We prove that any rigid left Noetherian ring is either a domain or isomorphic to some ring \mathbb{Z}_{p^n} of integers modulo a prime power p^n.

2000 Mathematics Subject Classification: 16P40, 16W20, 16W25.

Let R be an associative ring. A map $\sigma : R \to R$ is called a ring endomorphism if $\sigma(x + y) = \sigma(x) + \sigma(y)$ and $\sigma(xy) = \sigma(x)\sigma(y)$ for all elements $a, b \in R$. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity id_R and zero 0_R.

Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid ring R with the additive group R^+ of finite Prüfer rank. A characterization for rigid rings of finite rank was obtained by the author in [1]. Some aspects of a ring rigidity has been studied by Suppa [12, 13], Friger [5], and the author [2].

In this paper, we study rigid left Noetherian rings and prove the following theorem.

Theorem 1. Let R be a left Noetherian ring. Then R is a rigid ring if and only if $R \cong \mathbb{Z}_{p^n}$ (p is a prime, $t \in \mathbb{N}$) or it is a rigid domain.

All rings are assumed to be associative and, as a rule, with an identity element. For a ring R, $N(R)$ will always denote the set of all nil elements of R, $\text{char}(R)$ the characteristic, and $\text{Ann}(I) = \{a \in R \mid aI = Ia = \{0\}\}$ the annihilator of I in R. If R is a left order in Q (or equivalently, Q is the left quotient ring of R), then we will write $Q = Q(R)$. Any unexplained terminology is standard as in [10].

We recall that a ring R is reduced if $r^2 = 0$ implies $r = 0$ for any $r \in R$. Clearly, if R is a rigid reduced ring with an identity element, then either $\text{char}(R) = 0$ or $\text{char}(R) = p$ for some prime p.

Lemma 2. Let R be a reduced left Goldie ring. If R is rigid, then it is a domain.

Proof. Let R be a reduced rigid left Goldie ring. Assume that R is not a domain. From $bx = 0$ (resp., $xb = 0$), where $b, x \in R$, it holds that $(xb)^2 = 0$ (resp., $(bx)^2 = 0$) and thus a right (resp., left) annihilator of every element b in R coincides with $\text{Ann}(b)$. Moreover, in view of [10, Lemma 2.3.2(i)], $\text{Ann}(a)$ is a maximal left annihilator for some $a \in R$.

Assume that the quotient ring $R/\text{Ann}(a)$ contains elements $\overline{x} = x + \text{Ann}(a) \neq \overline{0}$, $\overline{y} = y + \text{Ann}(a)$ such that

$$\overline{x} \overline{y} = \overline{0}$$ (1)

for some \(x, y \in R \). Since \(y \in \text{Ann}(ax) \) and \(\text{Ann}(a) = \text{Ann}(ax) \), we obtain that \(y = 0 \). This means that \(R/\text{Ann}(a) \) is a domain.

By [10, Lemma 2.3.3], \(I_a = Ra \oplus \text{Ann}(a) \) is an essential left ideal of \(R \) and so by [10, Corollary 3.1.8], \(Q(I_a) = Q(R) \). Then the map \(\sigma : I_a \to I_a \) given by \(\sigma(ra) = ra \) \((r \in R) \) and \(\sigma(\text{Ann}(a)) = \{0\} \) is a nontrivial ring endomorphism of \(I_a \). If \(\sigma : Q(R) \to Q(R) \) is an extension of \(\sigma \) to \(Q(R) \), then

\[
\sigma(r)a = \sigma(ra) = ra
\]

for any \(r \in R \), in which case,

\[
a(\sigma(r) - r) = 0 = (\sigma(r) - r)a.
\]

Since \(\sigma(r) - r = q^{-1}t \) for some regular element \(q \in R \) and some \(t \in R \), we see that

\[
q(\sigma(r) - r) \in \text{Ann}(a).
\]

But \(q \notin \text{Ann}(a) \) and so \(\sigma(r) - r \in \text{Ann}(a) \). This means that \(\sigma(R) \subseteq R \) and \(R \) has a nontrivial ring endomorphism, a contradiction. The lemma is proved.

In the commutative case, we obtain that a commutative reduced rigid Noetherian ring \(R \) of finite exponent is isomorphic to some \(\mathbb{Z}_p \).

Indeed, as it is noted above, \(\text{char}(R) = p \) for some prime \(p \). A map \(\omega : R \to R \) given by the rule \(\omega(x) = x^p \) \((x \in R) \) is a ring endomorphism of \(R \) and so \(x^p = x \) for all elements \(x \) of \(R \). Assume that \(R \) is not a domain and then it follows that every prime ideal is maximal in \(R \). Hence \(R \) is an Artinian ring by Krull-Akizuki theorem [14, Chapter IV, Section 2, Theorem 2] and by the theorem of [11], \(R \cong \mathbb{Z}_p \), contrary to our assumption. This means that \(R \) is a domain and [9, Theorem 2.5] allows us to state that \(R \cong \mathbb{Z}_p \).

Remark 3. Maxson [9] has proved that a rigid commutative domain of prime characteristic \(p \) is isomorphic to \(\mathbb{Z}_p \). Rigid rings of finite rank were studied in [1]. A characterization of rigid commutative domains (in particular, rigid fields) \(R \) of characteristic 0 with the additive group \(R^+ \) of infinite (Prüfer) rank is not known. As it is noted in [8], from the result of Gaifman [7], it holds that there exist rigid Peano fields of arbitrary infinite cardinality. Moreover, it was proved by Dugas and Göbel [3] that each field can be embedded into a rigid field of arbitrary large cardinality.

Remark 4. There exist noncommutative rigid Noetherian domains of characteristic 0 (see [4, 6]).

Recall that a map \(d : R \to R \) is called a derivation of \(R \) if

\[
d(x + y) = d(x) + d(y), \quad d(xy) = d(x)y + xd(y)
\]
for all elements \(x, y \in R \). A ring having no nonzero derivations is called differentially trivial (see [1]). Obviously, any differentially trivial ring is commutative.

Lemma 5. Let \(R \) be a left Noetherian ring such that \(N(R) \neq \{0\} \). If \(R \) is a rigid ring, then it is isomorphic to some \(\mathbb{Z}_{pt} \).

Proof. Suppose that \(R \) is a rigid ring such that \(N = N(R) \neq \{0\} \). Then \(N \subseteq Z(R) \) (see [9, page 96]). Let \(d \) be any nonzero derivation of \(R \). If \(zd(R) = \{0\} \) for all elements \(z \in N \) of the nilpotency indices \(i < n - 1 \) and \(ad(R) \neq \{0\} \) for some element \(a \in N \) of the nilpotency index \(n \), then the rule

\[
\sigma(r) = r + ad(r), \quad r \in R,
\]

(6)
determines a nontrivial ring endomorphism \(\sigma \) of \(R \), a contradiction. Hence

\[
N(R)d(R) = \{0\}
\]

(7)
for every derivation \(d \) of \(R \).

Let \(K_0 = \{a \in N \mid (N \cap Ann(N^2))a = \{0\}\} \). Then \(N \cap Ann(K_0) = N \cap Ann(N^2) \). Assume that \(\delta : R/K_0 \to R/K_0 \) is a nonzero derivation of \(R/K_0 \) and therefore for every \(r \in R \), there is an element \(r_1 \in R \) such that

\[
\delta(r + K_0) = r_1 + K_0.
\]

(8)
Moreover, \(a_1 \notin K_0 \) for some \(a \in R \). Writing \(I \) for the two-sided ideal of \(R \) generated by \(a_1 \), we see that \((N \cap Ann(N^2))(K_0 + I) \neq \{0\} \). Thus there exists an element \(m_0 \in N \cap Ann(N^2) \) such that \(m_0a_1 \neq 0 \) and so the rule \(g(r) = m_0r_1 \), with \(r \in R \) and \(r_1 \) as in (8), determines a nonzero derivation \(g \) of \(R \). In view of (7) \(g(r)g(t) = 0 \), for any elements \(r, t \in R \) and a map \(\alpha : R \to R \) given by the rule \(\alpha(r) = r + g(r) \), \((r \in R) \) is a nontrivial ring endomorphism of \(R \), a contradiction with hypothesis. This gives that \(R/K_0 \) is differentially trivial and consequently commutative. Since \(K_0 \subseteq N \) and \(N \subseteq Z(R) \), \(R \) is a Noetherian ring and, as a consequence of [10, Theorem 4.1.9] and [9, Theorem 2.2], \(R \) is an Artinian ring. Finally, by the theorem from [11], \(R \cong \mathbb{Z}_{pt} \) for some prime \(p \) and integer \(t \). This completes the proof. \(\Box \)

Proof of Theorem 1. It follows immediately from Lemmas 2 and 5. \(\Box \)

Corollary 6. Any rigid simple left Goldie ring \(R \) is a field (or equivalently, any noncommutative simple left Goldie ring has a nontrivial automorphism).

Proof. Since \(N(R) \subseteq Z(R) \), \(R \) is a semiprime ring and so according to [10, Proposition 5.1.5] and Lemma 2, it is a domain. If \(q \) is any element of \(Q(R) \setminus R \) and \(A = q^{-1}Rq \), then \(A \) is a left order in \(Q(R) \). Moreover, \(qAq^{-1} = R \) and so \(A \) and \(R \) are equivalent left orders in \(Q(R) \). By [10, Proposition 5.1.2], \(R \) is a maximal left order in \(Q(R) \) and thus \(A \subseteq R \), which implies \(R \subseteq Z(Q(R)) \), as required. \(\Box \)
REFERENCES

O. D. Artemovych: Institute of Mathematics, Cracow University of Technology, Warszawska 24, Cracow 31-155, Poland
E-mail address: artemo@usk.pk.edu.pl