ON THE MAPPING \(xy \rightarrow (xy)^n \) IN AN ASSOCIATIVE RING

SCOTT J. BESLIN and AWAD ISKANDER

Received 26 August 2002

We consider the following condition \((*)\) on an associative ring \(R \): \((*)\). There exists a function \(f \) from \(R \) into \(R \) such that \(f \) is a group homomorphism of \((R,+)\), \(f \) is injective on \(R \), and \(f(xy) = (xy)^{n(x,y)} \) for some positive integer \(n(x,y) > 1 \). Commutativity and structure are established for Artinian rings \(R \) satisfying \((*)\), and a counterexample is given for non-Artinian rings. The results generalize commutativity theorems found elsewhere. The case \(n(x,y) = 2 \) is examined in detail.

2000 Mathematics Subject Classification: 16D70, 16P20.

Let \(R \) be an associative ring, not necessarily with unity, and let \(R^+ \) denote the additive group of \(R \). In [3], it was shown that \(R \) is commutative if it satisfies the following condition.

(I) For each \(x \) and \(y \) in \(R \), there exists \(n = n(x,y) > 1 \) such that \((xy)^n = xy \).

We generalize this result by considering the condition below.

(II) There exists a function \(f \) from \(R \) into \(R \) such that \(f \) is a group homomorphism of \(R^+ \), \(f \) is injective on \(R \), and \(f(xy) = (xy)^{n(x,y)} \) for some positive integer \(n = n(x,y) > 1 \) depending on \(x \) and \(y \).

An example of a ring satisfying (II) for \(n(x,y) = 2 \) is given by \(R = B \oplus N \), where \(B \) is a Boolean ring and \(N \) is a zero ring (a ring with trivial product, \(xy = 0 \) for all \(x \) and \(y \)). In this case, we may take \(f \) to be the identity mapping. It was shown in [2] that a ring which is product-idempotent (i.e., \((xy)^2 = xy \) for every \(x \) and \(y \)) must be of the form \(B \oplus N \). We will see that Artinian rings \(R \) for which (II) is true are not far removed from this structure.

In this paper, we give the structure of an Artinian ring \(R \) satisfying (II) without invoking the commutativity theorems of Bell [1]. We then exhibit an infinite noncommutative ring for which \(f \) is surjective but not injective. Throughout this paper, the notation \(J(R) \) denotes the Jacobson radical of the ring \(R \). If \(r \) is in \(R \), the symbol \(\bar{r} \) denotes the coset \(r + J(R) \).

The proposition below states that rings satisfying (II) obey the central-idempotent property.

Proposition 1 (see [3]). Let \(R \) be a ring satisfying (II). If \(e \) is an idempotent in \(R \), then \(e \) is central.

Proof. Since \(f(yx) = (yx)^{n(y,x)} = y(xyx) \cdots yx \), we have that \(xy = 0 \) in \(R \) implies \(yx = 0 \), for any \(x \) and \(y \) in \(R \). Now, for every \(r \) in \(R \), \((e^2 - e)r = e(er - r) = 0 \). Thus, \((er - r)e = 0 \) or \(ere = re \). Similarly, \(ere = er \). Hence, \(er = re \). \(\square \)
Theorem 2. Let R be an Artinian ring satisfying (II). If $(xy)^m = 0$ for some positive integer m, then $xy = 0$.

Proof. Suppose that $(xy)^m = 0$ and $(xy)^{m-1}
eq 0$, $m > 1$. Then, $f[(xy)^{m-1}] = [(xy)^{m-1}]^n = 0$. Since f is injective on R^2, $(xy)^{m-1} = 0$, a contradiction. □

Corollary 3. If R is an Artinian ring satisfying (II), then $R \cdot J(R) = J(R) \cdot R = (0)$.

Proof. Since R is Artinian, the ideal $J(R)$ is nilpotent. □

Corollary 4. For an Artinian ring R satisfying (II), $J(R)$ is a zero ring.

Corollary 5. For an Artinian ring R satisfying (II), $R/J(R)$ is commutative.

Proof. If not, there is a direct summand of $R/J(R)$ isomorphic to a full matrix ring over a division ring. Hence, there exist \bar{u} and $\bar{\nu}$ in $R/J(R)$ such that $\bar{u}\bar{\nu} \neq 0$ and $\bar{u}\bar{\nu}\bar{u} = 0$. It follows that $uv \neq 0$ in R and that uvu is in $J(R)$. But then $f(uv) = (uv)^n(u,v) = uv\cdot uv\cdots uv = (uvu)v\cdots uv = 0$. Thus, by the injective property of f on R^2, $uv = 0$, a contradiction.

We now obtain the structure of an Artinian ring R satisfying (II). □

Theorem 6. If R is an Artinian ring satisfying (II), then R decomposes as a direct sum of rings $eR \oplus N$, where e is an idempotent in R and N is a zero ring.

Proof. By Corollary 5, the ring $S = R/J(R)$ is a direct sum of fields; hence S has an identity \bar{t}, which lifts to a central idempotent e in R such that $e - t$ is in $J(R)$. Let $N = \{r - er : r \in R\}$. It is easy to see that N is an ideal of R, and that the intersection of N with eR is (0). Clearly, $R = eR + N$, and so we may write $R = eR \oplus N$. Now, $e - t$ in $J(R)$ implies that $(e - t)^2 = 0$ or $e = 2et - t^2$. Hence, if r is in R, $(2\bar{e} \cdot \bar{t} - \bar{t}^2)\bar{r} = \bar{e} \cdot \bar{r} = \bar{e}\bar{r}$ or $2\bar{e} \cdot \bar{t} \cdot \bar{r} - \bar{t}^2 \cdot \bar{r} = 2\bar{e} \cdot \bar{r} - \bar{r} = \bar{e}\bar{r}$, since \bar{t} is the identity of S. Thus, $\bar{e}\bar{r} - \bar{r} = 0$ or $r - er$ is in $J(R)$. Therefore, N is a zero subring of $J(R)$. □

Corollary 7. If R is an Artinian ring satisfying (II), then R is a direct sum $F \oplus N$, where F is a direct sum of fields and N is a zero ring.

Proof. By Theorem 2, the ring eR in Theorem 6 has no nonzero nilpotent elements, and hence is a direct sum of fields by Corollary 5. □

Corollary 8. Let R be as in Theorem 2. Then R is commutative.

Corollary 9. Let R be as in Theorem 2. Then $J(R)$ consists precisely of the nilpotent elements $\{x : x^2 = 0\}$.

Remark 10. The function f maps the ideal eR of Theorem 6 into itself, since $f(ex) = (ex)^n = e^n x^n = ex^n$.

Remark 11. The specific fields in the direct sum F of Corollary 7 depend, of course, on the integers $n(x, y)$. A Boolean ring is acceptable for any value of n. The prime field with p elements, p a prime, is acceptable for $n = (p - 1)m + 1$, m a positive
integer. A finite field of order p^k is acceptable for $n = p$. Of course, an infinite field of characteristic p need not be a pth root field.

We now exhibit an infinite noncommutative ring R for which $f(xy) = (xy)^2$ on R^2.

Let \mathbb{Z}_4 be the ring of integers modulo 4. Let R be the free \mathbb{Z}_4-module with countable base $A = \{a_i : i = 1, 2, 3, \ldots\}$. On A, define the multiplication $a_1a_2 = a_3$, $a_2a_1 = -a_3$, $a_ia_i = 0$ otherwise. One may verify that this yields an associative multiplication which extends to a ring multiplication on R considered as an abelian group. Clearly, the ring R is noncommutative. Define $f : A \to A \cup \{0\}$ via $f(a_1) = f(a_3) = 0$ and $f(a_i) = a_{\rho(i)}$, $i \neq 1, 3$, where ρ is any bijection of $\{2, 4, 5, \ldots\}$ onto the set of positive integers. The map f extends to a group homomorphism of R^+. Now, $f(a_1a_i) = f(0) = 0 = (a_1a_i)^2$ for $(i, j) \neq (1, 2)$ or $(2, 1)$. Moreover, $f(a_1a_2) = f(a_3) = 0 = (a_1a_2)^2 = a_3^2$. Similarly, $f(a_2a_1) = 0 = (a_2a_1)^2$.

It is then easy to check that $f(xy) = (xy)^2$ for every x and y in R, since $a_ia_ja_k = 0$ for all a_i, a_j, a_k in A.

The function f above is not injective. We prove the following theorem which insures the commutativity of any ring S, given injectivity of f on the subring S^2 alone.

Theorem 12. Let f be a function from a ring S into S such that $f(x + y) = f(x) + f(y)$ and $f(xy) = (xy)^2$. Assume further that f is injective on S^2. Then S is commutative.

Proof. Let x, y, z, and t be arbitrary elements of S. Now, $f(2xy) = 2(xy)^2 = (2xy)^2 = 4(xy)^2$, so $2(xy)^2 = f(2xy) = 0$. Hence, $2xy = 0$ by injectivity. Moreover, if $xy = 0$, then $f(xy) = y(xy)x = 0$ implies $yx = 0$. From $(xy)^2 + (yz)^2 = f(xy) + f(yz) = f((x + z)y) = [(x + z)y]^2 = (xy + yz)^2 = (xy)^2 + xyyz + zyxz + (yz)^2$, we obtain $xy = yx$. Now, $f(xtyz + yzxt) = f(xtyz) + f(yzxt) = xtyz \cdot xtyz + yzxt \cdot yzxt = (xt)y(zxt)y + yzxt \cdot yzxt = yzxt \cdot yzxt + x(ty)zt + yzxt \cdot yzxt$. Hence, $xtyz + yzxt = 0$. Thus, $(xtyz + yzxt)xtyz = xtyz \cdot xtyz + yzxt \cdot xtyz = xtyz \cdot xtyz + yzxt \cdot x(ty)zt = xtyz \cdot xtyz + yzxt(zt)xt = f(xtyz + yzxt) = 0$. Therefore, $xtyz + yzxt = 0$ or $(xt)(yz) = (yz)(xt)$. Hence, S^2 is commutative.

Now, $f(xy) = (xy)(yz) = (x(yz)(yz) = x(yz)^2x$. Similarly, $f(yzx) = x(yz)^2x$. So, $xyz = yzx$.

Finally, $f(xy) = (xy)(yz) = x(yzx) = x^2y^2 = y^2x^2 = (yx)(yx) = f(yx)$. Thus, $xy = yx$, and S is commutative. This completes the proof.

Remark 13. The ring R in the example preceding Theorem 12 does not have a unity. It can be shown that if S is any ring in which every element is a square, and squaring is an endomorphism of S^+, then S is commutative. It follows that a ring R satisfying (II) for $n = 2$ and having a right or left identity is commutative.

In view of Remark 13 and Theorem 12, we make the following conjecture and leave it as a problem.

Conjecture 14. Let S be a ring and $n \geq 2$ a positive integer. If the function $f(x) = x^n$ on S is surjective (injective) and f is a group endomorphism of S^+, then S is commutative.
References

Scott J. Beslin: Department of Mathematics and Computer Science, Nicholls State University, Thibodaux, LA 70310, USA
E-mail address: scott.beslin@nicholls.edu

Awad Iskander: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
E-mail address: awadiskander@juno.com