ON UNIVALENT FUNCTIONS DEFINED BY A GENERALIZED SĂLĂGEAN OPERATOR

F. M. AL-OBOUDI

Received 17 August 2001 and in revised form 18 March 2002

We introduce a class of univalent functions \(R^n(\lambda, \alpha) \) defined by a new differential operator \(D^n f(z) \), \(n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\} \), where \(D^0 f(z) = f(z) \), \(D^1 f(z) = (1 - \lambda) f(z) + \lambda z f'(z) = D_\lambda f(z) \), \(\lambda \geq 0 \), and \(D^n f(z) = D_\lambda (D^{n-1} f(z)) \). Inclusion relations, extreme points of \(R^n(\lambda, \alpha) \), some convolution properties of functions belonging to \(R^n(\lambda, \alpha) \), and other results are given.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let \(A \) denote the class of functions of the form

\[
 f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad (1.1)
\]

analytic in the unit disc \(\Delta = \{ z : |z| < 1 \} \).

We denote by \(R(\alpha) \) the subclass of \(A \) for which \(\Re f'(z) > \alpha \) in \(\Delta \). For a function \(f \in A \), we define the following differential operator:

\[
 D^0 f(z) = f(z), \\
 D^1 f(z) = (1 - \lambda) f(z) + \lambda z f'(z) = D_\lambda f(z), \quad \lambda \geq 0, \\
 D^n f(z) = D_\lambda (D^{n-1} f(z)). \quad (1.4)
\]

If \(f \) is given by (1.1), then from (1.3) and (1.4) we see that

\[
 D^n f(z) = z + \sum_{k=2}^{\infty} \left[1 + (k - 1)\lambda \right]^n a_k z^k. \quad (1.5)
\]

When \(\lambda = 1 \), we get Sălăgean’s differential operator [8].

Let \(R^n(\lambda, \alpha) \) denote the class of functions \(f \in A \) which satisfy the condition

\[
 \Re (D^n f(z))^\top > \alpha, \quad z \in \Delta, \quad (1.6)
\]

for some \(0 \leq \alpha \leq 1 \), \(\lambda \geq 0 \), and \(n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\} \). It is clear that \(R^0(\lambda, \alpha) \equiv R(\alpha) \equiv R^n(0, \alpha) \) and that \(R^1(\lambda, \alpha) \equiv R(\lambda, \alpha) \), the class of functions \(f \in A \) satisfying

\[
 \Re (f''(z) + \lambda z f'''(z)) > \alpha, \quad z \in \Delta, \quad (1.7)
\]

studied by Ponnusamy [5] and others.
The Hadamard product or convolution of two power series \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \) is defined as the power series \((f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k \), \(z \in \Delta \).

The object of this paper is to derive several interesting properties of the class \(R^n(\lambda, \alpha) \) such as inclusion relations, extreme points, some convolution properties, and other results.

2. Inclusion relations. Theorem 2.3 shows that the functions in \(R^n(\lambda, \alpha) \) belong to \(R(\alpha) \) and hence are univalent. We need the following lemmas.

Lemma 2.1. If \(p(z) \) is analytic in \(\Delta \), \(p(0) = 1 \) and \(\text{Re} p(z) > 1/2 \), \(z \in \Delta \), then for any function \(F \) analytic in \(\Delta \), the function \(p * F \) takes its values in the convex hull of \(F(\Delta) \).

The assertion of Lemma 2.1 follows by using the Herglotz representation for \(p \). The next lemma is due to Fejér [3].

A sequence \(a_0, a_1, \ldots, a_n, \ldots \) of nonnegative numbers is called a convex null sequence if \(a_n \to 0 \) as \(n \to \infty \) and

\[
a_0 - a_1 \geq a_1 - a_2 \geq \cdots \geq a_n - a_{n+1} \geq \cdots \geq 0. \tag{2.1}
\]

Lemma 2.2. Let \(\{c_k\}_{k=0}^{\infty} \) be a convex null sequence. Then the function \(p(z) = c_0/2 + \sum_{k=1}^{\infty} c_k z^k \), \(z \in \Delta \), is analytic and \(\text{Re} p(z) > 0 \) in \(\Delta \).

Now we prove the following theorem.

Theorem 2.3.

\[
R^{n+1}(\lambda, \alpha) \subset R^n(\lambda, \alpha). \tag{2.2}
\]

Proof. Let \(f \) belong to \(R^{n+1}(\lambda, \alpha) \) and let it be given by (1.1). Then from (1.5), we have

\[
\text{Re} \left(\frac{1}{2(1-\alpha)} \sum_{k=2}^{\infty} k[1+(k-1)\lambda]^{n+1} a_k z^{k-1} \right) > \frac{1}{2}. \tag{2.3}
\]

Now

\[
(D^n f(z))' = 1 + \sum_{k=2}^{\infty} k[1+(k-1)\lambda]^{n} a_k z^{k-1}
= \left(1 + \frac{1}{2(1-\alpha)} \sum_{k=2}^{\infty} k[1+(k-1)\lambda]^{n+1} a_k z^{k-1} \right)
\times \left(1 + 2(1-\alpha) \sum_{k=2}^{\infty} \frac{z^{k-1}}{1+(k-1)\lambda} \right). \tag{2.4}
\]

Applying Lemma 2.2, with \(c_0 = 1 \) and \(c_k = 1/(1+k\lambda) \), \(k = 1, 2, \ldots \), we get

\[
\text{Re} \left(1 + 2(1-\alpha) \sum_{k=2}^{\infty} \frac{z^{k-1}}{1+(k-1)\lambda} \right) > \alpha. \tag{2.5}
\]

Applying Lemma 2.1 to \((D^n f(z))' \), we get the required result.
ON UNIVALENT FUNCTIONS DEFINED BY A GENERALIZED ...

We also have a better result than Theorem 2.3.

THEOREM 2.4. Let \(f \in R^{n+1}(\lambda, \alpha) \). Then \(f \in R^n(\lambda, \beta) \), where

\[
\beta = \frac{2\lambda^2 + (1 + 3\lambda)\alpha}{(1 + \lambda)(1 + 2\lambda)} \geq \alpha.
\]

(Proof. Let \(f \in R^{n+1}(\lambda, \alpha) \). It is shown in [9], as an example, that if \(\lambda \geq 0 \) and

\[
g(z) = z + \sum_{k=2}^{\infty} \frac{z^k}{1 + (k - 1)\lambda},
\]

then

\[
\text{Re} \frac{g(z)}{z} > \frac{4\lambda^2 + 3\lambda + 1}{2(1 + \lambda)(1 + 2\lambda)}.
\]

Hence

\[
\text{Re} \left(1 + 2(1 - \alpha) \sum_{k=2}^{\infty} \frac{z^{k-1}}{1 + (k - 1)\lambda} \right) > \frac{2\lambda^2 + (1 + 3\lambda)\alpha}{(1 + \lambda)(1 + 2\lambda)}.
\]

Now an application of *Lemma 2.1* to \((D^nf(z))'\) in the previous theorem completes the proof. \(\square\)

REMARK 2.5. If we put \(n = 1 \) in *Theorem 2.4*, then we have

\[
\text{Re} \left(f'(z) + \lambda zf''(z) \right) > \alpha \Rightarrow \text{Re} f''(z) > \frac{2\lambda^2 + (1 + 3\lambda)\alpha}{(1 + \lambda)(1 + 2\lambda)},
\]

which is an improvement of the result of Saitoh [7] for \(\lambda \geq 1 \), where he shows that, for \(\lambda > 0 \),

\[
\text{Re} \left(f'(z) + \lambda zf''(z) \right) > \alpha \Rightarrow \text{Re} f'(z) > \frac{2\alpha + \lambda}{2 + \lambda}.
\]

Using *Theorem 2.4* \((n - m)\) times we get, after some calculations, the following theorem.

THEOREM 2.6. Let \(f \in R^n(\lambda, \alpha) \) and let \(n > m \geq 0 \). Then \(f \in R^m(\lambda, \beta) \) if

\[
\beta = \left[\frac{1 + 3\lambda}{(1 + \lambda)(1 + 2\lambda)} \right]^{n-m} \alpha + \frac{2\lambda^2}{(1 + \lambda)(1 + 2\lambda)} \sum_{k=0}^{n-m-1} \left(\frac{1 + 3\lambda}{(1 + \lambda)(1 + 2\lambda)} \right)^k \geq \alpha.
\]

If we put \(m = 0 \) in *Theorem 2.6*, we obtain the following interesting result.

COROLLARY 2.7. Let \(f \in R^n(\lambda, \alpha) \). Then \(\text{Re} f'(z) > \beta \), where \(\beta \) is given by (2.12) with \(m = 0 \).
Remark 2.8. Since D_λ (given by (1.3)) is a linear function of λ, it is clear that

$$R^n(\lambda, \alpha) \subset R^n(\lambda', \alpha),$$ \hspace{1cm} (2.13)

where $\lambda > \lambda'$.

The following theorem deals with the partial sum of the functions in $R^n(\lambda, \alpha)$. For the proof we need the following result, due to Ahuja and Jahangiri [2].

Lemma 2.9. Let $-1 < t < S = 4.567802$. Then

$$\text{Re} \left(\sum_{k=2}^{m} \frac{z^{k-1}}{k + t - 1} \right) > -\frac{1}{1 + t}, \quad z \in \Delta. \hspace{1cm} (2.14)$$

Theorem 2.10. Let $S_m(z, f)$ denote the mth partial sum of a function f in $R^n(\lambda, \alpha)$. If $f \in R^n(\lambda, \alpha)$ and $\lambda \geq 1/s = 0.21892$, then $S_m(z, f) \in R^{n-1}(\lambda, \beta)$, where

$$\beta = \frac{2\alpha + \lambda - 1}{\lambda + 1}. \hspace{1cm} (2.15)$$

Proof. Let $f \in R^n(\lambda, \alpha)$ and let it be given by (1.1). Then from (1.5) we have

$$\text{Re} \left(1 + \sum_{k=2}^{\infty} k [1 + (k-1)\lambda] a_k z^{k-1} \right) > \alpha \hspace{1cm} (2.16)$$

or

$$\text{Re} \left(1 + \frac{2}{\lambda + 1} \sum_{k=2}^{\infty} k [1 + (k-1)\lambda] a_k z^{k-1} \right) > \frac{2\alpha + \lambda - 1}{\lambda + 1}. \hspace{1cm} (2.17)$$

Now

$$(D^{n-1}S_m(z, f))' = 1 + \sum_{k=2}^{m} k [1 + (k-1)\lambda] a_k z^{k-1}$$

$$= \left(1 + \frac{2}{\lambda + 1} \sum_{k=2}^{\infty} k [1 + (k-1)\lambda] a_k z^{k-1} \right)$$

$$\ast \left(1 + \frac{\lambda + 1}{2\lambda} \sum_{k=2}^{m} \frac{z^{k-1}}{1/\lambda + (k-1)} \right), \quad \lambda > 0. \hspace{1cm} (2.18)$$

From Lemma 2.9, we see that, for $\lambda \geq 1/s = 0.21892$,

$$\text{Re} \sum_{k=2}^{m} \frac{z^{k-1}}{1/\lambda + (k-1)} > -\frac{\lambda}{\lambda + 1}, \hspace{1cm} (2.19)$$

hence

$$\text{Re} \left(1 + \frac{\lambda + 1}{2\lambda} \sum_{k=2}^{m} \frac{z^{k-1}}{1/\lambda + (k-1)} \right) > \frac{1}{2}, \hspace{1cm} (2.20)$$

and the result follows by application of Lemma 2.1. \qed
Now we prove the following theorem.

Theorem 2.11. The set $R^n(\lambda, \alpha)$ is convex.

Proof. Let the functions

$$f_i(z) = z + \sum_{k=2}^{\infty} a_{ki} z^k \quad (i = 1, 2) \quad (2.21)$$

be in the class $R^n(\lambda, \alpha)$. It is sufficient to show that the function $h(z) = \mu_1 f_1(z) + \mu_2 f_2(z)$, with μ_1 and μ_2 nonnegative and $\mu_1 + \mu_2 = 1$, is in the class $R^n(\lambda, \alpha)$.

Since

$$h(z) = z + \sum_{k=2}^{\infty} (\mu_1 a_{k1} + \mu_2 a_{k2}) z^k, \quad (2.22)$$

then from (2.4) we have

$$(D^n h(z))' = 1 + \sum_{k=2}^{\infty} k(\mu_1 a_{k1} + \mu_2 a_{k2}) [1 + (k-1) \lambda]^{n} z^{k-1}, \quad (2.23)$$

hence

$$\text{Re}(D^n h(z))' = \text{Re}(1 + \mu_1 \sum_{k=2}^{\infty} k[1 + (k-1) \lambda]^{n} a_{k1} z^{k-1}) + \text{Re}(1 + \mu_2 \sum_{k=2}^{\infty} k[1 + (k-1) \lambda]^{n} a_{k2} z^{k-1}). \quad (2.24)$$

Since $f_1, f_2 \in R^n(\lambda, \alpha)$, this implies that

$$\text{Re}(1 + \mu_i \sum_{k=2}^{\infty} k[1 + (k-1) \lambda]^{n} a_{ki} z^{k-1}) > 1 + \mu_i(\alpha - 1) \quad (i = 1, 2). \quad (2.25)$$

Using (2.25) in (2.24), we obtain

$$\text{Re}(D^n h(z))' > 1 + \alpha(\mu_1 + \mu_2) - (\mu_1 + \mu_2), \quad (2.26)$$

and since $\mu_1 + \mu_2 = 1$, the theorem is proved.

Hallenbeck [4] showed that

$$\text{Re}f'(z) > \alpha \Rightarrow \text{Re} \frac{f'(z)}{z} > (2\alpha - 1) + 2(1 - \alpha) \log 2. \quad (2.27)$$

Using Theorem 2.3 and (2.27), we obtain the following theorem.

Theorem 2.12. Let $f \in R^n(\lambda, \alpha)$. Then

$$\text{Re} \frac{D^n f(z)}{z} > (2\alpha - 1) + 2(1 - \alpha) \log 2. \quad (2.28)$$

This result is sharp as can be seen by the function f_x given by (3.1).
3. Extreme points. The extreme points of the closed convex hull of $R(\alpha)$ were determined by Hallenbeck [4]. We denote the closed convex hull of a family F by clcoF, and we make use of some results in [4] to determine the extreme points of $R^n(\lambda, \alpha)$.

Theorem 3.1. The extreme points of $R^n(\lambda, \alpha)$ are

$$f_\chi(z) = z + 2(1-\alpha) \sum_{k=2}^{\infty} \frac{x^{k-1}z^k}{k[1+(k-1)\lambda]^n}, \quad |x| = 1, \ z \in \Delta.$$ \hspace{1cm} (3.1)

Proof. Since $D^n : f \to D^n f$ is an isomorphism from $R^n(\lambda, \alpha)$ to $R(\alpha)$, it preserves the extreme points and, in [4], it is shown that the extreme points of $R(\alpha)$ are

$$z + 2(1-\alpha) \sum_{k=2}^{\infty} \frac{1}{k} x^{k-1}z^k, \quad |x| = 1, \ z \in \Delta.$$ \hspace{1cm} (3.2)

Hence from (1.5), we see that the extreme points of clco$R^n(\lambda, \alpha)$ are given by (3.1). Since the family $R^n(\lambda, \alpha)$ is convex (Theorem 2.6) and therefore equal to its convex hull, we get the required result. \qed

As consequences of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let f belong to $R^n(\lambda, \alpha)$ and let it be given by (1.1). Then

$$|a_k| \leq \frac{2(1-\alpha)}{k[1+(k-1)\lambda]^n}, \quad k \geq 2.$$ \hspace{1cm} (3.3)

This result is sharp as shown by the function $f_\chi(z)$ given by (3.1).

Corollary 3.3. If $f \in R^n(\lambda, \alpha)$, then

$$|f(z)| \leq r + \sum_{k=2}^{\infty} \frac{2(1-\alpha)}{k[1+(k-1)\lambda]^n} r^k, \quad |z| = r,$$

$$|f'(z)| \leq 1 + \sum_{k=2}^{\infty} \frac{2(1-\alpha)}{[1+(k-1)\lambda]^n} r^{k-1}, \quad |z| = r.$$ \hspace{1cm} (3.4)

This result is sharp as shown by the function $f_\chi(z)$ given by (3.1) at $z = \bar{\alpha}r$.

4. Convolution properties. Ruscheweyh and Sheil-Small [6] verified the Polya-Schoenberg conjecture and its analogous results, namely, $C * C \subset C$, $C * S^* \subset S^*$, and $C * K \subset K$, where C, S^*, and K denote the classes of convex, starlike, and close-to-convex univalent functions, respectively. In the following, we prove the analogue of the Polya-Schoenberg conjecture for the class $R^n(\lambda, \alpha)$.

Theorem 4.1. Let $f \in R^n(\lambda, \alpha)$ and $g \in C$. Then $f * g \in R^n(\lambda, \alpha)$.

Proof. It is known that if g is convex univalent in Δ, then

$$\text{Re} \frac{g(z)}{z} > \frac{1}{2}.$$ \hspace{1cm} (4.1)
Using convolution properties, we have

\[
\text{Re}(D^n(f \ast g)(z))' = \text{Re}\left((D^n f(z))' \ast \frac{g(z)}{z} \right),
\]

and the result follows by application of Lemma 2.1.

Theorem 4.2. Let \(f \) and \(g \) belong to \(R^n(\lambda, \alpha) \). Then \(f \ast g \in R^n(\lambda, \beta) \), where

\[
\beta = \frac{\lambda(2\alpha + 1) + 4\alpha - 1}{2(\lambda + 1)} \geq \alpha.
\]

Proof. Let \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in R^n(\lambda, \alpha) \), then

\[
\text{Re}\left(1 + \sum_{k=2}^{\infty} k[1 + (k-1)\lambda]b_k z^{k-1} \right) > \alpha.
\]

Let \(c_0 = 1 \) and

\[
c_k = \frac{\lambda + 1}{(k+1)[1+k\lambda]}n, \quad k \geq 1.
\]

Then \(\{c_k\}_{k=0}^{\infty} \) is a convex null sequence. Hence, by Lemma 2.2, we have

\[
\text{Re}\left(1 + \sum_{k=2}^{\infty} \frac{\lambda + 1}{k[1+(k-1)\lambda]}n z^{k-1} \right) > \frac{1}{2}.
\]

Now we take the convolution of (4.4) and (4.6) and apply Lemma 2.1 to obtain

\[
\text{Re}\left(1 + (\lambda + 1) \sum_{k=2}^{\infty} b_k z^{k-1} \right) > \alpha
\]

or

\[
\text{Re}\left(\frac{g(z)}{z} \right) = \text{Re}\left(1 + \sum_{k=2}^{\infty} b_k z^{k-1} \right) > \frac{\lambda + \alpha}{\lambda + 1}.
\]

Hence

\[
\text{Re}\left(\frac{g(z)}{z} - \frac{2\alpha + \lambda - 1}{2(\lambda + 1)} \right) > \frac{1}{2}.
\]

Since \(f \in R^n(\lambda, \alpha) \), by applying Lemma 2.1, we obtain

\[
\text{Re}\left((D^n f(z))' \ast \left(\frac{g(z)}{z} - \frac{2\alpha + \lambda - 1}{2(\lambda + 1)} \right) \right) > \alpha \quad (4.10)
\]

or

\[
\text{Re}\left((D^n f(z))' \ast \frac{g(z)}{z} \right) > \frac{\lambda(2\alpha + 1) + 4\alpha - 1}{2(\lambda + 1)} = \beta, \quad (4.11)
\]

and by (4.2), the result follows. \(\Box \)
 Remark 4.3. If we put $\lambda = 0$ in Theorem 4.2, we get the corresponding result for functions in $R(\alpha)$, given by Ahuja [1].

REFERENCES

F. M. Al-Oboudi: Mathematics Department, Science Sections, Girls College of Education, Sitteen Street, Malaz, Riyadh 11417, Saudi Arabia

E-mail address: rytelmi@gcpa.edu.sa