Concerning the Goldberg conjecture, we will prove a result obtained by applying the result of Iton in terms of L^2-norm of the scalar curvature.

2000 Mathematics Subject Classification: 53C25, 53C55.

1. Introduction. An almost Hermitian manifold M is called an almost Kähler manifold if the corresponding Kähler form is a closed 2-form. It is well known that an almost Kähler manifold with integrable almost-complex structure is Kählerian. Concerning the integrability of almost Kähler manifold, the following conjecture by Goldberg is known (see [2]).

Conjecture 1.1. A compact almost Kähler-Einstein manifold is Kählerian.

Sekigawa [8] proved that the conjecture is true if the scalar curvature τ of M is nonnegative. But the conjecture is still open in the case where τ is negative. Recently, applying the Seiberg-Witten theory, Itoh [4] obtained the following integrability condition for certain almost Kähler-Einstein 4-manifolds in terms of the L^2-norm of the scalar curvature.

Theorem 1.2 [4]. Let M be a four-dimensional compact almost Kähler-Einstein manifold with negative scalar curvature. If M satisfies

$$\int_M \tau^2 dV = 32\pi^2 (2\chi(M) + p_1(M)),$$

then it must be Kähler-Einstein. Here, $\chi(M)$ and $p_1(M)$ are the Euler characteristic and the first Pontrjagin number of M, respectively.

As a corollary, he also proved the following.

Corollary 1.3 [4]. Let M be a four-dimensional compact almost Kähler-Einstein manifold with negative scalar curvature. If M satisfies

$$\int_M \tau^2 dV \leq 24 \int_M \|W^+\|^2 dV,$$

or, more strictly, if $|\tau| \leq 2\sqrt{6}\|W^+\|$ at each point of M, then M must be Kähler-Einstein. Here, W^+ is the self-dual Weyl curvature operator of the metric g.
In this paper, concerning the Goldberg conjecture, we will prove a result obtained by using Corollary 1.3 (see Theorem 2.2).

2. Preliminaries and the result. Let \(M = (M, J, g) \) be a four-dimensional almost Kähler-Einstein manifold with the almost-complex structure \(J \) and the Hermitian metric \(g \). We denote by \(\Omega \) the Kähler form of \(M \) defined by \(\Omega(X, Y) = g(X, JY) \) for \(X, Y \in \mathfrak{X}(M) \), the set of all smooth vector fields on \(M \). We assume that \(M \) is oriented by the volume form \(dV = \Omega^2/2 \). We denote by \(\nabla, R, \rho, \) and \(\tau \) the Riemannian connection, the curvature tensor, the Ricci tensor, and the scalar curvature of \(M \), respectively. We assume that the curvature tensor is defined by \(R(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z \) for \(X, Y, Z \in \mathfrak{X}(M) \). We denote by \(\rho^* \) the Ricci \(*\)-tensor of \(M \) defined by

\[
\rho^*(x, y) = \frac{1}{2} \text{ trace of } (z \mapsto R(x, Jy)Jz)
\] (2.1)

for \(x, y, z \in T_pM \), the tangent space of \(M \) at \(p \in M \). The Ricci \(*\)-tensor satisfies \(\rho^*(x, y) = \rho^*(Jy, Jx) \) for any \(x, y \in T_pM, p \in M \). We note that if \(M \) is Kählerian, the Ricci tensor and the Ricci \(*\)-tensor coincide on \(M \). The \(*\)-scalar curvature \(\tau^* \) of \(M \) is the trace of the linear endomorphism \(Q^* \) defined by \(g(Q^*x, y) = \rho^*(x, y) \) for \(x, y \in T_pM, p \in M \). Since \(\|\nabla J\|^2 = 2(\tau^* - \tau) \), \(M \) is a Kähler manifold if and only if \(\tau^* = \tau = 0 \) on \(M \). An almost Hermitian manifold \(M \) is called a weakly \(*\)-Einstein manifold if \(\rho^* = \lambda^* g \) (\(\lambda^* = \tau^*/4 \)) and a \(*\)-Einstein if \(M \) is weakly \(*\)-Einstein with constant \(*\)-scalar curvature. The following identity holds for any four-dimensional almost Hermitian Einstein manifold:

\[
\frac{1}{2} \{\rho^*(x, y) + \rho^*(y, x)\} = \frac{\tau^*}{4} g(x, y)
\] (2.2)

for \(x, y \in T_pM, p \in M \).

Now, let \(\wedge^2 M \) be the vector bundle of all real 2-forms on \(M \). The bundle \(\wedge^2 M \) inherits a natural inner product \(g \) and we have an orthogonal decomposition

\[
\wedge^2 M = \mathbb{R} \Omega \oplus LM \oplus \wedge^{1,1}_0 M,
\] (2.3)

where \(LM \) (resp., \(\wedge^{1,1}_0 M \)) is the bundle of \(J \)-skew-invariant (resp., \(J \)-invariant) 2-forms on \(M \) perpendicular to \(\Omega \). We can identify the subbundle \(\mathbb{R} \Omega \oplus LM \) (resp., \(\wedge^{1,1}_0 M \)) with the bundle \(\wedge^2 M \) (resp., \(\wedge^2 M \)) of self-dual (resp., anti-self-dual) 2-forms on \(M \). Since \(M \) is Einstein, it is well known that the curvature operator \(\mathcal{R} : \wedge^2 M \to \wedge^2 M \) preserves \(\wedge^2 M \) and that the Weyl curvature operator \(\mathcal{W} : \wedge^2 M \to \wedge^2 M \) is given by

\[
\mathcal{W}(\iota(X) \wedge \iota(Y)) = \mathcal{R}(\iota(X) \wedge \iota(Y)) - \frac{\tau}{12} \iota(X) \wedge \iota(Y),
\] (2.4)

where \(\iota \) is the duality between the tangent bundle and the cotangent bundle of \(M \) by means of the metric \(g \). Let \(\{e_1, e_2 = Je_1, e_3, e_4 = Je_3\} \) be a (local) unitary frame field and put \(e^i = \iota(e_i) \). Then, the Kähler form is represented by \(\Omega = -e^1 \wedge e^2 - e^3 \wedge e^4 \). Further,
we see that
\[
\{\Phi, J\Phi\} = \left\{ \frac{1}{\sqrt{2}} (e^1 \wedge e^3 - e^2 \wedge e^4), \frac{1}{\sqrt{2}} (e^1 \wedge e^4 + e^2 \wedge e^3) \right\},
\]
\[
\{\Psi_1, \Psi_2, \Psi_3\} = \left\{ \frac{1}{\sqrt{2}} (e^1 \wedge e^2 - e^3 \wedge e^4), \frac{1}{\sqrt{2}} (e^1 \wedge e^3 + e^2 \wedge e^4), \frac{1}{\sqrt{2}} (e^1 \wedge e^4 - e^2 \wedge e^3) \right\}
\]
are (local) orthonormal bases of LM and $\wedge_0^{1,1} M = \wedge_1^2 M$, respectively.

In this paper, for any orthonormal basis (resp., any local orthonormal frame field) \{e_1, e_2, e_3, e_4\} of a point $p \in M$ (resp., on a neighborhood of p), we will adopt the following notational convention:

\[
J_{ij} = g(J_{e_i} e_j), \quad \Gamma_{ij} = g(\nabla_{e_i} e_j, e_k),
\]
\[
R_{ijkl} = g(R(e_i, e_j) e_k, e_l), ..., R_{ijkl} = g(R(J_{e_i} e_j) e_k, e_l),
\]
\[
\rho_{ij} = \rho(e_i, e_j), ..., \rho_{ij} = \rho(e_i, e_j), \quad \rho^*_{ij} = \rho^*(e_i, e_j),
\]
\[
\nabla_i J_{jk} = g((\nabla_{e_i} J) e_j, e_k), ..., \nabla_i J_{jk} = g((\nabla_{e_i} J) e_j, e_k),
\]
and so on, where the Latin indices run over the range 1, 2, 3, 4. We define functions A, B, C, D, G, and K on M by

\[
A = \sum_{i,j,k,l,a=1}^4 (\nabla_a J_{ij}) R_{ijkl}(\nabla_a J_{kl}),
\]
\[
B = \sum_{i,j,k,l,a=1}^4 (\nabla_a J_{ij})(\nabla_a J_{kl})(\nabla_b J_{ij})(\nabla_b J_{kl}),
\]
\[
C = \sum_{i,j,k,l=1}^4 R_{ijkl} R_{ijkl}, \quad D = \sum_{i,j,k,l=1}^4 (R_{ijkl} - R_{ijlk})^2,
\]
\[
G = \sum_{i,j=1}^4 (\rho^*_{ij} - \rho_{ij})^2, \quad K = (u - v)^2 + 4w^2,
\]

where $u = g(\bar{\mathcal{R}}(\Phi), \Phi)$, $v = g(\bar{\mathcal{R}}(J\Phi), J\Phi)$, and $w = g(\bar{\mathcal{R}}(\Phi), J\Phi)$. First, we will prove the following.

Lemma 2.1. The norm of the self-dual Weyl operator W^+ is given by

\[
||W^+||^2 = \frac{1}{16} \left(G + D + (\tau^*)^2 - \frac{\tau^2}{3} \right).
\]

Proof. Let \{e_1, e_2 = Je_1, e_3, e_4 = Je_3\} be any (local) unitary frame field on M and we put $\Omega_0 = -\Omega/\sqrt{2} = (e^1 \wedge e^2 + e^3 \wedge e^4)/\sqrt{2}$, $\Phi = (e^1 \wedge e^3 - e^2 \wedge e^4)/\sqrt{2}$, and $J\Phi = (e^1 \wedge e^4 + e^2 \wedge e^3)/\sqrt{2}$. Then, \{\Omega_0, \Phi, J\Phi\} is an orthonormal basis of $\wedge_1^2 M$. Thus, we have

\[
||W^+||^2 = g(W^+(\Omega_0), \Omega_0)^2 + g(W^+(\Omega_0), \Phi)^2 + g(W^+(\Omega_0), J\Phi)^2
\]
\[+ g(W^+(\Phi), \Omega_0)^2 + g(W^+(\Phi), \Phi)^2 + g(W^+(\Phi), J\Phi)^2
\]
\[+ g(W^+(J\Phi), \Omega_0)^2 + g(W^+(J\Phi), \Phi)^2 + g(W^+(J\Phi), J\Phi)^2.
\]
Taking account of (2.4), we have

\[
g(W^+(\Omega_0), \Omega_0) = \frac{1}{2} \left(-R_{1212} - 2R_{1243} - R_{3434} - \frac{\tau}{6} \right) = \frac{1}{12} (3\tau^* - \tau),
\]
\[
g(W^+(\Omega_0), \Phi) = \frac{1}{2} (-R_{1213} - R_{1224} - R_{3413} - R_{3424}) = -\frac{1}{2} (\rho_{14}^* - \rho_{41}^*),
\]
\[
g(W^+(\Omega_0), J\Phi) = \frac{1}{2} (-R_{1214} - R_{1223} - R_{3414} - R_{3423}) = \frac{1}{2} (\rho_{13}^* - \rho_{31}^*),
\]
\[
g(W^+(\Phi), \Phi) = \frac{1}{2} (-R_{1313} + 2R_{1324} - R_{2424} - \frac{\tau}{6}) = -(R_{1313} - R_{1324}) - \frac{\tau}{12},
\]
\[
g(W^+(\Phi), J\Phi) = \frac{1}{2} (-R_{1314} - R_{1323} + R_{2414} + R_{2423}) = -(R_{1314} + R_{1323}),
\]
\[
g(W^+(J\Phi), J\Phi) = \frac{1}{2} (-R_{1414} - 2R_{1423} - R_{2323} - \frac{\tau}{6}) = -(R_{1414} + R_{1423}) - \frac{\tau}{12}.
\]

Thus, we have

\[
||W^+||^2 = \frac{1}{12^2} (3\tau^* - \tau)^2 + \frac{2\tau^2}{12^2} + \frac{1}{2} (\rho_{13}^* - \rho_{31}^*)^2 + \frac{1}{2} (\rho_{14}^* - \rho_{41}^*)^2
\]
\[
+ (R_{1313} - R_{1324})^2 + (R_{1314} + R_{1323})^2 + (R_{1314} + R_{1323})^2
\]
\[
+ (R_{1414} + R_{1423})^2 + \frac{\tau}{6} (R_{1313} - R_{1324} + R_{1414} + R_{1423})
\]
\[
= \frac{1}{12^2} (3\tau^* - \tau)^2 + \frac{2\tau^2}{12^2} + \frac{G}{8}
\]
\[
+ \frac{1}{4} \sum_{i<j<k<l} (R_{ijkl} - R_{ijkl})^2 - \frac{1}{4} \sum_{k<l} (R_{12kl} - R_{12kl})^2
\]
\[
- \frac{1}{4} \sum_{k<l} (R_{34kl} - R_{34kl})^2 - \frac{\tau}{6} \left(-\frac{\tau}{4} - R_{1212} - R_{1234} \right)
\]
\[
= \frac{1}{12^2} (3\tau^* - \tau)^2 + \frac{2\tau^2}{12^2} + \frac{G}{8} + \frac{D}{16} - \frac{G}{32} - \frac{G}{32} + \frac{\tau}{6} \left(-\frac{\tau}{4} + \frac{\tau^*}{4} \right)
\]
\[
= \frac{D}{16} + \frac{G}{16} + \frac{(\tau^*)^2}{16} - \frac{\tau^2}{48}.
\]

The lemma follows. \(\square\)

Next, we recall the following equalities established in [6]:

\[
A = \frac{1}{4} B = \frac{(\tau^* - \tau)^2}{2},
\]
\[
C = -2K + \frac{(\tau^* - \tau)^2}{8},
\]
\[
G = 4||\rho^*||^2 - (\tau^*)^2 = 16 \left\{ (\rho_{13}^*)^2 + (\rho_{14}^*)^2 \right\},
\]
\[
K = (u + v)^2 + 4(w^2 - uv) = \frac{(\tau^* - \tau)^2}{16} - 4 \det R'_{LM},
\]
\[
||R'_{LM}||^2 = \frac{1}{16} D,
\]
\[
||R'_{LM}||^2 = \frac{1}{16} (D - G),
\]
\[
(2.12)
\]
where \(\mathcal{R}_{LM} \) is the restriction of \(\mathcal{R} \) to \(LM \) and \(\mathcal{R}'_{LM} = P_{LM} \circ \mathcal{R}_{LM} \), the composition of \(\mathcal{R}_{LM} \) and the natural projection \(P_{LM} : \wedge^2 M \to LM \). We define a vector field \(\eta = (\eta_a) \) on \(M \) by \(\eta_a = \sum_{i,j=1}^{4} (\nabla a J_{ij}) \rho^i \bar{j} \), then we obtain the following (see [6, (2.23)]):

\[
\Delta \tau^* = \frac{G}{2} + 4K + \frac{(3\tau^* - \tau)(\tau^* - \tau)}{4} - 4 \operatorname{div} \eta. \tag{2.13}
\]

Further, from (2.12) and the curvature identity

\[
R_{ijkl} - R_{ijkl} - R_{ikjl} + R_{ikjl} - R_{ijkl} + R_{ijkl} + R_{ijkl} = 2 \sum_{a=1}^{4} (\nabla a J_{ij}) \nabla a J_{kl} \tag{2.14}
\]

by Gray [3] for almost Kähler manifold, we have

\[
A = \frac{1}{2} \sum R_{ijkl}(R_{ijkl} - R_{ijkl} - R_{ijkl} + R_{ikjl} + R_{ikjl} + R_{ijkl} + R_{ijkl})
\]

\[
= \frac{1}{4} \sum (R_{ijkl} - R_{ijkl})^2 - \frac{1}{2} \sum (R_{ijkl} - R_{ijkl})(R_{ijkl} - R_{ijkl}) + 2 \sum R_{ijkl} R_{ijkl}
\]

\[
= \frac{D}{4} - \frac{1}{4} \left\{ -16||\mathcal{R}'_{LM}||^2 + \sum (R_{ij12} + R_{ij34} - R_{ij12} - R_{ij34})^2 \right\} + 2C \tag{2.15}
\]

Thus, from (2.12) and this equality, we obtain

\[
\frac{D}{2} - \frac{G}{2} - 4K + \frac{(\tau^* - \tau)^2}{4} = 0. \tag{2.16}
\]

Now, we are ready to prove the following.

Theorem 2.2. Let \(M = (M, J, g) \) be a four-dimensional compact almost Kähler-Einstein manifold with negative scalar curvature. If \(M \) satisfies

\[
\int_M \{G + \tau (\tau^* - \tau)\} dV \geq 0, \tag{2.17}
\]

or, more strictly, if \(\tau^* - \tau \leq -G/\tau \) at each point of \(M \), then \(M \) is Kähler-Einstein.

Proof. From (2.8), we have

\[
24 \int_M ||\mathcal{W}||^2 dV - \int_M \tau^2 dV = \frac{3}{2} \int_M \{G + D + (\tau^* - \tau)(\tau^* + \tau)\} dV. \tag{2.18}
\]

On one hand, from (2.13) and (2.16), we have

\[
0 = \int_M \left\{ \frac{G}{2} + 4K + \frac{(3\tau^* - \tau)(\tau^* - \tau)}{4} \right\} dV = \int_M \left\{ \frac{D}{2} + \frac{\tau^* (\tau^* - \tau)}{2} \right\} dV. \tag{2.19}
\]
Thus, from (2.18) and (2.19), we obtain
\[
24 \int_M \| W^+ \|^2 dV - \int_M \tau^2 dV = \frac{2}{3} \int_M \{ G + \tau (\tau^* - \tau) \} dV.
\]
(2.20)
Therefore, from Corollary 1.3, the assertion of the theorem immediately follows.

Remark 2.3. The above theorem is concerned with the following facts.

1. For a compact four-dimensional almost Kähler-Einstein manifold, the function \(\tau^* - \tau \) vanishes at some point of \(M \) (see [1, 5]).
2. A four-dimensional compact almost Kähler-Einstein and weakly \(*\)-Einstein manifold \((G \equiv 0)\) is a Kähler manifold (see [7]).
3. Let \(M \) be a four-dimensional compact strictly almost Kähler-Einstein, but not weakly \(*\)-Einstein manifold. Then, we see that \(G > 0 \) on \(M_0 = \{ p \in M \mid \tau^* - \tau > 0 \} \), and hence \(\tau^* - \tau = 0 \) at which \(G = 0 \) (see [5]).

References

R. S. Lemence: Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

E-mail address: f02n406n@mail.cc.niigata-u.ac.jp

T. Oguro: Department of Mathematical Sciences, School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan

E-mail address: oguro@r.dendai.ac.jp

K. Sekigawa: Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

E-mail address: sekigawa@sc.niigata-u.ac.jp