FLAT SEMIMODULES

HUDA MOHAMMED J. AL-THANI

Received 8 February 2003

To my dearest friend Najla Ali

We introduce and investigate flat semimodules and \(k \)-flat semimodules. We hope these concepts will have the same importance in semimodule theory as in the theory of rings and modules.

2000 Mathematics Subject Classification: 16Y60.

1. Introduction. We introduce the notion of flat and \(k \)-flat. In Section 2, we study the structure ensuing from these notions. Proposition 2.4 asserts that \(V \) is flat if and only if \((V \otimes_R -) \) preserves the exactness of all right-regular short exact sequences. Proposition 2.5 gives necessary and sufficient conditions for a projective semimodule to be \(k \)-flat. In Section 3, Proposition 3.3 gives the relation between flatness and injectivity. In Section 4, Proposition 4.1 characterizes the \(k \)-flat cancellable semimodules with the left ideals. Proposition 4.4 describes the relationship between the notions of projectivity and flatness for a certain restricted class of semirings and semimodules.

Throughout, \(R \) will denote a semiring with identity 1. All semimodules \(M \) will be left \(R \)-semimodules, except at cited places, and in all cases are unitary semimodules, that is, \(1 \cdot m = m \) for all \(m \in M \) (\(m \cdot 1 = m \) for all \(m \in M \)) for all left \(R \)-semimodules \(_R M \) (resp., for all right \(R \)-semimodule \(_MR \)).

We recall here (cf. \([1, 2, 4, 7, 8]\)) the following facts.

(a) A semiring \(R \) is said to satisfy the left cancellation law if and only if for all \(a, b, c \in R \), \(a + b = a + c \Rightarrow b = c \). A semimodule \(M \) is said to satisfy the left cancellation law if for all \(m, m', m'' \in M \), \(m + m' = m + m'' \Rightarrow m' = m'' \).

(b) We say that a nonempty subset \(N \) of a left semimodule \(M \) is subtractive if and only if for all \(m, m' \in M \), \(m + m' \in N \) imply \(m' \in N \).

(c) A semiring \(R \) is called completely subtractive if \(_RR \) is a completely subtractive semimodule; and a left \(R \)-semimodule \(M \) is called completely subtractive if and only if for every subsemimodule \(N \) of \(M \), \(N \) is subtractive.

(d) A semimodule \(M \) is said to be free \(R \)-semimodule if \(M \) has a basis over \(R \).

(e) A semimodule \(C \) is said to be semicogenerated by \(U \) when there is a homomorphism \(\varphi : M \to \Pi A C \) such that \(\ker \varphi = 0 \). A semimodule \(C \) is said to be a semicogenerator when \(C \) semicgenerates every left \(R \)-semimodule \(M \).

(f) Let \(\alpha : M \to N \) be a homomorphism of semimodules. The subsemimodule \(\text{Im} \alpha \) of \(N \) is defined as follows: \(\text{Im} \alpha = \{ n \in N : n + \alpha(m') = \alpha(m) \text{ for some } m, m' \in M \} \). Also \(\alpha \) is
said to be a semimonomorphism if \(\ker \alpha = 0 \), to be a semi-isomorphism if \(\alpha \) is surjective and \(\text{Ker} \alpha = 0 \), to be an isomorphism if \(\alpha \) is injective and surjective, to be \(i \)-regular if \(\alpha(M) = \text{Im} \alpha \), to be \(k \)-regular if for all \(a, a' \in A \), \(\alpha(a) = \alpha(a') \) implying \(a + k = a' + k' \) for some \(k, k' \in \ker \alpha \), and to be regular if it is both \(i \)-regular and \(k \)-regular.

(g) An \(R \)-semimodule \(M \) is said to be \(k \)-regular if there exist a free \(R \)-semimodule \(F \) and a surjective \(R \)-homomorphism \(\alpha : F \to M \) such that \(\alpha \) is \(k \)-regular.

(h) The sequence \(K \xrightarrow{\alpha} M \xrightarrow{\beta} N \) is called an exact sequence if \(\text{Ker} \beta = \text{Im} \alpha \), and proper exact if \(\text{Ker} \beta = \alpha(K) \).

(i) A short sequence \(0 \to K \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0 \) is said to be left \(k \)-regular right regular if \(\alpha \) is \(k \)-regular and \(\beta \) is right regular.

(j) For any two \(R \)-semimodules \(N, M \), \(\text{Hom}_R(N,M) := \{ \alpha : N \to M \mid \alpha \text{ is an } R \text{-homomorphism of semimodules} \} \) is a semigroup under addition. If \(M, N, \) and \(U \) are \(R \)-semimodules and \(\alpha : M \to N \) is a homomorphism, then \(\text{Hom}(\alpha, I_U) : \text{Hom}_R(N,U) \to \text{Hom}_R(M,U) \) is given by \(\text{Hom}(\alpha, I_U) : \gamma \mapsto \gamma \alpha \), where \(I_U \) is the identity on \(U \).

(k) If \(M \) is a right \(R \)-semimodule, \(N \) is a left \(R \)-semimodule, and \(T \) is an \(N \)-semimodule, then a function \(\theta : M \times \text{N} \to T \) is \(R \)-balanced if and only if, for all \(m, m' \in M \), for all \(n, n' \in N \), and for all \(r \in R \), we have

\[
\begin{align*}
(1) & \quad \theta(m + m', n) = \theta(m, n) + \theta(m', n), \\
(2) & \quad \theta(m, n + n') = \theta(m, n) + \theta(m, n'), \\
(3) & \quad \theta(mr, n) = \theta(m, rn).
\end{align*}
\]

Let \(R \) be a semiring, let \(M \) be a right \(R \)-semimodule, and let \(N \) be a left \(R \)-semimodule. Let \(A \) be the set \(M \times N \), and let \(U \) be the \(N \)-semimodule \(\oplus_A N \times \oplus_A N \). Let \(W \) be the subset of \(U \) consisting of all elements of the following forms:

\[
\begin{align*}
(1) & \quad (\alpha[m + m', n], \alpha[m, n] + \alpha[m', n]), \\
(2) & \quad (\alpha[m, n] + \alpha[m', n], \alpha[m + m', n]), \\
(3) & \quad (\alpha[m, n + n'], \alpha[m, n] + \alpha[m, n']), \\
(4) & \quad (\alpha[m, n] + \alpha[m', n'], \alpha[m, n + n']), \\
(5) & \quad (\alpha[mr, n], \alpha[m, rn]), \\
(6) & \quad (\alpha[m, rn], \alpha[mr, n]),
\end{align*}
\]

for \(m \) and \(m' \) in \(M \), \(n \) and \(n' \) in \(N \), and \(r \) in \(R \), and where \(\alpha[m, n] \) is the function from \(M \times N \) to \(N \) which sends \((m, n) \) to 1 and sends every other element of \(M \times N \) to 0. Let \(U' \) be the \(N \)-subsemimodule of \(U \) generated by \(W \). Define \(N \) congruence relation \(\equiv \) on \(\oplus_A N \) by setting \(\alpha \equiv \alpha' \) if and only if there exists an element \((\beta, \gamma) \in U' \) such that \(\alpha + \beta = \alpha' + \gamma \). The factor \(N \)-semimodule \(\oplus_A N / \equiv \) will be denoted by \(M \otimes_R N \), and is called the tensor product of \(M \) and \(N \) over \(R \).

(A) A left \(R \)-semimodule \(P \) is said to be projective semimodule if and only if for each surjective \(R \)-homomorphism \(\varphi : M \to N \), the induced homomorphism \(\overline{\varphi} : \text{Hom}_R(P, M) \to \text{Hom}_R(P, N) \) is surjective.

2. Flat and \(k \)-flat semimodules. In this section, we discuss the structure of flat and \(k \)-flat semimodules. \textbf{Proposition 2.4} asserts that \(V \) is flat if and only if \((V \otimes_R -) \) preserves the exactness of all left \(k \)-regular right regular short sequences. In \textbf{Proposition 2.5}, we give the necessary and sufficient condition for the projective right semimodule to be \(k \)-flat relative to a cancellable left semimodule.
Definition 2.1. A semimodule V_R is flat relative to a semimodule RM (or that V is M-flat) if and only if for every subsemimodule $K \leq M$, the sequence $0 \to V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M$ is proper exact (i.e., $\text{Ker}(I_V \otimes_R i_K) = 0$) where $I_V \otimes_R i_K(\nu = iK(k))$. A semimodule V_R that is flat relative to every left R-semimodule is called a flat right R-semimodule.

Definition 2.2. A semimodule V_R is k-flat relative to a semimodule RM (or that V is Mk-flat) if and only if for every subsemimodule $K \leq M$, the sequence $0 \to V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M$ is proper exact and $I_V \otimes i_K$ is k-regular (i.e., $I_V \otimes_R i_K$ is injective). A semimodule V_R that is k-flat relative to every right R-semimodule is called a k-flat right R-semimodule. Thus, if V_R is k-flat relative to R, then V_R is flat relative to R.

Our next result shows that the class of flat and k-flat semimodules is closed under direct sums.

Proposition 2.3. Let $(V_\alpha)_{\alpha \in A}$ be an indexed set of right R-semimodules. Then $\oplus_{\alpha} V_\alpha$ is M-flat (k-flat) if and only if each V_α is M-flat (k-flat).

Proof. Let M be a left R-semimodule and K a subsemimodule of M. Consider the following commutative diagram:

\[
\begin{array}{ccc}
V_\alpha \otimes K & \xrightarrow{I_{V_\alpha} \otimes i_K} & V_\alpha \otimes M \\
\pi_\alpha \downarrow & & \downarrow \pi_\alpha \\
\oplus (V_\alpha \otimes K) & \xrightarrow{\theta} & \oplus (V_\alpha \otimes M) \\
\phi \downarrow & & \phi' \\
(\oplus V_\alpha) \otimes K & \xrightarrow{I_{\oplus V_\alpha} \otimes i_K} & (\oplus V_\alpha) \otimes M,
\end{array}
\]

where $\pi_\alpha : \oplus (V_\alpha \otimes K) \to V_\alpha \otimes K$ and $i_\alpha : V_\alpha \otimes K \to \oplus (V_\alpha \otimes K)$ are defined respectively by $\pi_\alpha : (v_\alpha \otimes k_i)h v_\alpha \otimes k_\alpha$ and $i_\alpha : v_\alpha \otimes k_\alpha h (v_\alpha \otimes k_i)$, where $v_\alpha \otimes k_i = 0$ if $i \neq \alpha$ and $v_\alpha \otimes k_i = v_\alpha \otimes k_\alpha$ if $\alpha = i$; ϕ and ϕ' are the isomorphisms of [8, Proposition 5.4] given by $\phi[(v_\alpha) \otimes k] = (v_\alpha \otimes k)$ and $\theta(v_\alpha \otimes k) = (v_\alpha \otimes i(k))$. Now suppose that $\oplus V_\alpha$ is M-flat (k-flat). If $I_{V_\alpha} \otimes i_K(\nu' = iK(k')) = 0[I_{V_\alpha} \otimes i_K((v_\alpha \otimes k) = I_{V_\alpha} \otimes i_K((v_\alpha \otimes k'))]$, then by the above diagram we have $(v_\alpha) \otimes i_K(k) = 0[(v_\alpha) \otimes i(k) = (v_\alpha') \otimes i(k')]$. Since $\oplus V_\alpha$ is flat (k-flat), then $(v_\alpha) \otimes k = 0[(v_\alpha) \otimes k = (v_\alpha') \otimes k']$. Again by (2.1), $(v_\alpha) \otimes k = 0$ whence $v_\alpha \otimes k = 0[(v_\alpha) \otimes k = (v_\alpha') \otimes k']$, whence $v_\alpha \otimes k = (v_\alpha') \otimes k'$. Therefore V_α is flat (k-flat).

Conversely, suppose that V_α is M-flat (k-flat) for each $\alpha \in A$. If $I_{\oplus V_\alpha} \otimes i_K((v_\alpha) \otimes k) = 0[I_{\oplus V_\alpha} \otimes i_K((v_\alpha) \otimes k) = I_{\oplus V_\alpha} \otimes i_K((v_\alpha') \otimes k')]$, then by the above diagram we have $v_\alpha \otimes k = 0[v_\alpha \otimes i(k) = v_\alpha' \otimes i(k')]$ for each $\alpha \in A$. Since V_α is flat (k-flat), then $v_\alpha \otimes k = 0[v_\alpha \otimes k = v_\alpha' \otimes k']$ for each α. Therefore, $(v_\alpha) \otimes k = 0[(v_\alpha) \otimes k = (v_\alpha') \otimes k']$. Again by (2.1), $(v_\alpha) \otimes k = 0[(v_\alpha) \otimes k = (v_\alpha') \otimes k']$. Thus $\oplus V_\alpha$ is flat (k-flat).

Proposition 2.4. Let M be a left R-semimodule. A right R-semimodule V is M-flat if and only if the functor $(V \otimes_R -)$ preserves the exactness of all left k-regular right regular
short exact sequences with middle term \(M \):

\[
0 \rightarrow R K \xrightarrow{\alpha} R M \xrightarrow{\beta} R N \rightarrow 0. \tag{2.2}
\]

Proof. “If” part. Let \(0 \rightarrow R K \xrightarrow{\alpha} R M \xrightarrow{\beta} R N \rightarrow 0 \) be a left \(k \)-regular right regular exact sequence. Since \(V_R \) is \(R M \)-flat, then using [8, Theorem 5.5(2)], the sequence

\[
0 \rightarrow V \otimes_R K \xrightarrow{I_V \otimes \alpha} V \otimes_R M \xrightarrow{I_V \otimes \beta} V \otimes_R N \rightarrow 0 \tag{2.3}
\]

is exact.

“Only if” part. Let \(R K \leq R M \). Consider the following exact sequence:

\[
0 \rightarrow K \xrightarrow{i_K} M \xrightarrow{m_{\text{mi}}K} M/\text{Im} i_K \rightarrow 0. \tag{2.4}
\]

By hypothesis, \(0 \rightarrow V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M \) is an exact sequence. Thus \(V \) is \(M \)-flat.

Our next result gives a necessary and sufficient condition for a projective semimodule to be \(k \)-flat relative to a cancellable semimodule \(M \).

Proposition 2.5. Let \(V_R \) be projective and \(R M \) cancellable. Then, \(V \) is \(Mk \)-flat if and only if the functor \((V \otimes_R -) \) preserves the exactness of all left \(k \)-regular right regular short exact sequences

\[
0 \rightarrow R K \xrightarrow{\alpha} R M \xrightarrow{\beta} R N \rightarrow 0. \tag{2.5}
\]

Proof. “If” part. Let \(0 \rightarrow R K \xrightarrow{\alpha} R M \xrightarrow{\beta} R N \rightarrow 0 \) be a left \(k \)-regular right regular exact sequence. Since \(V_R \) is \(R M \) \(k \)-flat, then \(V_R \) is \(R M \)-flat. By using Proposition 2.4, the sequence

\[
0 \rightarrow V \otimes_R K \xrightarrow{I_V \otimes \alpha} V \otimes_R M \xrightarrow{I_V \otimes \beta} V \otimes_R N \rightarrow 0 \tag{2.6}
\]

is exact.

“Only if” part. Let \(K \leq M \). Consider the following exact sequence:

\[
0 \rightarrow K \xrightarrow{i_K} M \xrightarrow{m_{\text{mi}}K} M/\text{Im} i_K \rightarrow 0. \tag{2.7}
\]

Since \(V \) is projective and \(M \) is cancellable, then by using [9, Proposition 1.16], \(I_V \otimes i_K \) is \(k \)-regular. By hypothesis, \(0 \rightarrow V \otimes_R K \xrightarrow{I_V \otimes i_K} V \otimes_R M \) is an exact sequence. Thus \(V \) is \(Mk \)-flat.

3. **Flatness via injectivity.** We will discuss the relation between the injectivity and flatness. By \((\cdot)^*\) we mean the functor \(\text{Hom}_N(-, C) \), where \(C \) is a fixed injective semico-generator cancellative \(N \)-semimodule.

Remark 3.1. If \(U \) is a right \(R \)-semimodule, then \(U^* \) is a left \(R \)-semimodule.

Proof. Let \(\alpha \in \text{Hom}_R(U, C) \) and let \(r \in R \). Define \(r\alpha(u) = \alpha(ur) \). If \(s \in R \), then \(s(r\alpha)u = (r\alpha)(us) = \alpha(usr) = (sr)\alpha(u) \). Therefore, \(U^* \) is a left \(R \)-semimodule.

\(\square \)
We state and prove the following lemma, analogous to the one on modules which is needed in the proof of Proposition 3.3.

Lemma 3.2. Let R be a semiring, let M and M' be left R-semimodules, and let U be a right R-semimodule. Let T be a cancellative N-semimodule. If $\alpha : M' \to M$ is an R-homomorphism, then there exist N-isomorphisms φ and φ' such that the following diagram commutes:

\[
\begin{array}{cccc}
\Hom_R(M, \Hom_N(U, T)) & \xrightarrow{\Hom_R(\alpha, \Hom_N(U, T))} & \Hom_R(M', \Hom_N(U, T)) \\
\varphi & & \varphi' \\
\Hom_N((U \otimes_R M), T) & \xrightarrow{\Hom_N((l_U \otimes \alpha), I_T)} & \Hom_N((U \otimes_R M'), T).
\end{array}
\] (3.1)

Proof. By [7, Proposition 14.15], there exists an N-isomorphism $\varphi : \Hom_R(M, \Hom_N(U, T)) \to \Hom_R(M \otimes U, T)$ (3.2) given by $\varphi(y) : u \otimes mh(y(m))u$. Then with a parallel definition for φ', we have

\[
\varphi' h \Hom_R(\alpha, l_{\Hom_N(U, T)})(y)(u \otimes m') = \varphi'(y \alpha)(u \otimes m') = (y \alpha)(m')(u) = y(\alpha(m'))(u) = \varphi(y)(u \otimes \alpha(m'))
\]

\[
= \varphi(y) h (l_U \otimes \alpha)(u \otimes m') = \Hom_N(l_U \otimes \alpha, I_T)(\varphi(y))(u \otimes m'),
\] (3.3)

and the diagram commutes. \hfill \qed

Proposition 3.3. Let M be a left R-semimodule.

1. If the right R-semimodule V is M_k-flat, then V^* is M-injective.
2. If V^* is M-injective, then V is M-flat.

Proof. (1) Let K be a subsemimodule of M. Since V is M_k-flat, then the sequence $0 \to V \otimes K \xrightarrow{i_V \otimes i_K} V \otimes M$ is proper exact, and $I_V \otimes i_K$ is k-regular. By Lemma 3.2, we have the following commutative diagram:

\[
\begin{array}{cccc}
\Hom_R(M, V^*) & \xrightarrow{\Hom_R(i_K, I_V^*)} & \Hom_R(K, V^*) & \to 0 \\
\varphi' \downarrow & & \varphi \downarrow \\
(V \otimes M)^* & \xrightarrow{\Hom(I_V \otimes i_K, I_C)} & (V \times K)^* & \to 0,
\end{array}
\] (3.4)

where φ' and φ are N-isomorphisms. It follows that the top row is proper exact if and only if the bottom row is proper exact, whence by [6, Proposition 3.1], V^* is injective.

(2) If V^* is injective, then

\[
\Hom(M, V^*) \xrightarrow{\Hom(i_K, I_V^*)} \Hom(K, V^*) \to 0
\] (3.5)
is proper exact. Again by the above diagram,

\[(V \otimes M)^* \xrightarrow{\text{Hom}(I_V \otimes i_K, I_e)} (V \otimes K)^* \rightarrow 0 \quad (3.6)\]

is proper exact. Hence, the sequence is exact. Since \(C\) is a semicogenerator, then by [3, Proposition 4.1], the sequence \(0 \rightarrow V \otimes K \rightarrow V \otimes M\) is an exact sequence. Hence, \(V\) is \(M\)-flat.

4. Cancellable semimodules. In this section, we deal with cancellable semimodules. We characterize \(k\)-flat cancellable semimodules by means of left ideals.

Proposition 4.1. The following statements about a cancellable right \(R\)-semimodule \(V\) are equivalent:

1. \(V\) is \(k\)-flat relative to \(RR\);
2. for each (finitely generated) left ideal \(I \leq RR\), the surjective \(N\)-homomorphism \(\varphi : V \otimes R I \rightarrow VI\) with \(\varphi(v \otimes a) = va\) is a \(k\)-regular semimonomorphism.

Proof. (1)\(\Rightarrow\)(2). Since \(V\) is cancellable, then by using [7, Proposition 14.16], \(V \otimes R R \cong V\). Consider the following commutative diagram:

\[
\begin{array}{ccc}
V \otimes R I & \xrightarrow{i_V \otimes i_I} & V \otimes R R \\
\varphi \downarrow & & \theta \downarrow \\
VI & \xrightarrow{i_V I} & V,
\end{array}
\]

where \(\theta\) is the isomorphism of [7, Proposition 14.16]. Since \(\varphi : V \times I \rightarrow VI\) given by \(\varphi(v, i) = vi\) is an \(R\)-balanced function, then by using [7, Proposition 14.14], there is an exact unique \(N\)-homomorphism \(\varphi : V \otimes I \rightarrow V\) satisfying the condition \(\varphi(v \otimes i) = \varphi(v, i)\). Since \(V\) is \(k\)-flat relative to \(RR\), then \(\varphi(\Sigma v_i \otimes a_i) = \varphi(\Sigma v'_i \otimes a'_i)\), then \(\varphi(\Sigma v_1 \otimes a_1) = \varphi(\Sigma v'_1 \otimes a'_1)\).

(2)\(\Rightarrow\)(1). Again consider the above diagram. Let \(I\) be any left ideal of \(R\) and let \(i_I : (\Sigma v_1 \otimes a_1) = I_V \otimes R_1 I(\Sigma v'_1 \otimes a'_1)\), where \(\Sigma v'_1 \otimes a'_1, \Sigma v_1 \otimes a_1 \in V \otimes R I\). Let \(K_1 = \Sigma Ra_i, K_2 = \Sigma Ra'_i,\) and \(K = K_1 + K_2\). Now \(\varphi(\Sigma v_i \otimes a_i) = \varphi(\Sigma v'_i \otimes a'_i)\), whence \(\Sigma v_i a_i = \Sigma v'_i a'_i\). Now consider the following diagram, where \(i_K : K \rightarrow I\) is the inclusion map:

\[
\begin{array}{ccc}
V \otimes K & \xrightarrow{i_V \otimes i_K} & V \\
\varphi_K \downarrow & & \varphi \downarrow \\
VK & \xrightarrow{i_V K} & V.
\end{array}
\]

By hypothesis, \(\varphi_K\) is monic. Thus, \(\Sigma i v_i \otimes a_i = \Sigma i v'_i \otimes a'_i\) as an element of \(V \otimes K\). Hence, \(I_V \otimes R K(\Sigma v_i \otimes a_i) = I_V \otimes K(\Sigma v'_i \otimes a'_i) \in V \otimes I\), and \(\Sigma v_i \otimes a_i = \Sigma v'_i \otimes a'_i\) as an element of \(V \otimes I\). Therefore, \(I_V \otimes R i_I\) is monic. Hence, \(V\) is \(k\)-flat relative to \(RR\).
Proposition 4.2. Let M be a cancellable left R-semimodule. Then R_R is M_k-flat.

Proof. Let $i_K : K \to M$ be the inclusion homomorphism. By [7, Proposition 14.16], $R \otimes_R K \simeq K$ and $R \otimes R M \simeq M$. Consider the following commutative diagram:

\[
\begin{array}{ccc}
R \otimes_R K & \xrightarrow{i_R \otimes i} & R \otimes_R M \\
\downarrow{=} & & \downarrow{=} \\
K & \xrightarrow{i_K} & M,
\end{array}
\]

(4.3)

since i_K is injective, then $I \otimes_R i_K$ is injective. □

Corollary 4.3. Let M be a cancellable left R-semimodule. Then every free R-semimodule is M_k-flat.

Proof. The proof is immediate from Propositions 2.3 and 4.2. □

In module theory every projective module is flat. Now we see that this is true for certain special semimodules.

Proposition 4.4. Let M be a cancellable left R-semimodule, where R is a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is M_k-flat.

Proof. By using [5, Theorem 19], P is isomorphic to a direct summand of a free semimodule F. By Corollary 4.3, F is M_k-flat. Hence, by using Proposition 2.3, P is M_k-flat. □

Corollary 4.5. Let M be a k-regular left R-semimodule and R a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is M_k-flat.

Proof. We only need to show that M is cancellable. Since M is k-regular, then there exists a free R-semimodule F such that $\varphi : F \to M$ is surjective. Let $m_1 + m = m_2 + m$, where $m_1, m_2, m \in M$. Since φ is surjective, then $\varphi(a_1) + \varphi(a) = \varphi(a_2) + \varphi(a)$, where $\varphi(a_1) = m_1$, $\varphi(a) = m$, and $\varphi(a_2) = m_2$. Since φ is k-regular, then $a_1 + a + k_1 = a_2 + a + k_2$, where $k_1, k_2 \in \text{Ker} \varphi$. Since F is cancellable, then $a_1 + k_1 = a_2 + k_2$. Hence $\varphi(a_1) = \varphi(a_2)$. □

Proposition 4.6. Let M be a cancellable left R-semimodule. If V is a free R-semimodule, then the following assertions hold:

(a) V is M_k-flat;
(b) V^* is M-injective.

Proof. By using Corollary 4.3, V is M_k-flat.

(i)⇒(ii). The proof is immediate from Proposition 3.3. □

Acknowledgments. I wish to thank Dr. Michael H. Peel for his crucial comments. I would also like to thank Dr. Mustafa A. Mustafa for his help.
References

Huda Mohammed J. Al-Thani: P.O. Box 13896, Doha, Qatar
Current address: Department of Environmental Sciences and Mathematics, Faculty of Science and Health, University of East London, London, UK
E-mail address: nnhm@qatar.net.qa