ON A CLASS OF HOLOMORPHIC FUNCTIONS DEFINED BY THE RUSCHEWEYH DERIVATIVE

GEORGIA IRINA OROS

Received 23 September 2002

By using the Ruscheweyh operator \(D_m f(z) \), \(z \in U \), we will introduce a class of holomorphic functions, denoted by \(M_m^\alpha(\alpha) \), and obtain some inclusion relations.

2000 Mathematics Subject Classification: 30C45.

1. Introduction and preliminaries. Denote by \(U \) the unit disc of the complex plane

\[
U = \{ z \in \mathbb{C}; |z| < 1 \}. \tag{1.1}
\]

Let \(\mathcal{H}(U) \) be the space of holomorphic functions in \(U \).
We let

\[
A_n = \{ f \in \mathcal{H}(U), f(z) = z + a_{n+1} z^{n+1} + \cdots, z_1 \in U \} \tag{1.2}
\]

with \(A_1 = A \).
We let \(\mathcal{H}[a, n] \) denote the class of analytic functions in \(U \) of the form

\[
f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots, \quad z \in U. \tag{1.3}
\]

If \(f \) and \(g \) are analytic in \(U \), we say that \(f \) is subordinate to \(g \), written \(f \prec g \) or \(f(z) \prec g(z) \), if there is a function \(w \) analytic in \(U \), with \(w(0) = 0, |w(z)| < 1 \), for any \(z \in U \), such that \(f(z) = g(w(z)) \), for \(z \in U \).

If \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subset g(U) \).
Let \(K = \{ f \in A : \text{Re}(zf''(z)/f'(z)) + 1 > 0, z \in U \} \) denote the class of normalized convex functions in \(U \). We use the following subordination results.

Lemma 1.1 (Miller and Mocanu [2, page 71]). Let \(h \) be a convex function with \(h(0) = a \) and let \(\gamma \in \mathbb{C}^* \) be a complex with \(\text{Re} \gamma \geq 0 \). If \(p \in \mathcal{H}[a, n] \) and

\[
p(z) + \frac{1}{\gamma} z p'(z) \prec h(z), \tag{1.4}
\]
then \(p(z) < g(z) < h(z) \), where

\[
g(z) = \frac{Y}{n z^{y/n}} \int_0^z h(t) \cdot t^{(y/n)-1} dt.
\] (1.5)

The function \(g \) is convex and is the best \((a,n)\) dominant.

Lemma 1.2 (Miller and Mocanu [1]). Let \(g \) be a convex function in \(U \) and let

\[
h(z) = g(z) + n \alpha zg'(z),
\] (1.6)

where \(\alpha > 0 \) and \(n \) is a positive integer. If \(p(z) = g(0) + p_n z^n + \cdots \) is holomorphic in \(U \) and

\[
p(z) + \alpha z p'(z) \prec h(z),
\] (1.7)

then

\[
p(z) \prec g(z)
\] (1.8)

and this result is sharp.

Definition 1.3 [4]. For \(f \in A \) and \(m \geq 0 \), the operator \(D^m f \) is defined by

\[
D^m f(z) = f(z) \ast \frac{z}{(1-z)^{m+1}} = \frac{Z}{m!} \left[z^{m-1} f(z) \right]^{(m)}, \quad z \in U,
\] (1.9)

where \(\ast \) stands for convolution.

Remark 1.4. We have

\[
D^0 f(z) = f(z), \quad z \in U,
\]

\[
D^1 f(z) = z f'(z), \quad z \in U,
\]

\[
2D^2 f(z) = z \cdot [D^1 f(z)]' + D^1 f(z),
\]

\[
(m + 1)D^{m+1} f(z) = z[D^m f(z)]' + m D^m f(z).
\] (1.10)

2. Main results

Definition 2.1. If \(\alpha < 1 \) and \(m, n \in \mathbb{N} \), let \(M^m_n(\alpha) \) denote the class of functions \(f \in A_n \) which satisfy the inequality

\[
\text{Re} \left(D^m f \right)'(z) > \alpha.
\] (2.1)

Theorem 2.2. If \(\alpha < 1 \) and \(m, n \in \mathbb{N} \), then

\[
M^m_{n+1}(\alpha) \subset M^m_n(\delta),
\] (2.2)
ON A CLASS OF HOLOMORPHIC FUNCTIONS

where

\[\delta = \delta(\alpha, n, m) = 2\alpha - 1 + 2 \cdot (1 - \alpha) \cdot \frac{m + 1}{n} \beta\left(\frac{m + 1}{n}\right), \]

\[\beta(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt. \] (2.3)

PROOF. Let \(f \in M_{n}^{m+1}(\alpha) \). By using the properties of the operator \(D^m f(z) \), we have

\[(m + 1)D^{m+1}f(z) = z \cdot (D^m f)'(z) + mD^m f(z), \quad z \in U. \] (2.4)

Differentiating (2.4), we obtain

\[(m + 1)[D^{m+1}f(z)]' = z \cdot (D^m f)''(z) + (D^m f)'(z) + m(D^m f)'(z) \]

\[= z(D^m f)''(z) + (m + 1)(D^m f)'(z). \] (2.5)

If we let \(p(z) = (D^m f)'(z) \), then \(p'(z) = (D^m f)''(z) \) and (2.4) becomes

\[[D^{m+1}f(z)]' = p(z) + \frac{1}{m+1}z \cdot p'(z). \] (2.6)

Since \(f \in M_{n}^{m+1}(\alpha) \), by using Definition 2.1, we have

\[\text{Re}\left[p(z) + \frac{1}{m+1}z p'(z) \right] > \alpha \] (2.7)

which is equivalent to

\[p(z) + \frac{1}{m+1}z p'(z) < \frac{1 + (2\alpha - 1)z}{1+z} \equiv h(z). \] (2.8)

By using Lemma 1.1, we have

\[p(z) < g(z) < h(z), \] (2.9)

where

\[g(z) = \frac{m + 1}{nz^{(m+1)/n}} \int_0^z \frac{1 + (2\alpha - 1)t}{1+t} \cdot t^{(m+1)/n-1} dt. \] (2.10)

The function \(g \) is convex and is the best dominant.

From \(p(z) < g(z) \), it results that

\[\text{Re} p(z) > \delta = g(1) = \delta(\alpha, n, m), \] (2.11)
where
\[
g(1) = \frac{m+1}{n} \int_0^1 t^{(m+1)/n} \cdot \frac{\frac{1}{1+t} + (2\alpha - 1)t}{1+t} \, dt
\]
\[
= 2\alpha - 1 + 2 \cdot \frac{m+1}{n} \cdot (1-\alpha) \beta \left(\frac{m+1}{n} \right),
\]
(2.12)
from which we deduce that \(M_{n}^{m+1}(\alpha) \subset M_{n}^{m}(\delta) \).

For \(n = 1 \), this result was obtained in [3].

Theorem 2.3. Let \(g \) be a convex function, \(g(0) = 1 \), and let \(h \) be a function such that

\[
h(z) = g(z) + \frac{1}{m+1} z g'(z).
\]
(2.13)

If \(f \in A_n \) and verifies the differential subordination

\[
(D^{m+1} f)'(z) < h(z),
\]
(2.14)
then

\[
(D^{m} f)'(z) < g(z).
\]
(2.15)

Proof. From

\[
(m+1)D^{m+1} f(z) = z \cdot (D^{m} f)'(z) + mD^{m} f(z),
\]
(2.16)
we obtain

\[
(m+1)\left[D^{m+1} f(z) \right]' = (D^{m} f)'(z) + z(D^{m} f)''(z) + m(D^{m} f)'(z)
\]
\[
= z(D^{m} f)''(z) + (m+1)(D^{m} f)'(z).
\]
(2.17)
If we let \(p(z) = (D^{m} f)'(z) \), then we obtain

\[
[D^{m+1} f(z)]' = p(z) + \frac{1}{m+1} z p'(z)
\]
(2.18)
and (2.14) becomes

\[
p(z) + \frac{1}{m+1} z p'(z) < g(z) + \frac{1}{m+1} z g'(z) \equiv h(z).
\]
(2.19)

By using Lemma 1.2, we have

\[
p(z) < g(z), \quad \text{i.e., } (D^{m} f)'(z) < g(z).
\]
(2.20)

For \(n = 1 \), this result was obtained in [3].
ON A CLASS OF HOLOMORPHIC FUNCTIONS ... 4143

Theorem 2.4. Let \(h \in \mathcal{H}[U] \), with \(h(0) = 1 \), \(h'(0) \neq 0 \), which verifies the inequality

\[
\Re \left[1 + \frac{zh''(z)}{h'(z)} \right] > -\frac{1}{2(m+1)}, \quad m \geq 0.
\]

(2.21)

If \(f \in A_n \) and verifies the differential subordination

\[
[D^{m+1}f(z)]' < h(z), \quad z \in U,
\]

(2.22)

then

\[
[D^mf(z)]' < g(z),
\]

(2.23)

where

\[
g(z) = \frac{m+1}{nz^{(m+1)/n}} \int_0^z h(t)t^{(m+1)/n-1} dt.
\]

(2.24)

The function \(g \) is convex and is the best dominant.

Proof. A simple application of the differential subordination technique [1, 2] shows that the function \(g \) is convex. From

\[
(m+1)D^{m+1}f(z) = z[D^mf(z)]' + mD^mf(z),
\]

(2.25)

we obtain

\[
(m+1)[D^{m+1}f(z)]' = z[D^mf(z)]'' + (m+1)[D^mf(z)]'.
\]

(2.26)

If we let \(p(z) = [D^mf(z)]' \), then we obtain

\[
[D^{m+1}f(z)]' = p(z) + \frac{1}{m+1}zp'(z)
\]

(2.27)

and (2.22) becomes

\[
p(z) + \frac{1}{m+1}zp'(z) < h(z).
\]

(2.28)

By using Lemma 1.1, we have

\[
p(z) < g(z) = \frac{m+1}{nz^{(m+1)/n}} \int_0^z h(t)t^{(m+1)/n-1} dt.
\]

(2.29)

Theorem 2.5. Let \(g \) be a convex function, \(g(0) = 1 \), and

\[
h(z) = g(z) + nzg'(z).
\]

(2.30)

If \(f \in A_n \) and verifies the differential subordination

\[
[D^mf(z)]' < h(z), \quad z \in U,
\]

(2.31)
then

$$\frac{D^m f(z)}{z} < g(z). \quad (2.32)$$

Proof. We let \(p(z) = D^m f(z)/z, z \in U, \) and we obtain

$$D^m f(z) = zp(z). \quad (2.33)$$

By differentiating, we obtain

$$[D^m f(z)]' = p(z) + zp'(z), \quad z \in U. \quad (2.34)$$

Then (2.31) becomes

$$p(z) + zp'(z) < h(z) = g(z) + zg'(z). \quad (2.35)$$

By using Lemma 1.2, we have (1.8). \(\square \)

References

Georgia Irina Oros: Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania

E-mail address: georgia_oros_ro@yahoo.com