We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpotents. Some asymptotic results are also given.

2000 Mathematics Subject Classification: 47B47, 47A05.

1. Introduction. Let H be a complex Hilbert space and let $B(H)$ be the Banach algebra consisting of all the bounded linear operators on H. For the normal operators, we have the following well-known Putnam-Fuglede (PF) theorem [7].

Theorem 1.1. If N, M are normal operators in $B(H)$, and if $X \in B(H)$ such that $NX = XM$, then $N^*X = XM^*$.

Putnam [7] also obtained another important result that we call the second-degree PF (SPF) theorem.

Theorem 1.2. If N, M are normal operators in $B(H)$, and if $X \in B(H)$ such that $N(NX - XM) = (NX - XM)M$, then $NX = XM$.

If we let $A = (N_1, N_2)$ and $B = (M_1, M_2)$ denote tuples of commuting operators in $B(H)$, and define the elementary operators $\Delta_{(A,B)}$ and $\Delta_{(A^*,B^*)} \in B(B(H))$ by

\[
\Delta_{(A,B)}(X) = N_1 X N_2 - M_1 X M_2,
\]
\[
\Delta_{(A^*,B^*)}(X) = N_1^* X N_2^* - M_1^* X M_2^*,
\]

(1.1)

then an extension of the classical PF theorem, **Theorem 1.1**, is obtained as follows (see [4, 5]).

Theorem 1.3. If the operators $N_i, M_i \in B(H)$, $i = 1, 2$, are normal, then $\Delta_{(A,B)}(X) = 0$ for some $X \in B(H)$ implies $\Delta_{(A^*,B^*)}(X) = 0$.

Let $A = (N_1, N_2)$ and $B = (M_1, M_2)$. For $n = 2, 3, \ldots$, we define the high-order elementary operator $\Delta_{(A,B)}^{(n)}$ by

\[
\Delta_{(A,B)}^{(n)}(X) = \Delta_{(A,B)}(\Delta_{(A,B)}^{(n-1)}(X)), \quad X \in B(H).
\]

(1.2)

2. Putnam-Fuglede theorem under perturbation by quasinilpotents

Theorem 2.1. Let A, B be normal operators, and let C, D be quasinilpotents such that $AC = CA, BD = DB$. If $(A + C)X = X(B + D)$ for some $X \in B(H)$, then $AX = XB$.

Proof. If \((A + C)X = X(B + D)\), then \(AX - XB = -(CX - XD)\). For any \(N, M \in B(H)\), denote by \(\delta_{NM}\) the linear operator on \(B(H)\):

\[
\delta_{NM}(X) = NX - XM;
\]

(2.1)

then \(\delta_{AB}(X) = -\delta_{CD}(X)\), so

\[
\delta^{(n)}_{AB}(X) = (-1)^n \delta^{(n)}_{CD}(X).
\]

(2.2)

Since \(\sigma(\delta_{CD}) = \sigma(C) - \sigma(D) = \{0\}\) (see [6]), we have \(n \sqrt{||\delta^{(n)}_{CD}(X)||} \to 0\). But

\[
\frac{n}{\sqrt{||\delta^{(n)}_{AB}(X)||}} \leq \frac{n}{\sqrt{||\delta^{(n)}_{CD}(X)||}} \frac{n}{\sqrt{||X||}},
\]

(2.3)

so \(n \sqrt{||\delta^{(n)}_{AB}(X)||} \to 0\). The theorem follows by a result of Anderson and Foiaş [1] which says that if \(A, B\) are normal operators, and \(n \sqrt{||\delta^{(n)}_{AB}(X)||} \to 0\), then \(AX - XB = 0\).

Remark 2.2. With the operators \(A\) and \(B\) being normal, it follows from Theorem 2.1 that \((A + C)X = X(B + D) \Rightarrow (A^* + C)X = X(B^* + D)\). It is, however, not true in general that \((A + C)^*X = X(B + D)^*\) (see [9]).

We give now a simple application of Theorem 2.1.

Corollary 2.3. Let \(N\) be a normal operator and let \(C\) be a quasinilpotent that commutes with \(N\). If \(f\) is a polynomial of degree \(n\) such that \(f(N + C) = 0\), then \(f^{(k)}(N)C^k = 0\) for \(k = 0, 1, \ldots, n\). So \(C\) is nilpotent of order at most \(n\). Moreover, if \(f\) has no multiple root, then \(C = 0\).

Proof. It is easy to see that

\[
f(N + C) = f(N) + f'(N)C + \frac{f''(N)}{2!} C^2 + \cdots + \frac{f^{(n)}(N)}{n!} C^n.
\]

(2.4)

Applying Theorem 2.1 to (2.4), we have \(f(N) = 0\) and

\[
f'(N)C + \frac{f''(N)}{2!} C^2 + \cdots + \frac{f^{(n)}(N)}{n!} C^n = 0,
\]

(2.5)

or

\[
\left(f'(N) + \frac{f''(N)}{2!} C + \cdots + \frac{f^{(n)}(N)}{n!} C^{n-1}\right)C = 0.
\]

(2.6)

Applying Theorem 2.1 again to (2.6) yields \(f'(N)C = 0\) and

\[
\left(\frac{f''(N)}{2!} + \cdots + \frac{f^{(n)}(N)}{n!} C^{n-2}\right)C^2 = 0.
\]

(2.7)

So we have \(f''(N)/2! C^2 = 0, \ldots, (f^{(n)}(N)/n!) C^n = 0\).

If \(f\) has no multiple root, then it follows from \(f(N) = 0\) that \(f'(N)\) is invertible. As \(f'(N)C = 0\), we know immediately that \(C = 0\).
Lemma 2.4. Let $C, M \in B(H)$. If C is quasinilpotent, then the only solution $X \in B(H)$ of $X = CXM$ is $X = 0$.

Proof. If $X = CXM$, we have, for $n = 2, 3, \ldots$, $X = C^n XM^n$, so

$$\|X\| \leq \|C^n\| \|X\| \|M^n\| \leq \|C^n\| \|X\| \|M\|^n.$$ \hfill (2.8)

But with C being quasinilpotent, it follows that

$$\frac{n}{\sqrt{n}} \|C^n\| \|M^n\|^n \to 0, \quad n \to \infty.$$ \hfill (2.9)

Thus $\|C^n\| \|M\|^n \to 0$, so $X = 0$ by (2.8).

Lemma 2.5. Let N be a normal operator and let C, D be quasinilpotents such that N, C, D mutually commute. If $M \in B(H)$, and $(N + C)X(N + C) = MXD$ for some $X \in B(H)$, then $NXN = 0$.

Proof. Suppose that $X \in B(H)$ such that $(N + C)X(N + C) = MXD$. If the kernel $\text{Ker}(N) \neq \{0\}$, then letting P be the project from H to $\text{Ker}(N)$, we have $NPXN = 0$, $NXPN = 0$. Therefore, to prove $NXN = 0$, it is sufficient to prove $NP\perp X\perp N = 0$. Thus we can assume that $\text{Ker}(N) = \{0\}$. Let

$$N = \int_{\sigma(N)} \lambda dE_\lambda$$ \hfill (2.10)

be the spectral decomposition of N. Define $\Delta_\epsilon = \{z \mid |z| \leq \epsilon\}$, $\Delta_\epsilon^c = C \setminus \Delta_\epsilon$, and $T_\epsilon = E(\Delta_\epsilon^c)T|_{E(\Delta_\epsilon)H}$ for any $T \in B(H)$, then we have

$$(N_\epsilon + C_\epsilon)X_\epsilon(N_\epsilon + C_\epsilon) = M_\epsilon X_\epsilon D_\epsilon,$$ \hfill (2.11)

but N_ϵ is invertible, so

$$(N_\epsilon + C_\epsilon)^{-1} = N_\epsilon^{-1} + C_\epsilon^o,$$ \hfill (2.12)

where C_ϵ^o is also quasinilpotent, and

$$X_\epsilon = (N_\epsilon + C_\epsilon)^{-1} M_\epsilon X_\epsilon D_\epsilon (N_\epsilon + C_\epsilon)^{-1}.$$ \hfill (2.13)

Because $D_\epsilon(N_\epsilon + C_\epsilon)^{-1}$ is quasinilpotent, by Lemma 2.4, we have $X_\epsilon = 0$. Letting $\epsilon \to 0$, we have $X = 0$, so $NXN = 0$. This completes the proof.

Lemma 2.6. Let N be a normal operator and let C be quasinilpotent such that $NC = CN$. If $(N + C)X(N + C) = X$ for some $X \in B(H)$, then $NXN = X$.

Proof. If $\text{Ker}(N) \neq \{0\}$, then let P be the project $H \to \text{Ker}(N)$. If $(N + C)X(N + C) = X$ for some $X \in B(H)$, then $P(N + C)X(N + C) = PX$, so $CPX(N + C) = PX$, but since C is quasinilpotent, by Lemma 2.4, we have $PX = 0$. The same way shows that $XP = 0$. Therefore, we may assume $\text{Ker}(N) = \{0\}$.
Let \(N = \int_{\sigma(N)} \lambda dE_\lambda \) be the spectral decomposition of \(N \). Define \(\Delta_\epsilon, \Delta'_\epsilon, \) and \(T_\epsilon \) to be the same as in Lemma 2.5. Then

\[
(N_\epsilon + C_\epsilon)X_\epsilon(N_\epsilon + C_\epsilon) = X_\epsilon
\]

(2.14)

or

\[
(N_\epsilon + C_\epsilon)X_\epsilon = X_\epsilon (N_\epsilon + C_\epsilon)^{-1} = X_\epsilon (N_{\epsilon^{-1}} + C_\epsilon'),
\]

(2.15)

where \(C_\epsilon' \) is quasinilpotent. So by Theorem 2.1, \(N_\epsilon X_\epsilon = X_\epsilon N_{\epsilon^{-1}} \), or \(X_\epsilon = N_\epsilon X_\epsilon N_\epsilon \). Letting \(\epsilon \to 0 \), we have \(NN = X \). \(\square \)

Using the same technique as in the proof of Lemma 2.6, we are able to obtain the following theorem.

THEOREM 2.7. Let \(N, M \) be normal operators and let \(C, D \) be quasinilpotents such that \(NC = CN \) and \(MD = DM \). If \((N + C)X(N + C) = (M + D)X(M + D) \) for some \(X \in B(H) \), then \(NN = MM \).

Proof. If \(\text{Ker}(N) \neq \{0\} \), then let \(P \) be the project: \(H \to \text{Ker}(N) \). If \((N + C)X(N + C) = (M + D)X(M + D) \) for some \(X \in B(H) \), then \(P(N + C)X(N + C) = P(M + D)X(M + D) \), that is, \(CPX(N + C) = (M + D)PX(M + D) \). Since \(C \) is quasinilpotent, by Lemma 2.5, we have \(MPXM = 0 \). The same method shows that \(MXPM = 0 \). Therefore, we can assume that \(\text{Ker}(N) = \{0\} \).

Let \(N = \int_{\sigma(N)} \lambda dE_\lambda \) be the spectral decomposition of \(N \). Define \(\Delta_\epsilon, \Delta'_\epsilon, \) and \(T_\epsilon \) to be the same as in Lemma 2.5. Then

\[
(N_\epsilon + C_\epsilon)X_\epsilon(N_\epsilon + C_\epsilon) = (M_\epsilon + D_\epsilon)X_\epsilon(M_\epsilon + D_\epsilon).
\]

(2.16)

If we write \((N_\epsilon + C_\epsilon)^{-1} = N_{\epsilon^{-1}} + C_\epsilon' \), where \(C_\epsilon' \) is quasinilpotent, then the above equation becomes

\[
X_\epsilon = (N_{\epsilon^{-1}} + C_\epsilon')(M_\epsilon + D_\epsilon)X_\epsilon(M_\epsilon + D_\epsilon)(N_{\epsilon^{-1}} + C_\epsilon')
\]

(2.17)

or

\[
X_\epsilon = (N_{\epsilon^{-1}}M_\epsilon + F_\epsilon)X_\epsilon(N_{\epsilon^{-1}}M_\epsilon + F_\epsilon),
\]

(2.18)

where \(F_\epsilon \) is quasinilpotent. Applying Lemma 2.6 to the equation yields \(X_\epsilon = N_{\epsilon^{-1}}M_\epsilon X_\epsilon N_{\epsilon^{-1}}M_\epsilon \) or \(N_\epsilon X_\epsilon N_\epsilon = M_\epsilon X_\epsilon M_\epsilon \). Letting \(\epsilon \to 0 \), we have \(NN = MM \). \(\square \)

More generally, using Berberian’s trick, we obtain the PF theorem under perturbation by quasinilpotents for the elementary operators.

THEOREM 2.8. Let \(N_1, N_2, M_1, M_2 \) be normal operators and let \(C_1, C_2, D_1, D_2 \) be quasinilpotents such that \(N_i, M_i, C_i, D_i \) mutually commute for \(i = 1, 2 \). If \((N_1 + C_1)X(N_2 + C_2) = (M_1 + D_1)X(M_2 + D_2) \) for some \(X \in B(H) \), then \(N_1 M_2 = M_1 X M_2 \).
Proof. Let
\[\tilde{T} = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}, \quad \tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}, \]
(2.19)
where \(T = N, M, C, D \); then \(\tilde{N}, \tilde{M} \) are normal, and \(\tilde{C}, \tilde{D} \) are quasinilpotents in \(B(H \oplus H) \). If
\((N_1 + C_1)X(N_2 + C_2) = (M_1 + D_1)X(M_2 + D_2) \), then \((\tilde{N} + \tilde{C})\tilde{X}(\tilde{N} + \tilde{C}) = (\tilde{M} + \tilde{D})\tilde{X}(\tilde{M} + \tilde{D}) \), so \(\tilde{N}\tilde{X}\tilde{N} = \tilde{M}\tilde{X}\tilde{M} \) by Theorem 2.7, that is, \(N_1XN_2 = M_1XM_2 \).

3. Second-degree PF theorem. First we will extend Theorem 1.2 to the more general case.

Theorem 3.1. Let \(N_1, N_2, M_1, M_2 \) be normal operators such that \(N_1M_1 = M_1N_1, N_2M_2 = M_2N_2 \). If \(N_1(N_1XN_2 - M_1XM_2)N_2 = M_1(N_1XN_2 - M_1XM_2)M_2 \) for some \(X \in B(H) \), then \(N_1XN_2 - M_1XM_2 = 0 \).

Proof. First we will prove that if \(N, M \) are normal operators, then \(N(NXN - MXM)N = M(NXN - MXM)M \) implies \(NXN = MXM \).

If \(\text{Ker}(N) \neq \{0\} \), then letting \(P \) be the project \(H \rightarrow \text{Ker}(N) \), we have \(PN(NXN - MXM)N = PM(NXN - MXM)M \). That is, \(0 = -M^2PX^2 \) or \(M(M(PX^2) - (PX^2)0) = (M(PX^2) - (PX^2)0)0 \). By the SPF theorem (Theorem 1.2), \(MPXM = 0 \). By the same way, we have \(MPXM = 0 \). Similarly, \(MXPM = 0 \). So we may assume that \(\text{Ker}(N) = \{0\} \).

Let \(T_\epsilon \) be the same as in Lemma 2.5. I f \(X \in B(H) \) such that
\[N(NXN - MXM)N = M(NXN - MXM)M, \]
then
\[N_\epsilon(N_\epsilon X_\epsilon N_\epsilon - M_\epsilon X_\epsilon M_\epsilon)N_\epsilon = M_\epsilon(N_\epsilon X_\epsilon N_\epsilon - M_\epsilon X_\epsilon M_\epsilon)M_\epsilon \]
(3.2)
or
\[X_\epsilon - N_\epsilon^{-1}M_\epsilon X_\epsilon N_\epsilon^{-1}M_\epsilon = N_\epsilon^{-1}M_\epsilon(X_\epsilon - N_\epsilon^{-1}M_\epsilon X_\epsilon N_\epsilon^{-1}M_\epsilon)N_\epsilon^{-1}M_\epsilon. \]
(3.3)
Since \(N_\epsilon^{-1}M_\epsilon \) is normal, by [2], we have
\[X_\epsilon - N_\epsilon^{-1}M_\epsilon X_\epsilon N_\epsilon^{-1}M_\epsilon = 0 \]
(3.4)
or
\[N_\epsilon X_\epsilon N_\epsilon = M_\epsilon X_\epsilon M_\epsilon. \]
(3.5)
Letting \(\epsilon \rightarrow 0 \), we have \(NXN = MXM \).

In general, let
\[\tilde{N} = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}, \quad \tilde{M} = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}, \quad \tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}. \]
(3.6)
If
\[N_1(N_1XN_2 - M_1XM_2)N_2 = M_1(N_1XN_2 - M_1XM_2)M_2, \]
then
\[\tilde{N}(\tilde{N}\tilde{X}\tilde{N} - \tilde{M}\tilde{X}\tilde{M})\tilde{N} = \tilde{M}(\tilde{N}\tilde{X}\tilde{N} - \tilde{M}\tilde{X}\tilde{M})\tilde{M}; \]
so \(\tilde{N}\tilde{X}\tilde{N} = \tilde{M}\tilde{X}\tilde{M} \), that is, \(N_1XN_2 = M_1XM_2 \).

Let \(A = (N_1, N_2) \), \(B = (M_1, M_2) \) be tuples of commuting operators in \(B(H) \). We say that \((A, B)\) has the SPF theorem if for any \(X \in B(H) \) and for some \(n \geq 2 \) such that \(\Delta_{(A,B)}^{(n)}(X) = 0 \), we have \(\Delta_{(A,B)}(X) = 0 \).

Theorem 3.2. Let \(N, M, D \in B(H) \) such that \(N \) commutes with \(D \) and \(M \). If \(N \) is invertible and \(D \) is quasinilpotent, then \(((N, N), (M, D)) \) has the SPF theorem.

Proof. If
\[N(NXN - MXD)N = M(NXN - MXD)D, \]
then
\[X - N^{-1}MXN^{-1}D = N^{-1}M(X - N^{-1}MXN^{-1}D)N^{-1}D. \]
Note that \(N^{-1}D \) is quasinilpotent; so by applying Lemma 2.4 to \(X - N^{-1}MXN^{-1}D \), we have \(X - N^{-1}MXN^{-1}D = 0 \), that is, \(NXN - MXD = 0 \).

Theorem 3.3. Let \(N, M \in B(H) \) such that \(N \) commutes with \(M \). If \(M \) is invertible and \(\|N\|\|M^{-1}\| \leq 1 \), then \(((N, N), (M, M)) \) has the SPF theorem.

Proof. If \((3.1) \) holds for some \(X \in B(H) \), then
\[NM^{-1}XNM^{-1} - X = NM^{-1}(NM^{-1}XNM^{-1} - X)NM^{-1}. \]
Since \(\|N\|\|M^{-1}\| \leq 1 \), by [2], we have \(NM^{-1}XNM^{-1} - X = 0 \), that is, \(NXN = MXM \).

The next theorem establishes the relationship between the SPF theorem and the PF theorem under perturbation by nilpotents.

Theorem 3.4. Let \(N_i, M_i \in B(H) \) and let \(C_i, D_i \) be nilpotents such that \(C_i, D_i, N_i, M_i \) mutually commute for \(i = 1, 2 \). If \(((N_1, N_2), (M_1, M_2)) \) has the SPF theorem, then \((N_1 + C_1)X(N_2 + C_2) = (M_1 + D_1)X(M_2 + D_2) \) implies that \(N_1XN_2 = M_1XM_2 \).

Proof. If
\[(N_1 + C_1)X(N_2 + C_2) = (M_1 + D_1)X(M_2 + D_2), \]
then
then by expanding both sides of the equation and moving $M_1 XM_2$ to the left-hand side and moving all the terms in the left-hand side to the right-hand side except $N_1 XN_2$, we have

$$N_1 XN_2 - M_1 XM_2 = S(X),$$

where S is a linear operator on $B(H)$ defined by

$$S(X) = -N_1 X C_2 - C_1 X N_2 - C_1 X C_2 + M_1 X D_2 + D_1 X M_2 + D_1 X D_2.$$

It is clear that $S^{(2)}(X) = S(S(X))$ consists of 6^2 terms like

$$(-1)^{s_1 s_2} M_1^{r_1} M_2^{r_2} C_1^{s_1} C_2^{s_2} D_1^{t_1} X N_2^{m_2} m_2 C_2^{s_2} D_2^{t_2},$$

where $s_1 + t_1 + s_2 + t_2 \geq 2, \ldots$,

$S^{(n)}(X)$ consists of 6^n terms like $(-1)^{s_1 s_2} M_1^{r_1} M_2^{r_2} C_1^{s_1} C_2^{s_2} D_1^{t_1} X N_2^{m_2} m_2 C_2^{s_2} D_2^{t_2},$ where $s_1 + t_1 + s_2 + t_2 \geq n$.

Since C_1, C_2, D_1, D_2 are all nilpotents, we have n_0 such that $C_1^{n_0} = D_1^{n_0} = C_2^{n_0} = D_2^{n_0} = 0$. Thus for each term of $S^{(4n_0+1)}(X)$, as $s_1 + t_1 + s_2 + t_2 \geq 4n_0 + 1,$ we have at least one integer among s_1, s_2, t_1, t_2 greater than $n_0,$ so every term of $S^{(4n_0+1)}(X)$ is 0. Therefore, $S^{(4n_0+1)}(X) = 0.$ But

$$\Delta_{((N_1, N_2), (M_1, M_2))}^{(4n_0+1)}(X) = S^{(4n_0+1)}(X) = 0,$$

and $((N_1, N_2), (M_1, M_2))$ has the SPF theorem; so it follows that

$$\Delta_{((N_1, N_2), (M_1, M_2))}(X) = 0,$$

or $N_1 XN_2 = M_1 XM_2.$

By Theorems 3.3 and 3.4, it is easy to see the following.

Theorem 3.5. Let $N, M \in B(H)$ and let C, D be nilpotents such that N, M, C, D mutually commute. If M is invertible and $\|N\| M^{-1} \| < 1$, then $(N + C)X(N + C) = (M + D) X (M + D)$ implies $N X N = M X M$.

Moreover, if the strict inequality in Theorem 3.5 holds, then Theorem 3.5 is true even for the quasinilpotent operators.

Theorem 3.6. Let $N, M \in B(H)$ and let C, D be quasinilpotents such that N, M, C, D mutually commute. If M is invertible and $\|N\| M^{-1} \| < 1$, then $(N + C)X(N + C) = (M + D) X (M + D)$ implies $X = 0$.

Proof. If D is quasinilpotent and M is invertible, then $M + D$ is invertible. If $(N + C)X(N + C) = (M + D) X (M + D)$ for some $X \in B(H)$, then

$$(N + C) (M + D)^{-1} X (N + C) (M + D)^{-1} = X$$

or

$$(NM^{-1} + F) X (NM^{-1} + F) = X,$$
where F is quasinilpotent. By [3],

$$\sigma(\Delta_{(NM^{-1} + F, NM^{-1} + F), (I,I)}) = \sigma(NM^{-1})\sigma(NM^{-1}) - 1. \quad (3.20)$$

Since $\|N\|\|M^{-1}\| < 1$, 0 is not in

$$\sigma(\Delta_{(NM^{-1} + F, NM^{-1} + F), (I,I)}), \quad (3.21)$$

and therefore $\Delta_{(NM^{-1} + F, NM^{-1} + F), (I,I)}$ is invertible. It follows from the equation

$$\Delta_{(NM^{-1} + F, NM^{-1} + F), (I,I)}(X) = 0 \quad (3.22)$$

that $X = 0$.

The following results show that even if $((A, A), (B, B))$ has the SPF theorem, we still do not know if $((A^2, A^2), (B^2, B^2))$ has the SPF theorem.

Theorem 3.7. Let $A, B \in B(H)$. Let ω be an nth root of 1, but $\omega^k \neq 1$ for k such that $1 \leq k \leq n - 1$. If for any k such that $0 \leq k \leq n - 1$, $((A, A), (B, \omega^k B))$ has the SPF theorem, then $((A^n, A^n), (B^n, B^n))$ has the SPF theorem too.

Proof. By induction, we can prove that

$$\Delta_{((A^n, A^n), (B^n, B^n))}(X) = \Delta_{((A, A), (B, B))}(\Delta_{((A, A), (B, \omega B))}(\cdots (\Delta_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)). \quad (3.23)$$

Now if

$$\Delta^{(2)}_{((A^n, A^n), (B^n, B^n))}(X) = 0, \quad (3.24)$$

then

$$\Delta^{(2)}_{((A, A), (B, B))}(\Delta^{(2)}_{((A, A), (B, \omega B))}(\cdots (\Delta^{(2)}_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)) = 0. \quad (3.25)$$

Since $((A, A), (B, B))$ has the SPF theorem, it follows that

$$\Delta_{((A, A), (B, B))}(\Delta^{(2)}_{((A, A), (B, \omega B))}(\cdots (\Delta^{(2)}_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)) = 0. \quad (3.26)$$

or

$$\Delta^{(2)}_{((A, A), (B, \omega B))}(\Delta_{((A, A), (B, B))}(\cdots (\Delta^{(2)}_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)) = 0, \quad (3.27)$$

and therefore

$$\Delta_{((A, A), (B, \omega B))}(\Delta_{((A, A), (B, B))}(\cdots (\Delta^{(2)}_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)) = 0. \quad (3.28)$$

Proceeding in this way, we have finally

$$\Delta_{((A, A), (B, B))}(\Delta_{((A, A), (B, \omega B))}(\cdots (\Delta_{((A, A), (B, \omega^{(n-1)} B))}(X) \cdots)) = 0, \quad (3.29)$$
that is, by (3.23),
\[\Delta_{((A^n, A^n), (B^n, B^n))}(X) = 0. \] (3.30)

The following result says that the converse of Theorem 3.8 is also true.

Theorem 3.8. Let \(A, B \in B(H) \). Let \(\omega \) be an \(n \)th root of 1, but \(\omega^k \neq 1 \) for \(k \) such that \(1 \leq k \leq n - 1 \). If \(A \) or \(B \) is invertible and \((A^n, A^n), (B^n, B^n)\) has the SPF theorem, then for any \(k \) such that \(0 \leq k \leq n - 1 \), \((A^n, (B, \omega^k B))\) has the SPF theorem too.

Proof. It is sufficient to prove that if \((A^n, B^n)\) has the SPF theorem and \(B \) is invertible, then \((A^n, (B, B))\) has the SPF theorem. Now if
\[A(AXA - BXB)A = B(AXA - BXB)B, \] (3.31)
then
\[A^n(AXA - BXB)A^n = B^n(AXA - BXB)B^n \] (3.32)
or
\[A^n(AXA^n - B^nXB^n)A^n = B^n(A^nXA^n - B^nXB^n)B^n; \] (3.33)
so (3.24) holds. Since \((A^n, A^n), (B^n, B^n)\) has the SPF theorem, we have (3.30). It follows from (3.23) that (3.29) holds. From (3.31), we see that
\[\Delta_{((A^n, A^n), (B^n, B^n))}((\Delta_{((A^n, A^n), (B^n, B^n))}(X)) \cdots) = 0. \] (3.34)

Note that
\[\Delta_{((A^n, A^n), (B^n, B^n))}(Y) - \Delta_{((A^n, A^n), (B^n, B^n))}(Y) = (\omega - 1)BYB. \] (3.35)

Since \(B \) is invertible, (3.29) and (3.34) will give
\[\Delta_{((A^n, A^n), (B^n, B^n))}((\Delta_{((A^n, A^n), (B^n, B^n))}(X)) \cdots) = 0. \] (3.36)

From (3.31), we see also that
\[\Delta_{((A^n, A^n), (B^n, B^n))}((\Delta_{((A^n, A^n), (B^n, B^n))}(X)) \cdots) = 0; \] (3.37)
then (3.36) and (3.37) yields
\[\Delta_{((A^n, A^n), (B^n, B^n))}((\Delta_{((A^n, A^n), (B^n, B^n))}(X)) \cdots) = 0. \] (3.38)

Proceeding in this way, we have finally
\[\Delta_{((A^n, A^n), (B^n, B^n))}((\Delta_{((A^n, A^n), (B^n, B^n))}(X)) \cdots) = 0. \] (3.39)

Now (3.31) and (3.39) will give the desired equation: \(AXA - BXB = 0. \)
Theorem 3.9. If C, D are nilpotents such that $CD = DC$ but $C^2 \neq D^2$, then $((C,C), (D,D))$ does not have the SPF theorem.

Proof. It is not difficult to see that

$$\Delta^{(n)}_{((C,C),(D,D))}(I) = \sum_{k=0}^{n} (-1)^k C^k C^{2n-2k} D^{2k},$$

(3.40)

where I is the identity operator.

If C, D are nilpotents, then there exists an n_0 such that $C^{n_0} = 0, D^{n_0} = 0$. For any k such that $1 \leq k \leq n_0$, at least one of $2n_0 + 2 - 2k$ and $2k$ is greater than n_0. So by (3.40), we have

$$\Delta^{(n_0+1)}_{((C,C),(D,D))}(I) = 0.$$

(3.41)

But $\Delta_{((C,C),(D,D))}(I) = C^2 - B^2 \neq 0$. This completes the proof.

\[\square\]

4. Asymptotic PF theorem and compact operators. We now give a theorem about the compact operators, which generalizes the relative result in [2].

Theorem 4.1. Let $A = (N_1,N_2)$ and $B = (M_1,M_2)$ be tuples of commuting normal operators in $B(H)$. If $X \in B(H)$ such that $\Delta^{(n)}_{(A,B)}(X)$ is compact for some $n \geq 2$, then $\Delta_{(A,B)}(X)$ is compact too.

Proof. Let $K(H)$ be the ideal of $B(H)$ consisting of all compact operators on H, let $B(H)/K(H)$ be the Calkin algebra, and let π be the Calkin map from $B(H)$ to $B(H)/K(H)$. It is clear that

$$\pi\left(\Delta^{(n)}_{((N_1,N_2),(M_1,M_2))}(X)\right) = \Delta^{(n)}_{((\pi(N_1),\pi(N_2)),(\pi(M_1),\pi(M_2)))}(\pi(X)).$$

(4.1)

If $\Delta^{(n)}_{((N_1,N_2),(M_1,M_2))}(X)$ is compact, then $\pi\left(\Delta^{(n)}_{((N_1,N_2),(M_1,M_2))}(X)\right) = 0$. It follows that

$$\Delta^{(n)}_{((\pi(N_1),\pi(N_2)),(\pi(M_1),\pi(M_2)))}(\pi(X)) = 0.$$

(4.2)

Since $\pi(N_i), \pi(M_i)$ are normal, for $i = 1,2$, applying Theorem 3.1, we have

$$\Delta_{((\pi(N_1),\pi(N_2)),(\pi(M_1),\pi(M_2)))}(\pi(X)) = 0.$$

(4.3)

Therefore, $\Delta_{((N_1,N_2),(M_1,M_2))}(X)$ is compact. \[\square\]

The following theorem is an asymptotic version of the SPF theorem. It generalizes the corresponding result in [10].

Theorem 4.2. Let $A = (N_1,N_2)$ and $B = (M_1,M_2)$ be tuples of commuting normal operators in $B(H)$. Let K be any positive real number and let n be an integer greater than 1. Then for every neighborhood U of 0 in $B(H)$ (under uniform, strong or weak topology), a neighborhood V of 0 under the same topology is obtained such that if $\Delta^{(n)}_{(A,B)}(X) \in V$ and $\|X\| \leq K$, then $\Delta_{(A,B)}(X) \in U$.

Proof. We first consider the following particular case: \(N_1 = N_2 = N, M_1 = M_2 = M \). Assume that \(\|N\| \) and \(\|M\| \) are not greater than 1 (if not, we can replace \(N \) and \(M \) by \(N/(\|N\| + \|M\|) \) and \(M/(\|N\| + \|M\|) \), resp.).

Let \(K > 0 \) and let \(U \) be any neighborhood of 0 in \(B(H) \) under uniform (or strong or weak) topology. Let \(U_{ij}, i, j = 1, 2, 3, 4 \), be neighborhoods of 0 in \(B(H) \) under the same topology such that

\[
\sum_{i=1}^{4} \sum_{j=1}^{4} U_{ij} \subset U. \tag{4.4}
\]

Suppose that \(N, M \) have the following spectral decomposition:

\[
N = \int_{\sigma(N)} \lambda dE_{\lambda}, \quad M = \int_{\sigma(M)} \lambda dF_{\lambda}. \tag{4.5}
\]

For any \(\epsilon > 0 \), define \(\Delta_{\epsilon} = \{ z \mid |z| \leq \epsilon \} \), \(\Delta_{\epsilon} = C \setminus \Delta_{\epsilon} \), and

\[
\begin{align*}
H_1(\epsilon) &= E(\Delta_{\epsilon})F(\Delta_{\epsilon})H, \\
H_2(\epsilon) &= E(\Delta_{\epsilon})F(\Delta_{\epsilon}^c)H, \\
H_3(\epsilon) &= E(\Delta_{\epsilon})F(\Delta_{\epsilon})H, \\
H_4(\epsilon) &= E(\Delta_{\epsilon})F(\Delta_{\epsilon}^c)H. \tag{4.6}
\end{align*}
\]

Then \(H \) can be written as \(H = H_1(\epsilon) \oplus H_2(\epsilon) \oplus H_3(\epsilon) \oplus H_4(\epsilon) \). Under this decomposition, we have

\[
N = \begin{pmatrix}
N_1(\epsilon) & & & \\
& N_2(\epsilon) & & \\
& & N_3(\epsilon) & \\
& & & N_4(\epsilon)
\end{pmatrix},
\]

\[
M = \begin{pmatrix}
M_1(\epsilon) & & & \\
& M_2(\epsilon) & & \\
& & M_3(\epsilon) & \\
& & & M_4(\epsilon)
\end{pmatrix}, \tag{4.7}
\]

where \(\|N_1(\epsilon)\|, \|N_2(\epsilon)\|, \|M_1(\epsilon)\|, \|M_3(\epsilon)\| \) are not greater than \(\epsilon \), and \(N_3(\epsilon), N_4(\epsilon), M_2(\epsilon), \) and \(M_4(\epsilon) \) are invertible.

Let \(X = ((X_{ij}(\epsilon)))_{i,j=1,2,3,4} \) and let \(Z \) denote the set

\[
Z = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,3),(3,1),(3,2),(4,1)\}. \tag{4.8}
\]

If \((k,l) \in Z\), then at least one operator in each pair of \((N_k,N_l), (M_k,M_l)\) has norm less
than ϵ. Hence

$$\|N_k(\epsilon)X_{kl}(\epsilon)N_l(\epsilon) - M_k(\epsilon)X_{kl}(\epsilon)M_l(\epsilon)\| \to 0 \quad \text{as} \quad \epsilon \to 0.$$ \hspace{1cm} (4.9)

Therefore, we are able to choose a fixed number $\epsilon_0 > 0$ such that for each pair $(k, l) \in Z$,

$$(\delta_{ij}(k, l)\Delta_{((N_i(\epsilon_0),N_j(\epsilon_0)),(M_i(\epsilon_0),M_j(\epsilon_0)))}(X_{ij}(\epsilon_0)))_{4 \times 4} \in U_{kl},$$ \hspace{1cm} (4.10)

where $\delta_{ij}(k, l)$ equals 1 if $i = k$, $j = l$ and 0 otherwise. Set $V_{kl} = U_{kl}$.

For the sake of simplicity, we will omit ϵ_0 in the notations of each component in the decompositions of H, N, M, X.

It is easy to see that $\Delta_{(A,B)}^{(n)}(X)$ has the following decomposition:

$$\Delta_{((N,N),(M,M))}^{(n)}(X) = (\Delta_{((N_i,N_j),(M_i,M_j))}^{(n)}(X_{ij}))_{4 \times 4}.$$ \hspace{1cm} (4.11)

If (k, l) is not in Z, then at least one pair of (N_k, N_l) and (M_k, M_l) has two invertible operators. We assume that N_k and N_l are invertible (we can follow the same way if M_k, M_l are invertible).

Let

$$O_{kl} = \{o_{kl} : (\delta_{ij}(k, l)o_{ij})_{4 \times 4} \in U_{ij}\}.$$ \hspace{1cm} (4.12)

Then O_{kl} is a neighborhood of 0 in $B(H_k, H_k)$. Since N_k, N_l are invertible, we can see that

$$\Delta_{((N_k,N_l),(M_k,M_l))}^{(n)}(X_{kl}) = N_{kl}^{n}\Delta_{((I_k,I_l),(N_{kl}^{-1},M_{kl}^{-1}))}^{(n)}(X_{kl})N_{kl}^{-n},$$ \hspace{1cm} (4.13)

where I_k, I_l are identities on H_k, H_l. It follows from the asymptotic PF theorem in [2] that there is the neighborhood P_{kl} of 0 in $B(H_k, H_k)$ such that for $\|X_{kl}\| \leq K$, if

$$\Delta_{((I_k,I_l),(N_{kl}^{-1},M_{kl}^{-1}))}^{(n)}(X_{kl}) \in P_{kl},$$ \hspace{1cm} (4.14)

then

$$\Delta_{((I_k,I_l),(N_{kl}^{-1},M_{kl}^{-1}))}^{(n)}(X_{kl}) \in N_{kl}^{-1}O_{kl}N_{kl}^{-1}.$$ \hspace{1cm} (4.15)

Set $V_{kl} = N_{kl}^{-n}P_{kl}N_{kl}^{n}$. If

$$\Delta_{((N_k,N_l),(M_k,M_l))}^{(n)}(X_{kl}) \in V_{kl},$$ \hspace{1cm} (4.16)

then

$$\Delta_{((N_k,N_l),(M_k,M_l))}^{(n)}(X_{kl}) \in O_{kl}.$$ \hspace{1cm} (4.17)

Let

$$V = \{(u_{ij})_{4 \times 4} : \forall u_{ij} \in V_{ij}\}.$$ \hspace{1cm} (4.18)
Then \(V \) is a neighborhood of 0. If \(\|X\| \leq K \) and \(\Delta_{(A,B)}^{(n)}(X) \in V \), then for each pair \((k,l)\), \(\|X_{kl}\| \leq K \) and (4.16) holds; so it follows that (4.17) holds, that is,

\[
(\delta_{ij}(k,l)\Delta_{((N_k,N_l),(M_k,M_l))}(X_{kl}))_{4 \times 4} \in U_{kl},
\]

but

\[
\Delta_{(A,B)}(X) = \sum_{k=1}^{4} \sum_{l=1}^{4} (\delta_{ij}(k,l)\Delta_{((N_k,N_l),(M_k,M_l))}(X_{kl}))_{4 \times 4},
\]

which is in \(U \) by (4.4).

In general, let

\[
\tilde{N} = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}, \quad \tilde{M} = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}.
\]

Then \(\tilde{N}, \tilde{M} \) are normal in \(B(H \oplus H) \). Let

\[
\tilde{U} = \left\{ \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} : u_i \in U, \ i = 1, 2, 3, 4 \right\}.
\]

\(\tilde{U} \) is a neighborhood of 0 in \(B(H \oplus H) \). So there is a neighborhood \(\tilde{V} \) of 0 in \(B(H \oplus H) \) such that if \(\|\tilde{X}\| \leq K, \Delta_{(A,B)}^{(n)}(\tilde{X}) \in \tilde{V} \), then \(\Delta_{(A,B)}(\tilde{X}) \in \tilde{U} \). Let

\[
\tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}, \quad \tilde{V} = \left\{ v : \begin{pmatrix} 0 & v \\ 0 & 0 \end{pmatrix} \right\}.
\]

\(\tilde{V} \) is a neighborhood of 0 in \(B(H) \). If \(\|X\| \leq K, \Delta_{(A,B)}^{(n)}(X) \in V \), then \(\|\tilde{X}\| \leq K \) and \(\Delta_{(A,B)}^{(n)}(\tilde{X}) \in \tilde{V} \); so \(\Delta_{(A,B)}(\tilde{X}) \in \tilde{U} \), which means that

\[
\begin{pmatrix} 0 & \Delta_{(A,B)}(X) \\ 0 & 0 \end{pmatrix} \in \tilde{U}
\]

or \(\Delta_{(A,B)}(X) \in U \).

Using the same technique, we are able to generalize the asymptotic PF theorems obtained by Moore [6] and Rogers [8].

Theorem 4.3. Let \(N_1, N_2, M_1, M_2, k \) be the same as in Theorem 4.2. Then for any neighborhood \(U \) of 0 in \(B(H) \) (under uniform, strong or weak topology), a neighborhood \(V \) of 0 under the same topology is obtained such that if \(N_1^* X N_2^* - M_1^* X M_2^* \in V \) and \(\|X\| \leq K \), then \(N X N - M X M \in U \).

Acknowledgments. This research was partially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) research grant. The author would like to thank the referees for the useful comments and suggestions.
References

Yin Chen: Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
E-mail address: yin.chen@lakeheadu.ca