \mathcal{A}-module \mathcal{I}^*. By Proposition 2.4, Σ splits and \mathcal{I} has a Banach space complement which is a (left, two-sided) ideal. When \mathcal{A} is contractible, by Proposition 2.5, we have the result. □

3. Main results

Theorem 3.1. Let \mathcal{A} be a contractible or reflexive amenable Banach algebra. Assume that each maximal left ideal of \mathcal{A} is complemented as a Banach space in \mathcal{A}. Then there are $n_1, n_2, \ldots, n_k \in \mathbb{N}$ such that

$$\mathcal{A} \cong M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_k}(\mathbb{C}).$$

(3.1)

Proof. By Section 2, the algebra \mathcal{A} has an identity $1_{\mathcal{A}}$. Let $(\mathcal{M}_i)_{i \in I}$ be the family of all maximal left ideals. Since \mathcal{M}_i is complemented as a Banach space for each i, there exists a left ideal \mathcal{J}_i such that $\mathcal{A} = \mathcal{M}_i \oplus \mathcal{J}_i$. Notice that

$$\text{Rad}(\mathcal{A}) = \bigcap_i \mathcal{M}_i$$

(3.2)

is the Jacobson radical of \mathcal{A} and

$$\bigoplus_i \mathcal{J}_i \subseteq \text{Soc}(\mathcal{A}),$$

(3.3)

where $\text{Soc}(\mathcal{A})$ is the socle of the algebra \mathcal{A}, that is, it is the sum of all minimal left ideals of \mathcal{A} and it coincides with the sum of all minimal right ideals of \mathcal{A}. Recall that every minimal left ideal of \mathcal{A} is of the form $\mathcal{A}e$, where e is a minimal idempotent, that is, $e^2 = e \neq 0$ and $e \mathcal{A}e = \mathbb{C}e$. On the other hand, for each finite family of minimal idempotents $(e_k)_{k \in K}$, we have

$$\mathcal{A} = \bigoplus_{k \in K} \mathcal{A}e_k \bigoplus \bigcap_{k \in K} \mathcal{A}(1_{\mathcal{A}} - e_k).$$

(3.4)

It follows from (3.3) and (3.4) that $\text{Soc}(\mathcal{A})$ is dense in $\mathcal{A}/\text{Rad}(\mathcal{A})$. This shows that $\mathcal{A}/\text{Rad}(\mathcal{A})$ is finite-dimensional. Therefore

$$\mathcal{A} = \text{Rad}(\mathcal{A}) \bigoplus \text{Soc}(\mathcal{A}).$$

(3.5)
If $\text{Rad}(\mathcal{A}) \neq \{0\}$, this would mean that $\text{Rad}(\mathcal{A})$ has an identity, which is impossible. So, $\mathcal{A} = \text{Soc}(\mathcal{A})$, and then it is a finite direct sum of certain full matrix algebras.

Corollary 3.2. Every commutative (\langle contractible, reflexive amenable \rangle) Banach algebra \mathcal{A} is finite-dimensional and semisimple.

Corollary 3.3. Let \mathcal{A} be a contractible or reflexive amenable Banach algebra such that every irreducible representation of \mathcal{A} is finite-dimensional. Then \mathcal{A} is finite-dimensional and semisimple.

Proof. It is easy to check that every primitive ideal of a Banach algebra is finite-codimensional if and only if each of its maximal left ideals is finite-codimensional. So, the corollary follows.

It should be emphasized that the following result appears in [9] or [5, Corollary in page 212].

Corollary 3.4. Every (\langle contractible, reflexive amenable \rangle) C^*-algebra \mathcal{A} is finite-dimensional and semisimple.

Proof. Suppose that \mathcal{A} is a contractible or reflexive amenable C^*-algebra. Let \mathcal{M} be a maximal left ideal. By [7, Theorems 5.3.5 and 5.2.4], the space \mathcal{A}/\mathcal{M} is a Hilbert space. It follows that the short exact sequence

$$\Sigma: 0 \rightarrow \mathcal{M} \rightarrow \mathcal{A} \rightarrow \mathcal{A}/\mathcal{M} \rightarrow 0 \quad (3.6)$$

is admissible, and thus \mathcal{M} has a Banach space complement. By Theorem 3.1, \mathcal{A} is isomorphic to a finite direct sum of full matrix algebras.

Remark 3.5. Recall that a simple algebra is an algebra which has no proper ideals other than the zero ideal. To show that every (\langle contractible, reflexive amenable \rangle) Banach algebra is finite-dimensional and semisimple, it suffices to prove that every (\langle contractible, reflexive amenable \rangle) simple contractible Banach algebra is finite-dimensional. Indeed, let \mathcal{A} be a contractible Banach algebra. Let \mathcal{P} be a primitive ideal of \mathcal{A}. Then the algebra \mathcal{A}/\mathcal{P} is a (\langle contractible, reflexive amenable \rangle) Banach algebra. Put $\mathcal{B} = \mathcal{A}/\mathcal{P}$ and consider some maximal two-sided ideal \mathcal{M} of \mathcal{B}. Since \mathcal{B}/\mathcal{M} is a (\langle contractible, reflexive amenable \rangle) simple Banach algebra, it is finite-dimensional. There exists then a closed two-sided ideal \mathcal{J} such that $\mathcal{B} = \mathcal{M} \oplus \mathcal{J}$. Recall that in a primitive algebra, every nonzero ideal is essential, that is, it has a nonzero intersection with every nonzero ideal of the algebra. It follow that $\mathcal{M} = 0$, and so \mathcal{B} is finite-dimensional. Using Corollary 3.2, \mathcal{A} must be a finite-dimensional and semisimple algebra. This completes the proof.

Proposition 3.6. Let \mathcal{A} be a (\langle contractible, reflexive amenable \rangle) simple contractible Banach algebra having a maximal left ideal complemented as a Banach space. Then \mathcal{A} is finite-dimensional.

Proof. If \mathcal{A} is an infinite-dimensional simple algebra, then $\text{Soc}(\mathcal{A}) = 0$. Moreover, if \mathcal{A} is (\langle contractible, reflexive amenable \rangle) with a maximal left ideal complemented as a Banach space, then \mathcal{A} has a nontrivial minimal left ideal. This is a contradiction.
Now, assume that \mathcal{A} is a unital Banach $*$-algebra which admits at least one state τ. Then there exists a $*$-representation π_{τ} of \mathcal{A} on a Hilbert space H_{τ}, with a cyclic vector ζ of norm 1 in H_{τ} such that $\tau(a) = \langle \pi_{\tau}(a)\zeta, \zeta \rangle$, for all $a \in \mathcal{A}$, $\langle \cdot, \cdot \rangle$ being the inner product in H_{τ}.

Theorem 3.7. A Hermitian Banach $*$-algebra \mathcal{A} is contractible if and only if there are $n_1, n_2, \ldots, n_k \in \mathbb{N}$ such that (3.1) holds.

Proof. It suffices to show the “only if” part. Suppose that a Hermitian Banach algebra \mathcal{A} is contractible. Let $T(\mathcal{A})$ be the set of all states of \mathcal{A} and let $R^*(\mathcal{A})$ be the $*$-radical of \mathcal{A}, that is, the intersection of the kernels of all $*$-representations of \mathcal{A} on Hilbert spaces. Since \mathcal{A} is Hermitian and has an identity, $T(\mathcal{A}) \neq \emptyset$, and so $R^*(\mathcal{A}) \neq \emptyset$.

Put $\pi = \bigoplus_{\tau \in T(\mathcal{A})} \pi_{\tau}$ and $H = \bigoplus_{\tau \in T(\mathcal{A})} H_{\tau}$. Then π is a $*$-representation of \mathcal{A} on H. Consider

$$||\pi(a)|| = \sup_{\tau \in T(\mathcal{A})} ||\pi_{\tau}(a)||.$$ (3.7)

Then $\| \cdot \|$ is a C*-norm on $\pi(A)$. Let B denote the closure of $\pi(A)$, $\| \cdot \|$). Moreover, $\pi : \mathcal{A} \to B$ is a continuous mapping into a C*-algebra B such that $\ker(\pi) = R^*(\mathcal{A})$. As \mathcal{A} is contractible, B is also contractible. Using Corollary 3.4, the algebra B has to be finite-dimensional. Notice that $\mathcal{A}/R^*(\mathcal{A})$ is isometric with the $*$-subalgebra $\pi(\mathcal{A})$ of B. Thus, it follows that $\mathcal{A}/R^*(\mathcal{A})$ is finite-dimensional. Since $R^*(\mathcal{A})$ is a finite-codimensional closed two-sided $*$-ideal, there exists a closed two-sided ideal \mathcal{K} such that

$$\mathcal{A} = R^*(\mathcal{A}) \oplus \mathcal{K}.$$ (3.8)

Next, note that $\|\pi(a)\|^2 = \sup\{\tau(a^*a), \tau \in T(\mathcal{A})\} \geq |a^*a|_\sigma$, where $|a|_\sigma$ is the spectral radius of $a \in \mathcal{A}$. By Pták [8], we obtain $\|\pi(a)\|^2 \geq |a|_\sigma^2$. So, if $a \in R^*(\mathcal{A})$, then $|a|_\sigma = 0$. Therefore, every element of $R^*(\mathcal{A})$ is quasinilpotent. Notice that in general Rad(\mathcal{A}) $\subseteq R^*(\mathcal{A})$. Since $R^*(\mathcal{A})$ is a closed two-sided $*$-ideal, we have $R^*(\mathcal{A}) = \text{Rad}(\mathcal{A})$, and so \mathcal{A} is finite-dimensional and semisimple. \hfill \square

REFERENCES

R. El Harti: Faculty of Sciences and Techniques (FST), University Hassan I-Settat, BP 577, 2600 Settat, Morocco

E-mail address: elharti@ibnsina.uh1.ac.ma